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ABSTRACT
Recent work studied Stackelberg security games with multiple

defenders, in which heterogeneous defenders allocate security re-

sources to protect a set of targets against a strategic attacker. Equi-

librium analysis was conducted to characterize outcomes of these

games when defenders act independently. Our starting point is the

observation that the use of resources in equilibria may be inefficient

due to lack of coordination. We explore the possibility of reduc-

ing this inefficiency by coordinating the defenders—specifically,

by pooling the defenders’ resources and allocating them jointly.

The defenders’ heterogeneous preferences then give rise to a col-

lective decision-making problem, which calls for a mechanism to

generate joint allocation strategies. We seek a mechanism that en-

courages coordination, produces efficiency gains, and incentivizes

the defenders to report their true preferences and to execute the

recommended strategies. Our results show that, unfortunately, even

these basic properties clash with each other and no mechanism can

achieve them simultaneously, which reveals the intrinsic difficulty

of achieving meaningful defense coordination in security games.

On the positive side, we put forward mechanisms that fulfill some of

these properties and we identify special cases of our setting where

more of these properties are compatible.
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1 INTRODUCTION
A group of defenders are patrolling the sea to combat their com-

mon enemy Captain Jack, a pirate who operates constantly in the

patrolled area. Each defender acts independently, ordering their

vessels to patrol at certain points of interest, a.k.a. targets, where
Captain Jack might be looting. The choice of targets for day-to-

day patrol is randomized. As a sophisticated pirate, Captain Jack

plans carefully: he surveys the randomized patrolling patterns and
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chooses the best target to attack, taking into consideration both the

frequency with which each target is patrolled and the profits from

attacking this target. Eventually, the defenders realize that inde-

pendent movement may be rather inefficient. For example, when a

target t is patrolled by vessels of two independent defenders, each

with probability 0.5, the probability that t is patrolled by some ves-

sel is 1− (1− 0.5)2 = 0.75, and with probability 0.5× 0.5 = 0.25 two

vessels appear at t simultaneously. Normally, one vessel is already

capable of deterring an attack in confrontation with Captain Jack,

so the latter scenario is a waste of resources. To increase efficiency,

the defenders can reduce the unnecessary double protection by syn-

chronising the defenders’ movements, so that at any time exactly

one vessel patrols at t . Then t would be covered with probability 1,

while each defender would still contribute the same effort as before.

This example suggests that it can be very beneficial for a group of

defenders who face a common adversary to collaborate.

Unfortunately, coordination may be much more challenging in

real life because defenders may have different valuations to the

targets. Thus, each defender would prefer the group to adopt a

different joint strategy, so as to better protect targets that are more

important to them; the problem of choosing a joint strategy becomes

very difficult. In this paper, we show that, indeed, collaboration among
defenders is often not possible.

Specifically, we consider a setting where defenders pool their

resources and allocate them jointly according to a strategy that

is decided by a coordination mechanism. The defenders’ utilities

from this strategy are determined by a Stackelberg game model,

in which an adversary is expected to best-respond to the resource

allocation, attacking the target that maximizes his utility. We aim

at designing a coordination mechanism that takes into account

the defenders’ individual preferences, one that has the following

natural properties.

• Efficiency. We want the mechanism to exploit all possi-

bilities of efficiency improvement. Hence, we require the

allocation strategies it generates to be Pareto efficient, so that
no other allocation can improve the social welfare while not

making any defender worse off.

• Utility guarantee. We want the mechanism to ensure that

every defender benefits from coordination, so that all de-

fenders are incentivized to participate. Hence, we require

the mechanism to guarantee every defender at least their util-

ity in the uncoordinated situation, as captured by a Nash-like

equilibrium concept proposed by Gan et al. [10].



• Strategyproofness. Since collective decision-making relies

on information about the defenders’ preferences (valuations

to the targets), which are held private, we want our mecha-

nism to incentivize every defender to report their true pref-

erences.

In some scenarios the mechanism can only recommend strategies

for the defenders, but cannot force the defenders to actually use

the recommended strategies. The following additional property is

then relevant:

• Individual rationality. We want the recommended strate-

gies to form an equilibrium in which no defender has an

incentive to modify their strategy.

Beyond hunting for Captain Jack, ourmodel also abstracts scenar-

ios where heterogenous security agencies combat common enemies

in the same area, such as patrols along country borders or over in-

ternational waters carried out by different countries, or co-located

operations of police force and private security personnel.

1.1 Our Contribution
Our results shed light on the difficulties of achieving defense coor-

dination in this seemingly cooperative setting. Our first key result

is that it is impossible for any mechanism to achieve the above-

mentioned basic properties simultaneously. This theoretical barrier

then drives us to explore mechanisms that fulfill a subset of these

properties or special problem settings that allowmore of them to co-

exist. We show that when strategyproofness is not a concern, there

is a mechanism that achieves Pareto efficiency and utility guar-

antee with respect to the worst-case utility in the uncoordinated

situation. Further, when each defender’s preference concerning

the attacker’s response does not depend on how the targets are

protected (a special case introduced in [10]), knowing a status-quo

equilibrium enables us to design a mechanism that achieves the first

three of our properties. We also formulate an individual rationality

property, and define a broader class of mechanisms that recom-

mend strategies for the defenders to take. We show that even when

strategyproofness is set aside, this additional property is incom-

patible with efficiency and utility guarantee. Our results indicate

that voluntary coordination among defenders may be insufficient

to achieve efficient resource utilization in security domains.

1.2 Related Work
Stackelberg security games (SSG) provide a model to study security

resource allocation problems. Automated tools that use SSGs have

been deployed in many real-world scenarios, such as protection

of high-profile infrastructure, transportation systems, and public

and natural resources (see, e.g., [2, 22] for an overview). Most SSG

models involve only one defender, and then the goal is to maximize

the defender’s utility [8, 18, 19]. Some recent works studied models

with multiple defenders. The problems where the defenders have

the same utility function [4, 12] can be studied within the single-

defender framework with additional allocation constraints. When

defenders are heterogeneous, the outcome of independent defender

actions can be predicted by means of equilibrium analysis [10,

13–16, 21]. In our paper, we follow the model of Gan et al. [10],

which is arguably the most basic multi-defender model extending

the standard SSG; other multi-defender SSG models either involve

additional assumptions (e.g., defenders protect disjoint subsets of

targets [14, 15]) or are intended for more specific applications (e.g.,

defense against spear-phishing attacks or traffic light control [13,

16]).

