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Abstract

We explore a class of task allocation mechanisms that
are incremental and can be tuned to the computational
resource limitations of agents� Our focus is on dis�
tributed task and resource allocation problems involv�
ing coalitions of cooperative agents that must negotiate
among themselves on the distribution of tasks� Our
emphasis is on the design of mechanisms with desir�
able real�time and dynamic properties� We describe
preliminary work in four areas� the design of what we
call time�bounded commitment networks that are ex�
tensions of task�auctions and contract nets and that
support a notion of reciprocal commitment� anytime
algorithms for combinatorial task allocation that take
into account both positive and negative task interac�
tions� organizational frameworks for e�cient task allo�
cation in highly dynamic domains involving hundreds
of agents� and logical tools for analyzing dynamic emer�
gent properties of agent societies�

Keywords� Negotiation� multiagent systems� real	time
resource allocation


Introduction

We report on preliminary work into the design of
task allocation methods that exhibit desirable real	time
and dynamic properties
 These methods are loosely
based on two related paradigms� auctions and con	
tract nets �Kraus ���
� Sandholm ����� Hunsberger �
Grosz ����� Smith � Davis ����� Sen � Durfee ���
�

Auction	like mechanisms represent attractive methods
for the quick and decentralized negotiation of task and
resource allocations� agents need not exchange large
volumes of local state information to some centralized
point for an allocation
 Typically� auctions take place
in competitive settings� a group of agents places bids
on an object that has been announced for sale and the
highest bid wins
 Since the focus in competitive set	

tings is on truthfulness and fairness� mechanisms have
been developed � such as second	price auctions � to
ensure truthfulness
 Our focus� however� is on coopera	
tive agents� hence� truthfulness can be assumed
 In the
problems that are of concern to us� agents instead bid
on tasks � either the cost to perform those tasks or
how well they can perform them � and the best bid is
assigned the task
 Such task auctions are very similar
to contract nets
 However� the work we describe bor	
rows ideas from combinatorial auctions in which a set
of objects is announced for bid and bidders can place
bids on any subset of those objects


Within the domain of resource allocation� we are pri	
marily interested in problem settings that are very dy	
namic� new tasks can appear while other tasks are ex	
ecuted� the processing of tasks has associated real	time
execution constraints� and agent coalitions can consist
of hundreds of agents
 Our emphasis on solution incre	
mentality emerged with such problem domains in mind�
the time	stressed nature of such problem domains pre	
cludes the possibility of computing optimal resource al	
locations before execution
 Instead� agents should ne	
gotiate partial� good	enough allocations that can later
be re�ned if time permits


The remainder of this paper summarizes work in four
areas� the design of what we call time	bounded commit	
ment networks� which are extensions of task	auctions
and contract nets and which support a notion of recipro	
cal commitment� anytime algorithms for combinatorial
task allocation that take into account both positive and
negative task interactions� organizational frameworks
for e�cient task allocation in highly dynamic domains
involving hundreds of agents� and logical tools for ana	
lyzing dynamic emergent properties of agent societies

We begin by �rst de�ning a class of distributed resource
allocation problems
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Figure �� multisensor tracking


Distributed resource allocation
De�nition �DRAP�A distributed resource allocation
problem �DRAP��D� is a triple� hR� T �Qi where R rep	
resents a set of resources or agents� T � �T � where T is
a set of task elements� and Q � R�N �T � ������ asso	
ciates a quality measure with each resource	time	task
triple� where N is a set of integer times
 The func	
tion Q is generally expressed in terms of the distance
of the task segment� T � from a sensor
 A cost� C� is
sometimes also associated with a resource allocation�
C � R � N � �� where � is the set of reals
 A so	
lution� sD � to a DRAP� D � hR� T �Qi� is a mapping
sD � T � N � �R


Solutions are sometimes constrained� for example�
one might want to place bounds� BC � on the maximum
group cost as well as bounds� BQ� on the minimum
quality� in the following way� Q such that

X

T�T

Q�sD�T� time�T ��� time�T �� T �

jT j
� BQ

and
X

T�T

C�sD�T� time�T ��� time�T �� � BC

where T � fT�� T�� � � � � Tng is some set of task ele	
ments and sD�Ti� time�Ti�� � fR�� R�� � � � � Rmg is the
set of resources assigned to a task segment� Ti at time
time�Ti�


An example of a DRAP is shown in Figure �� in	
volving multisensor tracking
 The �gure shows an ar	
ray of nine doppler sensors
 Each sensor has three sec	
tors associated with it� labeled f�� �� �g
 A sensor can
turn on a sector and take both frequency and ampli	
tude measurements to determine velocity and distance

The more sectors that are on� the greater the power

usage
 The farther away the target is from the sensor�
the lower the quality of the measurement
 At least two
sensors are necessary for estimating the location of an
object� three sensors are desirable for obtaining a good	
quality estimate
 Sectors require a � second warm	up
time� and two objects appearing in the same sector and
at the same time cannot be discriminated
�

In this example� we assume that the projected paths
have been computed � based on initial localization�
direction and velocity measurements � for each of two
targets� T� and T�
 The paths are shown as dark lines�
the dashed line represents a hypothetical change in di	
rection of T� which will be discussed later
 The problem
in this example is to allocate� in a distributed manner�
a coalition of sensors along the paths of both targets

One way of implementing a task auction to allocate the
sensors is to �rst assign nodes n� and n� each the role
of auctioneer
 Each would then initiate an auction for
the respective tasks corresponding to an assignment of
three sensors at each future time point � indicated in
the �gure by small dark circles � to nodes and rele	
vant sectors
 In the actual system� power consumption
and communications �number of messages exchanged�
are resources that must also be managed
 Formally� the
above example corresponds to the DRAP in which R
stands for the sensor nodes� and T consists of the set
fT�� T�g


Real�time commitment networks
Commitment networks are hybrid negotiation mecha	
nisms that borrow ideas from auctions� contract nets�
and theories of collaboration
 Teams negotiate the dis	
tribution of new tasks by initiating auctions to poten	
tial team members who then bid on how well they can
perform those tasks
 The protocols have been designed
to adapt to the demands of a problem situation along
a number of dimensions� for example� as in contract
nets� subauctions are possible� and their depth can vary
depending on the time available
 However� unlike con	
tract nets in that the commitment of a contractee to
a contractor is one	sided� commitment networks allow
for reciprocity between a contractee and another team
member� if the contractee can identify some task that
could help another team member� then it attempts to
do so
 Such reciprocity has proved valuable in providing
a certain measure of fault tolerance
 Finally� commit	
ment networks borrow the idea of combinatorial task
allocation� sets of tasks can be announced at one time
and bidders can bid on any subset of those tasks

Commitment networks introduce three new con	

structs not present in standard contract nets


Persistent bids In the contract net protocol� if a bid
is not accepted� it is terminated
 In commitment
networks� bids are allowed to persist by default
 In
time	critical situations� this has the advantage that if
a new task appears in a location close to that covered

�We are using both a physical sensor suite and simula�
tions based on the sensor suite for experimentation�



by a recent bid� the auctioneer can simply assign it
to the corresponding bidder
 Such an assumption is
defeasible� agents can announce that the default bid
is no longer valid because of some new commitment


Reciprocal background commitments
These sorts of commitments are inspired by theories
of collaboration that have argued that collaborating
agents should demonstrate a willingness to provide
helpful behavior to other team members �Grosz �
Kraus ���
�


Contingent commitments
Dynamic worlds in which tasks can change require
commitments that can be made contingent on some
aspect of the future
 These sorts of commitments
allow an agent to drop a commitment if conditions
change in a way that warrants such an action


Our approach to the multisensor tracking problem
described earlier using commitment networks involves
three stages� ��� initial coalition formation� ��� forma	
tion of a future coalition based on a projected object
path� and ��� re�nement of an existing coalition
 We
use the term coalition to refer to a group of agents that
are joining together to perform some task� the members
of a coalition can change as circumstances change
 The
initial coalition formation is a very quick process that
assigns a group of three agents to a target
 The initial
coalition�s task is to determine the position� direction�
and velocity of the target
 In the second stage� one of
the agents in the initial coalition takes that information
and projects the path of the target into the future� and
then runs an auction on some set of agents that neigh	
bor the projected path
 The projected path is repre	
sented by a cone of uncertainty� the farther into the
future� the greater the uncertainty in the projected po	
sition
 In the �nal stage� a coalition can be adapted to
changes that might occur in the path of a target� when
agents in a particular coalition� A� notice the change�
they inform the remaining agents in the original coali	
tion � a consequence of a reciprocal background com	
mitment � of that change so that they can drop their
commitments� A then runs a new auction to allocate
new resources to the new path


The commitment net protocol is summarized in Fig	
ure �
 Each lattice	like structure corresponds to a single
announce	bid	award cycle
 Time is represented on the
vertical axis� while the horizontal axis lists the agents
in the system� fN�� N�� � � �� N��g
 A set of new tasks
is shown at the top of the �gure� represented as task
segment	location pairs� where a location is a reference
to a point in space and time
 A negotiation cycle con	
sists of six steps� ��� computation of an appropriate list
of bidders based on the projected target cone� ��� task
announcement to the bidders� ��� bid computations by
each of the bidders� ��� bidding� ��� winner determina	
tion� and �
� award
 If the agents have additional time�
each bidder can initiate subauctions� shown in the inset�
to possibly improve the initial bids

We are exploring several approaches for controlling

Figure �� Illustration of the commitment net protocol


complexity
 The commitment net protocol without
combinatorial bidding is an anytime algorithm
 When
combinatorial bidding is allowed� we make use of the
iterative deepening algorithm proposed by �Sandholm
� Lesser ������ but with only single	task subauctions