Very recently, Castiglioni et al. [7] studied the problem of com-

puting correlated strategies for a group of leaders to commit to in

generic Stackelberg games. Somewhat unusually, in their model a

leader has the choice to deviate from the correlated strategy so as to

act as a follower in the game; such deviations would not be feasible

in many security scenarios that we would like to model. Further,

while the idea of correlating the leaders’ strategies is conceptually

similar to our approach, Castiglioni et al. [7] did not consider strate-

gyproofness and utility guarantee, so their results are very different

from ours. Under their solution, players may be incentivized to

misreport their preferences to the system and, hence, make other

players worse off than even in the uncoordinated situation. In addi-

tion, their solution may, in a sense, force players to coordinate by

threatening them with a worse outcome if they choose not to; we

feel that this approach is not compatible with our agenda.

Our work is related to collective decision-making for public

resource allocation, see, e.g., [1, 3, 5, 9]. We distribute security

resources which form a divisible probability mass in the mixed

strategy setting. Other than the specific utility structure that is

realized through the SSG model, one feature of our problem that

distinguishes it from the prior work is that resources are contributed

by the players, who need additional incentives to agree to cooperate

in the first place. A similar phenomenon can be observed in the

donor coordination problem studied by Brandl et al. [6], in which

philanthropists with different preferences pool their resources and

jointly distribute them to charity projects. However, their model

is different, and they do not use equilibria of the uncoordinated

situation as benchmarks for designing mechanisms.

2 THE MODEL
There are n defenders 1, . . . ,n, who want to protect a set T =
{t1, . . . , tm } of m targets against an attacker. We write [n] =
{1, . . . ,n}. Each defender i ∈ [n] has ki ∈ N≥0 security resources
that can be allocated to the targets; let K =

∑
i ∈[n] ki . A target is

said to be protected, or covered, if at least one resource is allocated
to it; and unprotected, or uncovered, otherwise.

In the pure strategy setting, an attack on a protected target t ∈ T
will be unsuccessful and results in the attacker receiving a penalty
value pa(t), and each defender i receiving a reward value rdi (t). An
attack on an unprotected target will be successful, resulting in a

reward ra(t) for the attacker, and a penalty pdi (t) for each defender

i . It is assumed that rdi (t) > pdi (t) and r
a(t) > pa(t) for each i ∈ [n]

and t ∈ T , so each defender prefers an attack to be unsuccessful,

and the attacker prefers the opposite. Thus, although defenders are

heterogeneous, they all prefer every target to be safe. The payoff

parameters define the type of a player. Let θi = (rdi ,p
d
i ) denote the

type of defender i , and α = (ra,pa) the type of the attacker. The
tuple (θ, k), where θ = (θ1, . . . ,θn ) and k = (k1, . . . ,kn ) is called
a defender profile. Let Θ =

{
(r ,p) ∈ R2m : r (t) > p(t) for all t ∈ T

}
denote the set of valid player types that are consistent with our

assumption above.



Coordination Mechanism. The defenders want to coordinate their
resource allocation. They delegate their resources to a coordination

authority, which then chooses an allocation strategy to implement

according to a coordination mechanism π . The mechanism takes as

input a defender profile θ and an attacker type α , and outputs an

allocation of K resources. By the payoff structure of the game, the

rational ways of resource allocation correspond to subsets ofT that

contain at most K targets; we denote by TK the collection of these

subsets. Given a pure strategy s ∈ TK , we write covt (s) = 1 if s
allocates some resource to target t and covt (s) = 0 otherwise. More

generally, the defenders can employ a mixed strategy, randomizing

the resource allocation according to a distribution x ∈ ∆(TK ) over
pure strategies. Given a mixed strategy x, each target t is protected
with probability covt (x), which we call the coverage; we have

covt (x) =
∑
s ∈TK

xs · covt (s), (1)

and call cov(x) =
(
covt1 (x), . . . , covtm (x)

)
the coverage (vector).

Now suppose the attacker attacks target t and the defenders

employ a strategy x that results in coverage c = cov(x). Then the

expected utilitiesU d
i (c, t) of each defender i ∈ [n] and the expected

utilityU a(c, t) of the attacker are given below:

U d
i (c, t) = ct · r

d
i (t) + (1 − ct ) · p

d
i (t);

U a(c, t) = (1 − ct ) · r
a(t) + ct · p

a(t).

By our assumption about the payoffs,U d
i (c, t) is strictly increasing

with respect to ct , andU
a(c, t) strictly decreasing. As in a standard

SSG, the attacker observes the mixed resource allocation strategy

c, and responds by attacking a target that maximizes his utility

against c. Let

BR(c) = argmax

t ∈T
U a(c, t)

denote the set of attacker best responses. The exact best response

the attacker will choose depends on the tie-breaking rule which we

will define next.

Hereafter, we will often refer to a mixed strategy x and its

induced coverage c interchangeably. When no additional alloca-

tion constraint is imposed, the set of feasible coverage vectors is

CK = {c ∈ Rm : 0 ≤ ct ≤ 1,
∑
t ∈T ct = K}, i.e., c ∈ CK if and only

if cov(x) = c for some x ∈ ∆(TK ). We will write f (x) = f (cov(x))
for any function f that is supposed to take as input a coverage

vector, e.g.,U d
i (x, t) = U

d
i (cov(x), t) and BR(x) = BR(cov(x)).

Tie-breaking Rule. In the single-defender model, the standard

solution concept is the strong Stackelberg equilibrium (SSE), which
assumes that the attacker breaks ties by choosing an action in BR(c)
to favor the defender. In our setting, we assume that the mechanism

explicitly specifies an attacker response in BR(c). This assumption

has the same justification as the optimistic tie-breaking rule in

the single-defender setting: a mechanism can induce the attacker’s

strict preference for any target in BR(c) by reducing protection of

that target by an infinitesimal amount, irrespective of the actual tie-
breaking behavior of the attacker. Thus, we require a coordination
mechanism to output a tuple (x, t), called an outcome. An outcome

is feasible if and only if x ∈ ∆(TK ) and t ∈ BR(cov(x)). Our goal in
this paper is to find a mechanism π : (θ, k,α) 7→ (x, t) that satisfies
certain properties which we will discuss next.

2.1 Desired Properties
First, we want the mechanism to achieve maximal efficiency im-

provement. Thus, the outcomes it produces should be Pareto effi-
cient, so that no defender’s utility can be further improved without

making any other defender worse off.

Property 1 (Pareto Efficiency (PE)). An outcome (x, t) Pareto
dominates another outcome (x′, t ′) if U d

i (x, t) ≥ U d
i (x

′, t ′) for all

i ∈ [n] and U d
i (x, t) > U d

i (x
′, t ′) for some i ∈ [n]. A mechanism π

is Pareto efficient if for any k ∈ Nn , θ ∈ Θn
, and α ∈ Θ no feasible

outcome Pareto dominates π (θ, k,α).

For coordination to be meaningful, it is desired that every de-

fender benefits from it. We take the defenders’ equilibrium utilities

in the uncoordinated situation as our benchmark. In particular,

Gan et al. [10] introduced an equilibrium concept called the Nash
Stackelberg equilibrium (NSE) for multi-defender SSGs. It combines

the ideas of the Nash equilibrium and the Stackelberg equilibrium:

in an NSE no defender has any incentive to change their strategy,

assuming that the other defenders stick to their strategies, while

the attacker responds optimally to the modified strategy profile.

It is shown that, though an exact NSE may not exist, an ϵ-NSE
(where no defender has a deviation that improves her utility by

more than ϵ) exists for every ϵ > 0, and so does the limit point

of ϵ-NSEs when ϵ approaches 0; therefore, it is proposed to use

the limit points as the solution concept for multi-defender SSGs.

Following this approach, we adopt this solution concept to describe

the outcome of the uncoordinated situation. For simplicity, we will

refer to this solution concept as the NSE (Gan et al. refer to it as

0
+
-NSE).

In the uncoordinated setting, let xi ∈ ∆(Tki ) be the strategy of

each defender i ∈ [n], and let X = (x1, . . . , xn ) be the strategy

profile. Each defender strategy xi results in coverage covt (xi ) =∑
s ∈Tki

xs · covt (s) ∈ Cki for each target t as defined in (1), and

jointly the strategy profile results in the following overall coverage

for each t (with slight abuse of notation):

covt (X ) = 1 −
∏
i ∈[n]

(1 − covt (xi )). (2)

Namely, a target is covered as long as some defender is protecting

it. We define the NSE and our next property—utility preservation.

Definition 2.1 (NSE). A defender strategy profile X =

(x1, . . . , xn ) and an attacker best response t ∈ BR(X ) form an NSE if
for every defender i ∈ [n] and every strategy deviation x′ ∈ ∆(Tki ),
it holds that mint ′∈BR(⟨x−i ,x′⟩)U

d
i (⟨x

−i , x′⟩, t ′) ≤ U d
i (X , t).

Property 2 (Utility Preservation (UP)). A mechanism π is

strongly (resp. weakly) utility preserving if for any k ∈ Nn , θ ∈ Θn
,

and α ∈ Θ the utility U d
i (π (θ, k,α)) of each defender i ∈ [n] is at

least their utility in the best (resp. worst) NSE.

We note that Definition 2.1 is more concise than the original

definition of Gan et al. [10], but they are equivalent: an NSE (X , t)
defined above is exactly the limit point of a series of ϵ-NSE with

ϵ → 0, that are induced by letting the defenders reduce their protec-

tion to target t by a small amount δ → 0 (which makes t the only
best response of the attacker). The pessimistic tie-breaking assump-

tion the defenders make when evaluating the benefits of a potential



deviation (i.e., mint ′∈BR(⟨x−i ,x′⟩)U
d
i (⟨x

−i , x′⟩, t ′)) is appropriate for
the uncoordinated situation in which there is no consensus among

the defenders about how an attacker response can actually be in-

duced. It does not conflict our previously defined tie-breaking rule

for the mechanism, under which outcomes of the mechanism can

always be induced irrespective of the actual tie-breaking behavior

of the attacker. We refer the reader to the paper by Gan et al. [10]

for a detailed discussion about the tie-breaking assumptions.

Finally, since the defenders’ types (payoffs) are private informa-

tion, we would like our mechanism to incentivize every defender

to report their true type. The strategyproofness property requires

that no defender can improve her utility by non-truthful reporting.

Property 3 (Strategyproofness (SP)). A mechanism π is not
strategyproof if for some k ∈ Nn , θ,θ′ ∈ Θn

, α ∈ Θ, and

i ∈ [n], we have θ ′j = θ j for all j ∈ [n] \ {i} and U d
i (π (θ, k,α)) <

U d
i (π (θ

′, k,α)), where each U d
i is the utility function of defender

type θi . Otherwise, π is strategyproof.

3 IMPOSSIBILITY RESULTS
Unfortunately, the basic properties defined so far clash with each

other. In this section, we show several impossibility results. We

begin by introducing non-overlapping payoffs, a special class of

defender types that will be useful for our proofs.

Definition 3.1 (Non-overlapping payoffs). A defender type
(rdi ,p

d
i ) is said to have non-overlapping payoffs if for any t , t

′ ∈ T ,
either rdi (t) < pdi (t

′) or rdi (t
′) < pdi (t).

When a defender has non-overlapping payoffs, her preference

concerning the attacker’s response does not depend on the coverage

vector. Indeed, under our assumption that rdi (t) > pdi (t) for all t ,

the utilityU d
i (c, t) should always lie in [p

d
i (t), r

d
i (t)] for any c. Thus,

if rdi (t) < pdi (t
′), we have U d

i (c, t) ≤ rdi (t) < pdi (t
′) ≤ U d

i (c
′, t ′),

irrespective of c and c′, so the defender always prefers the attacker

to go for t ′; we write t ≺i t
′
in this case. Likewise, if rdi (t

′) < pdi (t),

we have U d
i (c

′, t ′) < U d
i (c, t) and we write t ′ ≺i t . The defender’s

utility is then captured by the preference order ≺i over T .

3.1 Strong UP Cannot be Guaranteed
We first show that strong UP cannot be satisfied on its own.

Theorem 3.2. No mechanism is strongly UP.

Proof. It suffices to show a game with no strongly UP outcome.