With combinatorial bidding and multistage auctions�
we are applying statistical and machine learning meth	
ods to analyze the relationships between cost of com	
putation and task performance �Zilberstein � Russell
������ we discuss these ideas further below

Other methods for controlling complexity include the

path projection step� which leads to better allocations�
as discussed in the next section
 One potential problem
of system dynamics is the following
 During compu	
tation of potential bidders� only a subset of the entire
sensor web is considered� this means that care must be
taken when initiating auctions to a potential coalition
that might interact in a negative way with an overlap	
ping coalition
 To handle such problems we are inform	
ing winning bids of the other agents in the coalition� so
that information is available to subsequent auctions


Preliminary results

Figure � shows the interface to the multisensor tracking
simulation that we have been using
� The experiments
ran on a �
	node con�guration with a single node per	
forming track synthesis and reporting the results to the
others
 They lasted �� simulated seconds� but because
the processor load was so high� this required approxi	
mately � hour of real time� including initialization
 Fig	
ure � reports on experiments regarding the bene�ts of
path projection and Figure � reports on experiments
involving multistage negotiation


In order to isolate the di�erence between approaches�
the listed message counts only cover messages related to
the execution of a cycle
 These include solicitations for
participation and winner announcement
 In addition
to such messages� the system produces sector reports�
target position reports� and TCP acknowledgments or

�The simulation is called Radsim and was developed by
the Air Force Research Laboratory in Rome� New York� for
the DARPA ANTS program�



Avg Error�ft
� Auction Msgs
Path	Projection �
�� ���
Non	Projecting ��
�� ���

Figure �� Evaluating path projection
 Error is mea	
sured in feet �average distance between measured posi	
tion and actual position�


Figure �� multisensor tracking simulation
 Each small
circle in the grid represents a sensor node� the active
sectors of each node are highlighted
 A target� labeled
M�� is shown in the upper left corner


re	sends
 The number of such messages varies arbitrar	
ily� and is comparable between approaches


To satisfy an external constraint that power con	
sumption remain less than ���� we required that in
all cases beam usage be limited to the four winners of
each auction
 Hence� at any point in time only four
sectors were activated� resulting in a maximum expen	
diture that was within the power constraints


Evaluating target path projection

In the algorithm allowing path projection� auctions gov	
erned ��	second blocks of future activity� with each
block divided into �	second increments during which
agents were committed to a single action
 Auctions
were initiated as early as � seconds ahead of time� and
winner determination occurred � seconds before the
auction�s results were to take e�ect

The nonprojecting auction�s high error rate re�ects

the fact that it lost the target for a large stretch of time

Because it was auctioning o� only a single point in the

future� it was subject to reactivity shortcomings where
the target was already past the projected point by the
time an auction had terminated

On the other hand� the path projection algorithm

achieved better accuracy by insulating itself from this
problem
 Even if a node did not receive its instruc	
tion before the target had reached the beginning of the
auctioned segment� it was ready to act for the next ��
seconds� and could not fall behind permanently
 That
there was any error at all re�ects upon shortcomings of
the tracker module
 In all cases the four closest nodes
were selected to �re their correct sectors� and they al	
ways did so within � or � seconds of the target�s arrival
into the projected segment

Not surprisingly� path projection was also able to save

on message tra�c since larger blocks of time were gov	
erned by each auction� and the number of auction mes	
sages is directly proportional to the number of auctions


Evaluating subauctioning

Both algorithms ran over a system where four nodes
were denoted to hold simulated commitments con�ict	
ing with any possible tracking assignment
 That is�
whenever they placed a bid re�ecting their utility in
participating in a track� they subtracted an additional
sum
 This would happen in cases where a node is com	
mitted to a con�icting task� and is adverse to dropping
it
 Our system recorded the number of times a node
was forced to drop a commitment� resulting from the
forced assignment of a tracking task

When subauctioning was allowed� committed agents

were able to pass on their tasks to neighboring nodes
that were not reached by the initial announcement

Such neighbors would not be reached initially as a result
of their greater distance from the projected segment�
and their consequently lower utilities for participating

However� because of the commitment	dropping penalty�
the neighbors do in fact have a higher utility for track	
ing� and wind up winning the subauction
 As a result�
few commitments were dropped

When auctioning for a segment was allowed to take

place only in one stage� the committed nodes were often
forced to participate in auctions despite their penal	
ties� as they were unable to contact neighboring re	
placements
 As a result� many more commitments were
dropped than with the subauctioning algorithm

On the other hand� this naturally resulted in a

smaller number of auctions� as re�ected in the message
count
 However� the greater track accuracy achieved by
the one	stage auction is not really an advantage� but
actually a result of using committed nodes that were
closer to the projected target than their otherwise op	
timal neighbors
 That is� any gains in accuracy were
at the expense of dropping commitments that� in the
simulation� ought not to have been dropped