Consider a game with two defenders and two targets T = {a,b}.
Each defender has one resource, and both of them have non-

overlapping payoffs captured by preference orders a ≺1 b and

b ≺2 a. The targets are identical to the attacker, so the attacker’s

best response is always the target(s) with the lowest coverage.

Suppose that defender 1 always protects a and defender 2 al-

ways protects b. The coverage contributed by the defenders is

c1 = (c1a , c
1

b ) = (1, 0) and c2 = (c2a , c
2

b ) = (0, 1), respectively. Overall,

both targets are fully protected and are the attacker’s best responses.

Let the joint strategy be C = (c1, c2). It is easy to see that (C,b)
is an NSE. Indeed, for defender 1 this is already the best outcome.

Defender 2 prefers the attacker to choose a, but she cannot induce
this attacker action: she can neither increase the coverage of b to

make it less attractive to the attacker nor decrease the coverage of

a to make it more attractive. Similarly, (C,a) is also an NSE, and it

is the best for defender 2.

Now suppose some outcome (z, t) is strongly UP. If t = a, we

haveU d
1
(z, t) < U d

1
(z,b) ≤ U d

1
(C,b), so defender 1 would be worse

off than in her most preferred NSE. By symmetry, if t = b, defender
2 would be worse off than in her most preferred NSE. Thus, no

outcome of this game is strongly UP. □

3.2 SP and Weak UP are Incompatible
As strong UP turns out to be too demanding, we focus on weak UP.

Trivially, every NSE (X , t) can be turned into an outcome (cov(X ), t)
(by simulating independent defender movement specified by X )
that is a weakly UP by definition, so a weakly UP outcome always

exists. Nevertheless, the weak UP property clashes with SP.

Theorem 3.3. If |T | ≥ 3, there exists no weakly UP mechanism
that satisfies strategyproofness, even when the defenders’ payoffs are
restricted to non-overlapping payoffs.

To prove Theorem 3.3, we show that for |T | ≥ 3 a strategyproof

coordination mechanism has to be a dictatorship, i.e., it has to al-

ways output the favorite outcome of a distinguished defender (the

dictator). While a dictatorship is a valid coordination mechanism,

its output will not be acceptable to a defender whose preference

conflicts with that of the dictator; indeed, under this mechanism

her utility may be lower than in her worst NSE. Our argument

proceeds by transforming a coordination mechanism into a social

choice function, and invoking the famous Gibbard–Satterthwaite

theorem [11, 20], which states that for more than two alternatives

any onto strategyproof social choice function is a dictatorship.

Let д be a function that maps a linear order ≺ over a candidate

set T to a defender type (rd,pd), such that for each t ∈ T ,

rd(t) = jt +
1

2

and pd(t) = jt ,

where jt = |{τ ∈ T : τ ≺ t}| is the index of t in ≺. Hence, a defender
i of type д(≺) has non-overlapping payoffs captured by ≺: for any

coverage c and c′ it holds that U d
i (c, t) ≤ jt +

1

2
< jt ′ ≤ U d

i (c
′, t ′)

if t ≺ t ′. Overloading this notation, given a preference profile

(≺1, . . . ,≺n ), we write д(≺1, . . . ,≺n ) = (д(≺1), . . . ,д(≺n )).
Given a mechanism π , we construct a social choice function fπ :

for any preference profile (≺1, . . . ,≺n ), we let fπ (≺1, . . . ,≺n ) = t
if π (д(≺1, . . . ,≺n ), k,α∗) = (x, t) for some x, where

• k is a defender resource profile such that k1 = k2 = 1 and

ki = 0 for all i = 3, . . . ,n (hence, K = 2).

• α∗ = (ra,pa) is an attacker type such that ra(t) = 0 and

pa(t) = −1 for all t ∈ T (so all the targets are identical to α∗

andU a(c, t) = −ct ).

For the Gibbard–Satterthwaite theorem to be applicable, we need

to show that fπ is onto T , i.e., for every t ∈ T there exists an input

(≺1, . . . ,≺n ) such that f (≺1, . . . ,≺n ) = t .

Lemma 3.4. If π is weakly UP then fπ is onto T .

Proof. We will show that fπ satisfies a weak form of unanimity,

i.e., for any τ ∈ T and any linear order ≺ such that t ≺ τ for all

t ∈ T \ {τ } it holds that fπ (≺, . . . ,≺) = τ .



To this end, we consider a game where the defender profile is

given by (д(≺, . . . ,≺), k) and the attacker type is α∗. The core of
the proof is then to argue the following: if any strategy profile (X , t)
forms an NSE in this game, then t = τ . As long as this claim holds,

the assumption that π is weakly UP will imply that π (д(≺, . . . ,≺
), k,α∗) = (x,τ ) for some x. Indeed, since τ ′ ≺ τ by our assumption,

any outcome (x′,τ ′), τ ′ , τ would giveU d
i (x

′,τ ′) < U d
i (Y ,τ ) even

for the worst NSE (Y ,τ ) for defender i; a mechanism that outputs

(x′,τ ′) cannot be weakly UP. Thus, we have fπ (≺, . . . ,≺) = τ by

definition, as desired.

We prove the above core claim to complete the proof. Suppose

that (X ,τ ′) is an NSE but τ ′ , τ . We first show that,

U a(X , t) = U a(X ,τ ′) for all t ∈ T .

Indeed, we haveU a(X , t) ≤ U a(X ,τ ′) for all t ∈ T since τ ′ ∈ BR(X )

by the definition of the NSE. To see thatU a(X , t) ≥ U a(X ,τ ′) for all
t , suppose for the sake of contradiction thatU a(X ,h) < U a(X ,τ ′)
for some h ∈ T . Let ci = cov(xi ) be the contribution of each de-

fender i to the overall coverage. Now that covh (X ) = −U a(X ,h) >
−U a(X ,τ ′) = covτ ′(X ) ≥ 0, there exists i ∈ [n], such that cih > 0.

We modify ci slightly; let c̃i be such that c̃it = min{1, cit + δt } for

all t , h, and c̃ih = c
i
h − δh . When the changes δt ’s are sufficiently

small and

∑
t,h δt ≤ δh , we have c̃i ∈ Cki , so c̃i corresponds to

some feasible strategy x̃i of defender i . Suppose defender i now
deviates to playing x̃i ; let X̃ = ⟨x−i , x̃i ⟩. We can further let δτ ′

be sufficiently smaller than all other δt ’s, so that after the change

we have U a(X̃ , t) < U a(X̃ ,τ ′) for all t ∈ T \ {τ ′} (recall that we
hadU a(X , t) ≤ U a(X ,τ ′) andU a(X , t) changes continuously with

ci ). Thus, τ ′ becomes the only best response of the attacker while

its coverage increases; BR(X̃ ) = {τ ′} and covτ ′(X̃ ) > covτ ′(X ).

For defender i , it follows that mint ∈BR(X̃ )
U d
i (X̃ , t) = U d

i (X̃ ,τ
′) >

U d
i (X ,τ

′), contradicting the assumption that (X ,τ ′) is an NSE.

It follows that in this game covt (X ) = −U a(X , t) = −U a(X ,τ ′) =
covτ ′(X ) for all t . We should also have covτ ′(X ) > 0, since other-

wise no target is protected at all and defender 1 can allocate some

resource to improve her utility. Moreover, covτ ′(X ) < 1 since oth-

erwise

∑
t ∈T covt (X ) = |T | ≥ 3, which is a contradiction because∑
t ∈T

covt (X ) =
∑
t ∈T

©­«1 −
∏
i ∈[n]

(
1 − covt (xi )

)ª®¬
≤

∑
t ∈T ,i ∈[n]

covt (xi ) ≤ K = 2. (3)

Therefore, when X is played, all targets are equally appealing to

the attacker. Some defender i with covτ (xi ) > 0 can then reduce it

to zero (by removing the resource to be allocated to τ in every pure

strategy). Since covτ (X ) = covτ ′(X ) < 1, this will reduce covτ (X )

(see (2)) and result in τ to be the attacker’s only best response.

Since τ ≺i τ
′
, defender i is better off making this deviation, which

contradicts the assumption that (X ,τ ′) forms an NSE. □

Lemma 3.5. If π is strategyproof then fπ is strategyproof.

Proof. Suppose that fπ is not strategyproof. Then there exist

linear orders ≺1, . . . ,≺n and ≺′
i over T and alternatives τ ,τ ′ ∈ T

such that f (≺1, . . . ,≺i , . . . ,≺n ) = τ , f (≺1, . . . ,≺
′
i , . . . ,≺n ) = τ ′,

and τ ≺i τ
′
, i.e., voter i benefits from reporting ≺′

i instead of ≺i .

Let θ = д(≺1, . . . ,≺i , . . . ,≺n ) and θ′ = д(≺1, . . . ,≺
′
i , . . . ,≺n ).

Hence, θ j = θ
′
j for all j ∈ [n] \ {i}. By the definition of fπ , we have

π (θ, k,α∗) = (x,τ ) and π (θ′, k,α∗) = (x′,τ ′) for some x and x′.
Consider a defender i of type θi . Since τ ≺i τ

′
, we have

U d
i (π (θ, k,α

∗)) = U d
i (x,τ ) < U d

i (x
′,τ ′) = U d

i (π (θ
′, k,α∗)).

Thus, π is not strategyproof. □

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let π be an arbitrary strategyproof

mechanism. We show that π cannot be weakly UP. By Lemmas 3.4

and 3.5, the social choice function fπ is onto T and strategyproof.

Since |T | ≥ 3, by the Gibbard–Satterthwaite theorem fπ is a dicta-

torship. Assume that voter λ is the dictator; we can assume without

loss of generality that λ , 1 (if λ = 1, we can exchange voters 1 and

2 below). Let τ be the favourite alternative of voter λ, i.e., τ ≻λ t
for all t ∈ T \ {τ }; then fπ (≺1, . . . ,≺n ) = τ .

Now, consider linear orders ≺′
1
, . . . ,≺′

n , in which

t1 ≺′
λ t2 ≺′

λ · · · ≺′
λ tm , and tm ≺′

1
tm−1 ≺′

1
· · · ≺′

1
t1.

Then fπ (≺
′
1
, . . . ,≺′

n ) = tm and by the definition of fπ this implies

π (д(≺′
1
, . . . ,≺′

n ), k,α∗) = (x, tm ) for some x. Letθ = д(≺′
1
, . . . ,≺′

n ).

Thus, in the game given by defender profile (θ, k) and attacker type
α∗, the mechanism offers defender 1 utility

U d
1
(π (θ, k,α∗)) = U d

1
(x, tm ) ≤ rd

1
(tm ) =

1

2

.

However, we will show next that defender 1 can obtain utility at

least 1 even in the worst NSE, so π cannot be weakly UP.

Observe that defender 1 can prevent tm (her least preferred

attacker response) from being adopted by the attacker by always

allocating her resource to tm : the resulting strategy profile X̃ gives

covtm (X̃ ) = 1 and covt (X̃ ) < 1 for at least one target t ∈ T (for the

same reason as (3)). Thus, U a(X̃ , tm ) > U a(X̃ , t), so tm < BR(X̃ ).

Since tm ≺′
1
t for all t ∈ T \ {tm }, we have

min

t ∈BR(X̃ )

U d
1
(X̃ , t) ≥ U d

1
(X̃ , tm−1) ≥ pd

1
(tm−1) = 1.

Therefore, a strategy profile cannot be an NSE if it does not offer

defender 1 utility 1, as otherwise the defender can always allocate

her resource to tm to increase her utility. The worst NSE should

offer defender 1 utility 1, which completes the proof. □

4 CONSTRAINED SOCIAL WELFARE
MAXIMIZATION MECHANISMS

Since our desirable properties cannot be satisfied simultaneously,

we can ask what is a maximal subset of them that can be satisfied

at the same time. SP alone is easy to achieve, by appointing one

defender (e.g., one who contributes the most resources) as a dictator

and maximizing her utility, which also gives us PE if we fix a tie-

breaking order. Nevertheless, since some defenders may end up

even less happy than in the worst NSE, this defeats the purpose

of coordination. In this section, we propose a Constrained Social

Welfare Maximization mechanism (CSW-Max) that achieves PE and

weak UP (but not SP), and runs in polynomial time. For the special

case where all defenders have non-overlapping payoffs we show

that when an NSE is provided, a variant of CSW-Max mechanism



can achieve PE, Weak UP, and SP simultaneously; this mechanism,

too, runs in polynomial time.