In particular� the diminished accuracy did not result

from poor reactivity or time delays associated with sub	
auctioning� because subauctions were smaller than nor	
mal auctions� requiring announcement to fewer nodes
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Figure �� Evaluatingmultistage auctions ��rst line� ver	
sus single	stage auctions �second line�


Hence� they were able to execute in parallel with the
main auction�s most time	consuming activities� such as
bid collection and winner determination
 As a result�
the subauctions often terminated before the main auc	
tions would have �nished anyway


Task contention We have conducted some prelimi	
nary experiments involving two targets with task con	
tention
 In our preliminary experiments� we obtained
an accuracy of �
�� feet for one target and �
�� for the
other
 Task contention occurs when some set of nodes is
committed to an existing task� and a new task � occur	
ring at more or less the same time � con�icts with that
commitment� in the sense that the second task would
require activation of an adjacent sector for tracking �re	
call� that at most one sector can be active at one time�

One solution to this is for a node to alternate between
sectors
 However� a node has direct access only to lo	
cal information� it must interact with its neighbors as
otherwise it has no way of knowing that another node
could not do a better job of tracking the second target


Data acquisition for learning

The following describes our planned experiments to ac	
quire performance pro�le information for associating
problem types with computational requirements
 That
information will support the deadline	based commit	
ment network algorithms


Here is a formulation of the problem�

�
 Agent A identi�es a set of tasks �e
g
� track segments
for a projected target� and announces them to agents
B�� � � �Bn� along with a deadline T time units into the
future


�
 B�� ���Bn now have T time units to compute their own
bids and�or perform a secondary auction


�
 Each Bi applies an Auction Time Allocation Method
�ATAM� to decide how to allocate the T time units

�
 The ATAM outputs a percentage P �greater than �
��
less than or equal to �
��
 ��	P��T units are allocated
to a secondary auction �which is performed by recurs	
ing to step � with agent Bi in A�s role�� and then the
remainingP �T units are used to compute a �nal bid


This scheme assumes no iteration �i
e
� no re	bids�

Also� note that the �rst ���P ��T units� while agent Bi
is waiting for the secondary auction results to return�
could be used to compute a local bid �i
e
� assuming
that the secondary auction fails�


We can treat the creation of the ATAM as the prob	
lem of learning a mapping from the problem character	

istics of Bi�s bidding situation to a bidding time per	
centage� P 
 Given the above scheme� the four major
challenges are

�
 Creating an anytime bidding algorithm that provides
satisfactory results given a speci�ed amount of time


�
 Identifying appropriate problem characteristics to
characterize the time allocation problem


�
 Measuring the quality of an auction outcome �nec	
essary for feedback to the learning algorithm� or to
measuring the performance of a hand	designed algo	
rithm�


�
 Finding or designing an appropriate learning algo	
rithm


The following are potentially relevant problem char	
acteristics
 These are the aspects of the agent�s situa	
tion and bidding context that a�ect the optimal alloca	
tion of time to the auction stages


�
 Total time available �i
e
� T �


�
 Number of agents bidding in the current stage


�
 Total number of agents in the �world
 

�
 Some measure of �bidding capacity or �bidding like	
lihood of the remaining agents �i
e
� the agents who
might be solicited for secondary	stage bids�
 One can
envision many ways to estimate this
 For example�
some measure of the minimum or average �distance 
of the secondary agents to the tasks to be bid on� or
their �capability to perform said tasks


�
 Cost and�or reliability of messages �impacts how
valuable a secondary stage auction is�




 Estimated time for current agent to compute an op	
timal bid �may want to focus on this rather than
wasting time advertising a secondary auction�


�
 Estimated capability of current agent to perform the
task �if this is low� should focus on secondary auc	
tion�


We will gather data for ��� by setting up similar ini	
tial conditions� and then varying the problem charac	
teristics and P �e
g
� selecting randomly�
 We will mea	
sure the outcome �success or failure� or some quality
measure of the result of the auction�

For ���� we will �rst use baseline hand	designed map	

pings
 We then plan to consider regression algorithms

�This is a regression problem� rather than a classi�ca	
tion problem� because the output is a continuous vari	
able P � rather than� say� a binary class label
 We will
consider classi�cation problem variations obtained by
discretizing P ! instead of predicting a continuous value
for P � just break P into� say� three discrete values� �
�no secondary auction�� �
� �focus on secondary auc	
tion�� �
� �evenly distribute time between primary and
secondary auctions�




�� Generate an initial allocation �e�g�� by
sequential auction�

�� Initialize CG� an unconnected graph with m
vertices� each corresponding to a task

�� Iteratively improve the allocation as
follows�

� Add an edge that connects two unconnected
subgraphs

� Optimally allocate the tasks that
correspond to the edges in the newly
connected subgraph

Figure 
� Anytime algorithm for task allocation
 The
algorithm can be interrupted at each iteration of Step
�


Anytime combinatorial task allocation

We have been studying the e�ect of task interaction in
resource allocation methods of the sort that we have
described
 Basic	level tasks in the multisensor tracking
domain can have positive or negative interaction
 For
example� if two targets appear in succession at a par	
ticular sector of a node� then the cost of tracking each
target in succession is lower than the cost of tracking
each target independently� the reason is that there is
a warm	up cost associated with the use of each sector

If targets appear one after another� then the warm	up
cost is saved for each subsequent target
 Conversely�
it is impossible for an agent to simultaneously monitor
two targets� each of which is in a di�erent sector
 The
cost of performing both tasks is in�nitely large� whereas
the cost of performing either alone may be reasonable


The possibility of task interaction in the sensor do	
main suggests that a combinatorial method for task as	
signment may be bene�cial because sequential or paral	
lel methods could result in ine�cient or even impossible
allocations
 There are two main problems in applying a
combinatorial auction mechanism
 First� each agent is
faced with a bid generation problem� in which it must
compute all relevant bids for a set of tasks
 However�
in previous work we have shown that the number of
relevant bids may be O��m�
 Second� the agent acting
as auctioneer must run a potentially costly winner de	
termination algorithm
 Because of these two problems�
the granularity �i
e
� frequency� of task allocations us	
ing the combinatorialmechanism can be low
 In experi	
ments on a �
	node simulation� tasks were assigned only
every �� seconds� in large part because of the communi	
cation and computational complexity of implementing
the combinatorial auction


Our anytime algorithm� called Incremental Task Al�
location Improvement �ITAI�� does not require a bid
generation phase as input
 Agents incrementally reveal
their costs for bundles of tasks


The algorithm is summarized in Figure 

 One way of
performing the initial allocation in Step � quickly is by

sequential auction
 As discussed above� task interaction
may lead this allocation to be suboptimal

The task connection graph initialized in Step � directs

the improvement phase of Step �
 At each iteration of
the improvement phase� one edge is added to connect
two unconnected subgraphs
 For example� on the �rst
iteration� an edge is added between any two of the ver	
tices
 On the second iteration� an edge may be added
between two other vertices� or between one other vertex
and one of the two previously connected vertices �thus
creating a connected �	vertex subgraph�

On each iteration� an optimal allocation �e
g
� by a

combinatorial auction with optimal winner determina	
tion� is made for the tasks corresponding to the newly
connected subgraph
 The procedure terminates when
CG is connected �i
e
� adding an edge cannot connect
two unconnected subgraphs�
 The algorithm is any	
time because it can be stopped at any point during the
improvement phase and can return the lowest cost al	
location attained so far

To generate the initial allocation� an agent need re	

veal only m costs� one for each initial task allocation

In the improvement phase� even if a combinatorial auc	
tion algorithm is used� an agent is initially faced with
a much simpler bid generation problem� because the
algorithm is run over only a few tasks
 If an exhaus	
tive enumeration of task allocations is used instead of a
combinatorial auction in that phase� the bid generation
problem is replaced by incremental revelation of costs
for sets of tasks


Theorem ��� The algorithm is guaranteed to �nd the
optimal task allocation in the �nal iteration�

Proof� In the �nal iteration� CG is connected
 If the
algorithm then optimally allocates all m tasks corre	
sponding to edges in CG� the allocation will be optimal


Time complexity Similar to the general iterative
deepening search algorithm� ITAI incrementally ex	
pands the scope of its search for the optimal task allo	
cation
 The time spent on task allocation is the sum of
the time spent generating the initial allocation� plus the
time spent improving the allocation
 As Theorem �
�
illustrates� the complexity of the algorithm is the same
as an algorithm that performed optimal allocation of
all tasks in a single step


Theorem ��� Assuming an iteration of the improve�
ment phase that allocates i tasks takes O�n 	 �i� time�
the running time of the improvement phase is O�n	�m��

Proof� The maximumnumber of improvement steps re	
sults if a single vertex is connected to the subgraph
at each iteration of Step �
 In this case� there are
i � �Dm � � steps� with the numbers of connected
vertices running from � to m
 The total running time
of the improvement phase is

O�
mX

i��D�

n 	 �i� � �DO��n��m � ���



Figure �� Expected ANTS system performance using
ITAI


which is O�n 	 �m�

We have been experimenting with the ITAI algorithm

to determine the tradeo� between �nding an e�cient
task allocation� and �nding a good �but possibly ine�	
cient� allocation quickly
 Our current experiments are
targeted at uncovering the tradeo� between achieving
higher granularity and e�ciency of task allocation
 Fig	
ure � illustrates our hypothesis that with a very high
granularity �i
e
� frequent task allocations�� the alloca	
tions will often be ine�cient �i
e
� tasks will frequently
be assigned to agents that are not well suited to per	
forming them�� and tracking performance will be low