4.1 A PE and Weakly UP Mechanism
CSW-Max works as follows.

1. Compute an NSE (X ,τ ) using the algorithm by Gan et al.

[10] (which runs in polynomial time).

2. Solve the following linear program LP-t for each t ∈ T ,
where c are the variables.

LP-t : maximize

∑
i ∈[n]

U d
i (c, t) (4)

subject to U d
i (c, t) ≥ U d

i (X ,τ ) ∀i ∈ [n] (4a)

U a(c, j) ≤ U a(c, t) ∀j ∈ T (4b)∑
j ∈T

c j ≤ K (4c)

0 ≤ c j ≤ 1 ∀j ∈ T (4d)

3. Pick a t ∈ T that maximizes the optimal value of LP-t ; let it
be t∗ (breaking ties lexicographically). Output (c∗, t∗).

In LP-t , Constraint (4a) requires each defender to obtain at least

their utility in the NSE (X ,τ ); (4b) requires that the attacker is

incentivized to attack target t ; the remaining two constraints ensure

that c ∈ CK is a feasible strategy. We will now argue that LP-t is
feasible for at least one t ∈ T , so the mechanism will always output

some outcome. Moreover, this outcome is PE and weakly UP.

Lemma 4.1. LP-t is feasible for at least one t ∈ T .

Proof. In fact, LP-τ is always feasible as z = cov(X ) satisfies

all the constraints. Specifically, (4a) is satisfied trivially when z =
cov(X ). (4b) is satisfied because (X ,τ ) is an NSE, so by definition

τ ∈ BR(X ) = BR(z). Let X = (x1, . . . , xn ). We have

zj = 1 −

n∏
i=1

(1 − covj (xi )) ≤
n∑
i=1

covj (xi )

for each j ∈ T , and summing up the inequalities gives∑
j ∈T

zj ≤
∑

j ∈T ,i ∈[n]

covj (xi ) ≤
∑
i ∈[n]

ki = K ,

so Constraint (4c) is satisfied. Finally, Constraint (4d) is satisfied as

0 ≤ covj (X ) ≤ 1 for all j ∈ T by definition. □

Theorem 4.2. CSW-Max is PE and weakly UP.

Proof. Let (c∗, t∗) be the outcome of CSW-max. It is weakly UP

since by Constraint (4a) every defender gets at least their utility in

the NSE (X ,τ ).
Suppose for the sake of contradiction that (c∗, t∗) is not PE,

and it is Pareto dominated by another outcome (z,h). We have∑
i ∈[n]U

d
i (z,h) >

∑
i ∈[n]U

d
i (c

∗, t∗). Since (c∗, t∗) maximizes the

optimal values of LP-t ’s that admit feasible solutions, z is not a
feasible solution of LP-h. However, since (z,h) is a feasible outcome,

it satisfies (4b)–(4d), so the only constraint it can violate is (4a); we

haveU d
j (z,h) < U d

j (X ,τ ) for some j ∈ [n]. Further, since (c∗, t∗) is

a feasible solution of LP-t∗, we have U d
i (c

∗, t∗) ≥ U d
i (X ,τ ) for all

i ∈ [n]. Thus, U d
j (z,h) < U d

j (X ,τ ) ≤ U d
j (c

∗, t∗), which contradicts

the assumption that (z,h) Pareto dominates (c∗, t∗). □

4.2 NSE-induced SP Mechanism
Sometimes a (truthful) NSE is known before the defenders decide

to collaborate, e.g., when the status quo is an NSE (indeed, since

an NSE in our model can be computed efficiently, it is plausible to

assume that one may arise from interaction between the players).

If in this NSE every target is protected with some probability but

not probability 1 and every defender has non-overlapping payoffs,

we can achieve SP, PE, and weak UP simultaneously. Intuitively,

the known NSE spares us the trouble of dealing with non-truthful

input information when we compute the NSE in Step 1 of CSW-

Max. Given also the defenders’ consistent preferences with non-

overlapping payoffs, we are able to generate a PE and weakly UP

outcome without any additional information.

Let (X ,τ ) be a knownNSE such that 0 < covt (X ) < 1 for all t ∈ T .
Our mechanism CSW-Max-NSE is a simple variant of CSW-Max:

1. Solve LP-τ defined in (4). Let the optimal solution be c∗.
2. Output (c∗,τ ).

The argument in Lemma 4.1 shows that LP-τ is always feasible.

We will show that CSW-Max-NSE is SP, PE, and weakly UP.

Theorem 4.3. CSW-Max-NSE is SP, PE, and weakly UP when the
defenders have non-overlapping payoffs.

Proof. Observe thatU d
i (c,τ ) depends only on cτ and is increas-

ing with respect to cτ . Thus, LP-τ is equivalent to the following LP

with variables c:

maximize cτ

subject to cτ ≥ covτ (X ) ∀i ∈ [n]

Constraints (4b)–(4d)

The formulation does not rely on the defenders’ payoffs. Thus,

misreporting does not change the output and CSW-Max-NSE is SP.

To show that it is PE, suppose for the sake of contradiction that

(c∗,τ ) is Pareto dominated by another outcome (z,h).
If h = τ , we have U d

i (z,τ ) ≥ U d
i (c

∗,τ ) for all i ∈ [n], so z is a
feasible solution to LP-τ ; and

∑
i ∈[n]U

d
i (z,τ ) >

∑
i ∈[n]U

d
i (c

∗,τ ),
so z is actually a better solution than c∗, contradicting the fact that

c∗ is an optimal solution of LP-τ .
Therefore, h , τ . Since τ ∈ BR(X ), we haveU a(X , t) ≤ U a(X ,τ )

for all t ∈ T . We can further argue that U a(X , t) = U a(X ,τ ), so
BR(X ) = T . Indeed, if U a(X , t ′) < U a(X ,τ ), target t ′ is overly
protected; some defender i can rebalance the coverage, adjusting

her contribution ci = cov(xi ) to c̃i such that c̃it ′ = cit ′ − δt ′ and

c̃it = cit + δt for all t , t ′. When the changes δt ’s are sufficiently

small, c̃i ∈ Cki , so it is feasible, and by letting δτ be sufficiently

smaller than all other δt ’s, we can make τ the unique attacker best

response after the deviation, in which case the utility of defender i
will increase, contradicting the assumption that (X ,τ ) is an NSE.

Now that BR(X ) = T and the payoffs are non-overlapping, it

must be that h ≺i τ for those defenders i with covh (xi ) > 0. Indeed,

if h ≻i τ these defenders would be better off reducing covh (xi )
(and hence covh (X )) to attract the attacker to attack h. This implies



U d
i (z,h) < U d

i (c
∗,τ )—a contradiction to the assumption that (z,h)

Pareto dominates (c∗,τ ).
Finally, weak UP is guaranteed by Constraint (4a) of LP-τ . □

5 STABILITY AGAINST STRATEGY
MODIFICATION

So far, we assumed that the mechanism was in charge of the de-

fenders’ resources. In some scenarios the mechanism does not have

direct access to the resources; it can only recommend allocation

strategies to the defenders and cannot enforce that the defend-

ers will indeed follow the recommendations. In this section, we

consider an additional property: individual rationality (IR). This

property requires that no defender has an incentive to deviate from

the strategy dictated by the coordination mechanism.

5.1 Recommendation Strategies and IR
In allocation strategies considered so far, resources are treated as

anonymous; we do not care about the ownership of resources in the

allocation. We will now extend the definition of allocation strate-

gies to incorporate the ownership information, and call the newly

defined strategies recommendation strategies. In this new model, a

pure strategy is a joint strategy S = (s1, . . . , sn ) with each si ∈ Tki
being a pure allocation strategy of defender i . We have covt (S) = 1

if and only if covt (s1) = 1 for some i ∈ [n]. A recommendation strat-

egy x is then a distribution over joint pure strategies, i.e., x ∈ ∆(Tk)
where we write Tk =

∏
i ∈[n] Tki . A mechanism generates an out-

come (x, t) conditioned on the input player profile as previously

defined, and to implement the outcome, the mechanism samples

a joint pure strategy (s1, . . . , sn ) from x and recommends each de-

fender i to take strategy si . The recommendation is privately sent

to each defender, and only the distribution x is publicly known

to everyone. We define strategy modification to formalize how a

defender could deviate from the recommended strategy.

Definition 5.1 (Strategy modification). A strategy modifica-
tion of a defender i ∈ [n] is a function ϕ : Tki → ∆(Tki ), under which
the defender plays a mixed strategy ϕ(s) whenever she is instructed
to play a pure strategy s ∈ Tki by the coordination mechanism.

For a distribution x ∈ ∆(Tk), we abuse the notation and let

ϕ(x) denote the distribution that arises when defender i adopts
ϕ. By x′ = ϕ(x), the probability that each joint pure strategy S =
(s1, . . . , sn ) ∈ Tk is chosen is

x ′S =
∑

Q=(q1, ...,qn )∈Tk

xQ · ϕs i (q
i ),

where ϕs i (q
i ) is the probability si is chosen by the mixed strategy

ϕ(qi ). We are now ready to define individual rationality.

Property 4 (Individual rationality (IR)). An outcome (x, t) is
individually rational if for every defender i ∈ [n] it holds that

U d
i (x, t) ≥ mint ′∈BR(ϕ(x))U

d
i (ϕ(x), t

′) for every strategy modifica-

tion ϕ : Tki → ∆(Tki ). A coordination mechanism is IR if only

outputs IR outcomes.

Put differently, IR requires correlated-equilibrium-like outcomes

and every NSE is an IR outcome. Given our results in the previous

sections, we would like to find a PE and weakly UP mechanism that

is also IR. Unfortunately, such mechanism does not exist.

5.2 PE, Weak UP, and IR are Incompatible
We describe a game in which no outcome is PE, weakly UP, and IR.

Example 5.2. There are three defenders and five targets T =
{a,b, c,d, e}. Each defender has one resource. The defenders have
non-overlapping payoffs captured by the following preference orders:

a ≺1 b ≺1 c ≺1 d ≺1 e;

c ≺2 b ≺2 a ≺2 d ≺2 e;

e ≺3 d ≺3 c ≺3 b ≺3 a.

The attacker’s payoffs are as follows.

a b c d e

ra 1 1 1 0.7 0.7

pa 0 0 0 0 0

Lemma 5.3. In Example 5.2 the attacker’s best response is to attack
target b in every NSE.

Proof. First, since a, c , and e are the least favored attacker re-

sponses of some defender, the attacker’s response cannot be any

of these targets in an NSE: otherwise the defender for whom this

target is the lest favored attacker response can deviate to always

allocating her resource to this target; the target will have coverage

1 and cannot be an attacker best response in this example.

We will now argue that target d cannot be the attacker’s best

response either. We show that defender 3 can always avoid targets

d and e to be the attacker’s best responses by playing the strategy

c3 = (0, 0, 0, 1
2
, 1
2
), irrespective of the other defenders’ strategies.

When c3 is played, the coverage of both targets d and e will be at
least 0.5. The attacker obtains utility at most 0.7 × 0.5 + 0 × 0.5 =

0.35 by attacking any of them. Thus, for either of them to be a

best response of the attacker, each of a, b, and c needs to receive

coverage at least 0.65 (for the attacker to get utility at least 0.35

by attacking them); this is impossible. Essentially, let c1 and c2 be
the first two defenders’ strategy, so each target t ∈ {a,b, c} has
coverage 1−(1−c1t )(1−c

2

t ); we show that the following constraints

cannot be satisfied simultaneously to complete the proof.
1 − (1 − c1t )(1 − c2t ) ≥ 0.65, for all t ∈ {a,b, c}

0 ≤ cit ≤ 1, for all i = 1, 2, and t ∈ {a,b, c}

cia + c
i
b + c

i
c ≤ ki = 1, for all i = 1, 2

Indeed, suppose that the above constraints are satisfied by

some cit ’s. For simplicity, let (x1,x2,x3) = (1 − c1a , 1 − c1b , 1 − c1c ),

(y1,y2,y3) = (1 − c2a , 1 − c2b , 1 − c2c ). Then the following constraints

should be satisfied.
x j · yj ≤ 0.35, for all j = 1, 2, 3

0 ≤ x j ≤ 1, and 0 ≤ yj ≤ 1, for all j = 1, 2, 3

x1 + x2 + x3 ≥ 2, and y1 + y2 + y3 ≥ 2

Assume without loss of generality that x1 ≤ x2 ≤ x3. In fact, if the

inequalities are satisfiable, there is a satisfying solution such that

y1 ≥ y2 ≥ y3 because if, e.g.,y1 ≤ y2, we can exchange the values of
y1 andy2 while the inequalities will still be satisfied. Further, assume

without loss of generality that x1 · y3 ≤ x3 · y1. Let (x̃1, x̃2, x̃3) =



(x1 − δ , x2, x3 + δ ) and (ỹ1, ỹ2, ỹ3) = (y1 +
δ ·y3
x3+δ
, y2, y3 −

δ ·y3
x3+δ

).