Similarly� with very low granularity �e
g
� �� second in	
tervals in the current system�� even though e�cient
assignments are made� tracking may be poor because
the frequency of data collection is low
 ITAI allows us
to investigate the middle ground� where granularity is
between the two extremes� and allocation e�ciency is
suboptimal but good
 We believe that optimal track	
ing performance will be attained with this intermediate
level of granularity


Large�scale resource allocation

To address scalability � on the order of hundreds of
sensors and targets � we have developed an agent	
based computationalmodel of semicentralized task allo	
cation
 This is called the Distributed Dispatcher Model
�DDM�
 In this model� centers are associated with geo	
graphical areas� called districts
 Centers are organized
hierarchically and each center is responsible for a par	
ticular district
 Each level of the hierarchy controls the
level below it
 We refer to each center as a coalition
leader
 In the design of the DDMwe had two goals
 The
�rst goal was to generate a map of targets as a function
of time
 The second goal was to achieve good coverage
of sensors over the area of interest
 Testing of the model
was done using a variation of the multisensor tracking
simulation described earlier in which sensors are mobile
and there is no need for clock synchronization or very
close cooperation between the sensors


Several entities appear in the simulation used by the
the DDM system
 The �rst is a target
 A target is

created outside of the controlled area
 A target has the
properties of location and velocity
 Each target moves
in a steady speed� however� it may change its velocity
from time to time


The second entity is a mobile Doppler sensor
 We
make use of a constant number of Doppler sensors to
map the targets in the controlled �eld
 Each sensor
has the capability to activate three beams� one at a
time� to track targets in its detection range
 A sensor
acquires the amplitude and the radial velocity of each
target located in its detection range
 Unlike the simu	
lation described earlier� a sensor takes four consecutive
measurements over a short interval of time
 The sensor
uses an internal clock to tag each measurement with a
time
 Although all the clocks in the system are periodi	
cally synchronized� time di�erences might arise between
synchronization points


The third is the sampler
 To every sensor is at	
tached a sampler
 The sampler supplies sets of target
states ft� x� y� vx� vyg according to its assigned sensor
and commands the sensor in a particular direction and
with a particular speed
 We have successfully used one
sampler to determine a set of locations of a sensed tar	
get� using four consecutive samples of the sensor and an
assumption that the target does not change its velocity
during this time


The fourth is the coalition leader
 The coalition
leader controls a particular area
 Each higher level will
control a larger area
 We distinguish between two types
of coalition leaders� a zone coalition leader and a sam	
pler coalition leader
 Whereas the zone coalition leader
controls other coalition leaders� the sampler coalition
leader controls the behavior of a set of samplers in a
given area and is responsible for directing sensors
 The
main task of both is to form a map of their areas
 An	
other important task of a zone coalition leader is to
balance the number of sensors in its area


The main di�erence between a zone coalition leader
and a sampler coalition leader is that the �rst is re	
sponsible for an area made up of di�erent zones while
the latter is directly responsible for the behavior of the
sensors in a speci�c zone
 Therefore� most of the zone
coalition leaders may be in charge of other zone coali	
tion leaders at a lower level
 The lower zone coalition
leaders are in charge of sampler coalition leaders
 As
mentioned above� the algorithms for zone coalition lead	
ers and sampler coalition leaders are di�erent
 Whereas
the zone coalition leader should balance the number of
sensors between zones and should decide how many will
pass from one zone to another� the sampler coalition
leader should follow orders from its superior zone coali	
tion leader and decide to which sensor to pass and how
to accomplish that
 A sampler coalition leader should
also make sure to direct the sensors in the zone of its
responsibility


Figure � illustrates a hierarchical representation of
the distributed solution




Sampler coalition leader

Zone coalition leader level 0

Zone coalition leader level n

Zone coalition leader level 1

Sampler coalition leader

sensor node

Figure �� Distributed solution hierarchy


Forming the state map algorithm

The �rst algorithm uses a hierarchical structure to
achieve global information over the controlled area

Each coalition leader has global information of its con	
trolled area� whereas the top	level coalition leader �level
�� has global information over the entire area


Each coalition leader implements the following algo	
rithm�

�
 Update the current knowledge base every second us	
ing known information about all targets in the con	
trolled area
 The format of the items of information
is ft� x� y� vx� vyg for each target
 This information
may result in a new time	dependent state map


�
 Every � seconds ask each subcoalition leader or sam	
pler for new information


�
 Filter redundant information about the same target
and begin again from ���


Controlling the sensors

The second algorithm uses the knowledge base stored
in each coalition leader to control the sensor�s behavior

The motivation is to balance the ratio of the number of
resources �sensors� over all zones with the ratio of the
targets


Each coalition leader implements the following algo	
rithm�

�
 Every � seconds ask the superior coalition leader �if
one exists� for a prediction about incoming targets to
the controlled area in t" �


�
 Ask the superior coalition leader �if it exists� for in	
structions to send sensors involving movement to a
neighboring zone
 The neighboring zone will be at
the same level


�
 Forma predicted knowledge base for t"� according to
the known data ��rst algorithm� and the prediction
from the superior coalition leader


�
 Based on its knowledge base and the prediction ob	
tained from the superior coalition leader� form a set
of orders to be sent to its subordinate leaders
 The

coalition leader will build this set to balance the ra	
tio of the number of sensors over all controlled zones
with the ratio of the targets
 The coalition leader
will calculate how many sensors should be in each
zone
 This will be determined by summing all the
targets� T � and sensors� S� in the area
 The number
of sensors in each zone will be the number of targets
in the zone multiplied by the ratio S�T 
 The coali	
tion leader will use the number of sensors that should
be in each zone and the number that is actually in
each zone to �nd the di�erence
 The di�erence repre	
sents the number of sensors that should be passed to
the zone
 The coalition leader will generate an order
to move sensors from a negative di�erence to a posi	
tive one
 If the coalition leader is a sampler coalition
leader� it will follow any orders to direct sensors to
an indicated zone


Sampler coalition leader behavior

A sampler coalition leader receives instructions from its
superior coalition leader regarding how many sensors to
shift and to which neighboring zone to shift them
 The
sampler coalition leader determines which sensors to
pass to the needed zone and how to accomplish that

The sampler coalition leader chooses the closest sensors
to the needed zone and orders them to move at a speed
that will pass them to the next zone in time t"� where
t " � is the time that its superior zone coalition leader
wanted those sensors to be at the next zone
 The di	
rection is calculated so the sensor that will pass into
the same zone will pass at an equal distance between
them
 For instance� one sensor will pass at the mid	
dle of the border� and two sensors will pass the points
at one third and two thirds of the border
 Calculating
the intersection points� the velocity and the direction
is very simple
 By knowing how many sensors should
move to the next zone� S� and the length of the borders
between the zones� L� the coalition leader may deter	
mine that every L�S meters a sensor should pass to the
next zone
 The leader will then allocate a sensor to
each intersection point to the closest sensor
 By having
the current location and destination of the sensors� the
velocity and the direction can be derived

A sampler coalition leader should also guide the

movements of the sensors that stay in its zone
 That
can be accomplished by forming milestone points over
t " � time units for each sensor
 These points will rep	
resent a route and a speed for the sensor
 The sampler
coalition leader will generate the points by forming a
quick prediction of the movement in the interval t to
t " �
 The purpose of the movements will be to keep
the sensors moving in straight lines and at the same
speed until they cross the detection zone of other sen	
sors
 In that case� the sensors act as if heading toward a
collision and change direction
 The coalition leader can
determine appropriate milestones by activating a quick
simulation from t to t" � of the sensor movements� the
coalition leader has all the necessary information about
the sensors and targets in its area




Fault tolerance

The DDM is fault tolerant in the following way
 If a
coalition leader does not receive a response from one of
its subordinates� it will record the fact that the subordi	
nate is not available �dead� and it will then divide that
subordinate�s area between neighboring subordinates

If the dead subordinate comes back to life� its original
sector will be returned to it


Since the coalition leaders in the zone that was di	
vided should know who their new leader is� the coali	
tion leader �that divided the zone� should know who is
in that zone
 To handle this complication we are ex	
perimenting with another approach for choosing one of
the members in the zone to be the new leader� and in	
forming the others rather than changing the size of the
zone


Verifying system dynamics

We brie�y describe a logic � to be reported in detail
elsewhere �Ortiz ����� � that we have developed for
characterizing various useful domain	independent soci	
etal behaviors
 The logic makes use of the notion of
counterfactual dependency � roughly� that some sys	
tem property such as stability holds because if some
event �such as a perturbation� were� counterfactually�
to occur� then the system would eventually move back
to its original state
 In many cases� it is useful to carry
through such an analysis within spatially and tempo	
rally bounded areas of subsystem behavior
 This re	
quires that one have some way of analyzing a subsys	
tem while assuming that the rest of the system deviates
from actual behavior as little as possible� the notion of
most similar world is one that plays a central role in
counterfactual logics
 The full paper also presents a
formal de�nition of what it means for a behavior to
be emergent and demonstrates how agent designs can
be made to computationally exploit bene�cial emergent
behavior


Some of the sorts of group behaviors that we have
explored within the logic described have their origins
in control theory and include notions of system equi	
librium� system stability� and system trajectory
 Un	
fortunately� control theory is intended for systems that
can be described in terms of sets of di�erential equa	
tions� this is not always possible
 The logic we describe
is more appropriate for systems that are usually de	
scribed in the distributed systems literature as discrete
event systems


Suppose we have a group of agents� G� embedded in
some environment� #
 For the multisensor tracking ap	
plication� G will consist of a set of sensor agents and #
will describe a communication system linking the sen	
sors together with descriptions of moving objects that
enter G�s �eld of view
 The goal of G is to track the
moving objects by directing sensors toward the moving
objects
 We are interested in various dynamic� global
properties of G as described below
 Some of these might
be desirable while others are to be avoided


System trajectory It is useful to be able to capture
the intuition that a system is �moving in some par	
ticular direction along some trajectory
 This can be
done by identifying some measure of progress toward
some goal state� �
 To say that G is moving in the
direction of � is not just to say that G will reach �
but that it is also making some progress toward ��
that is� that G is changing state along a trajectory in
which it will become closer to �� according to the cho	
sen measure
 De�ning a trajectory away from some
state can be done in an analogous way


Equilibrium region System G will be said to be in
equilibrium over the interval �t��t��� with respect to
condition � and some set of potential environmental
events� E� just in case G is executing some strategy
�typically� a set of conditional actions� over �t�� t���
which will maintain the truth of �� no matter what
hypothetical event� e 
 E� might occur �Figure �
illustrated such an e�
 The condition � might be a
complex formula that also places some bounds on the
condition� for example� � could stand for �through	
put of the system is greater than b
 

Stable equilibrium System G is a stable equilibrium
over �t�� t�� and with respect to some set of potential
environmental events from some set� E� some condi	
tion �� and some associated maximum distance from
�� just in case G is in equilibrium and there is some
event e 
 E� such that if e were to occur� �a� G would
move away from �� but �b� after some interval of time
or distance less than b� G would move on a path that
would eventually take it to �


Unstable equilibrium Subsystem G is an unstable
equilibrium over �t�� t�� and with respect to condition
�� potential environmental events E� and distance d�
just in case G is in equilibrium and there is some
event� e 
 E� such that if e were to occur G would
move away from � past b and never return to �


Spatio�temporal dependency Often� it is useful to
identify dependencies between spatio	temporal re	
gions of activity
 For example� one might say that
G� � G is supporting some G�� � G�G� just in case
there is some activity� �� that represents the behavior
of G� and some later � that represents the behavior
of G��� and if � had not occurred then � would also
have not occurred
 In certain instances it can be use	
ful to recognize that some region of activity depends
on another in some positive sense �that is� it is being
�helped by� or in some negative sense �it is being
�hindered by�


Emergent behavior Roughly speaking� an activity �
of group G is said to emerge from the activity � of
G� both occurring over the same interval �t�� t��� just
in case if � had not occurred then � would not have
occurred either
 Typically� � requires less informa	
tion or knowledge about the environment than �
 In
addition� one is often interested in uncovering a par	
ticular � that would computationally exploit some



feature of the environment� that is� require less com	
putation than �


Our examples motivate the need for a counterfactual
analysis
 For instance� the de�nition requires that one
have some way to take a theory describing the execu	
tion of an actual system and then consider the conse	
quence of introducing a perturbation
 Since the pertur	
bation con�icts with what actually happened� one needs
to modify the original theory in some minimal way to
maintain consistency
 A second di�culty involves the
following
 Suppose an activity is described in terms of
the temporal sequence of events e�� e�� e�� and e�� each
of which can be thought of as having caused the next
event in the sequence
 Suppose also that e� caused an	
other sequence beginning with e�
 If we then consider
the counterfactual consequences of� say� e� not occur	
ring� then we need to make certain that e� nevertheless
occurs
 Otherwise� e��s not occurring might a�ect the
secondary sequence that begins with e�� resulting in a
spurious connection between the nonoccurrence of e�
and the secondary branch
 This inherent temporal as�
symetry of counterfactuals is discussed in greater detail
in �Ortiz ����� and in the full paper


Summary

The class of solutions that we have presented and that
are the subject of ongoing development were designed
with several requirements in mind
 In the �rst place�
the solutions were required to be distributed� they
could not rely on a centralized coordinator for assigning
resources to tasks� such solutions would lack any mea	
sure of fault tolerance
 The sequential� combinatorial�
and multistage auction derivatives that we discussed
satisfy that requirement

The sorts of problem that have been the focus of our

work further introduced the requirement for a real	time
solution� we have approached that constraint from two
directions
 We are �rst developing anytime algorithms
for both sequential and combinatorial allocation
 The
case of multistage combinatorial auctions poses a spe	
cial problem as intra	 and inter	agent interaction costs
must be balanced� to address that issue we are draw	
ing on machine learning techniques to associate problem
types with computation pro�les
 From another perspec	
tive� we are exploring various organizational structures
that can balance processing loads in large	scale imple	
mentations

Communication is a resource that must also be man	

aged� in preliminary experiments we demonstrated the
advantage of persistent bids in reducing message tra�c

We believe further experiments will support that claim
as well as demonstrate fault tolerant behavior through
the reciprocal background commitments we described

All these are issues important to system dynamics� we
hope that the logic that we have brie�y described can
serve as a tool with which system designers can verify
that an agent society performs in the desired manner
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