We have

x̃1 + x̃2 + x̃3 = x1 + x2 + x3 ≥ 2,

ỹ1 + ỹ2 + ỹ3 = y1 + y2 + y3 ≥ 2,

x̃3 · ỹ3 = (x3 + δ ) · (y3 −
δ

x3+δ
· y3) = x3 · y3 ≤ 0.35,

x̃2 · ỹ2 = x2 · y2 ≤ 0.35,

x̃1 · ỹ1 = (x1 − δ ) · (y1 +
δ

x3+δ
· y3)

= x1y1 +
δ (x1 ·y3−y1 ·x3−y1 ·δ−y3 ·δ )

x3+δ
≤ x1y1 ≤ 0.35.

However, if we gradually increase δ , 0 ≤ x j ≤ 1 and 0 ≤ yj ≤ 1

will be violated. Consider the first constraint that becomes tight.

• Suppose that x̃1 drops to 0 first. We have x̃1 = 0 while all the

constraints are satisfied. By x̃1+x̃2+x̃3 ≥ 2 and x̃2, x̃3 ∈ [0, 1]

we have x̃2 = x̃3 = 1. By x̃ j ·ỹj ≤ 0.35 we have ỹ2 ≤ 0.35 and

ỹ3 ≤ 0.35. It follows that, ỹ1 + ỹ2 + ỹ3 ≤ 1 + 0.35 + 0.35 < 2,

which is a contradiction.

• Suppose that x̃3 reaches 1 first. We have x̃3 = 1 while all

the constraints are satisfied. It follows by x̃3 · ỹ3 ≤ 0.35

that ỹ3 ≤ 0.35 and, by ỹ1 + ỹ2 + ỹ3 = 2 and ỹ1 ≥ ỹ2, that
ỹ1 ≥ 0.825. Applying these constraints repeatedly, we have

x̃1 ≤ 0.35
ỹ1
< 0.425 ⇒ x̃2 ≥ 2 − x̃1 − x̃3 ≥ 0.575

⇒ ỹ2 ≤ 0.35
x̃2
< 0.61 ⇒ ỹ1 = 2 − ỹ2 − ỹ3 > 1,

which is a contradiction.

• When ỹ1 reaches 1 first or ỹ3 drops to 0 first, the same analy-

sis can be applied. Both cases lead to contradictions as above.

Thus, no x j ’s and yj ’s can satisfy the constraints. □

Lemma 5.4. Suppose (x,τ ) is a PE outcome in Example 5.2, and
c = cov(x). Then ca = cb = cc = 24

31
and cd = ce =

21

31
.

Proof. We first show that c indeed corresponds to a feasible

outcome. Note that in this example, K = 3 =
∑
t ∈T ct by the above

valuation of c, so c ∈ CK and hence it can be implemented by

a distribution x ∈ ∆(TK ) (see Section 2). Trivially, any coverage

vector that can be implemented by some distribution x ∈ ∆(TK )
can also be implemented by a distribution in x ∈ ∆(Tk) over the
non-anonymous joint pure strategy Tk, so c is feasible.

Suppose for the sake of contradiction that (x′,τ ′) is a PE outcome,

but c′ = cov(x′) , c. We have

∑
t ∈T c ′t ≤ K =

∑
t ∈T ct , which

implies that c ′h < ch for someh ∈ T . Further, observe thatU a(c, t) =
7

31
for all t ∈ T , so BR(c) = T . SinceU a(c, t) decreases with ct , we

have maxt ∈T U a(c′, t) ≥ U a(c′,h) > U a(c,h) = 7

31
. By definition

τ ′ ∈ BR(c′), soU a(c′,τ ′) > 7

31
= U a(c,τ ′). On the other hand, the

utility U d
i (c, t) of each defender i increase with ct , so U

a(c′,τ ′) >
U a(c,τ ′) impliesU d

i (c
′,τ ′) < U d

i (c,τ
′) for all i ∈ [n], which means

that now there is another outcome (x,τ ′) that Pareto dominates

(x′,τ ′), contradicting the assumption that (x′,τ ′) is PE. (Here (x,τ ′)
is a feasible outcome since τ ′ ∈ BR(c) = T .) □

Theorem 5.5. There exists no mechanism that is PE, weakly UP,
and IR, even when the defenders’ payoffs are non-overlapping.

Proof. It suffices to show that Example 5.2 does not admit a PE,

weakly UP, and IR outcome.

First, by Lemma 5.3 and the fact that the defenders have non-

overlapping utilities, if an outcome (x,τ ) is weakly UP then wemust

have τ = b. By Lemma 5.4, BR(c) = T . This implies that no defender

i will receive a recommendation to protect any target t ≻i b with

positive probability, i.e., for all S = (s1, s2, s3) ∈ Tk such that xS > 0,

covt (si ) = 0 if t ≻i b (otherwise, the defender can remove the

resource allocated to this target to induce a better attacker response).

Hence, targets d and e will only be protected by defender 3 who

has only one resource. We have cove (S) + covd (S) ≤ 1 in every

pure joint strategy in the support set of x; it follows that cove (x) +
covd (x) =

∑
S ∈Tk:xS>0 xS · (cove (S) + covd (S)) ≤

∑
S ∈Tk xS = 1.

This contradicts Lemma 5.4 where we have cd + ce =
42

31
> 1. □

We are again forced to select a strict subset of the conflicting

properties. Now if we drop PE, essentially we will be looking at

mechanisms that generate correlated equilibria. Trivially, every

NSE, as a special correlated equilibrium, is weakly UP and IR, and

we know that they always exist and can be computed efficiently.

However, in this way we do not obtain any of the benefits of coor-

dination, violating our original motivation.

Alternatively, we can aim to find correlated equilibria that satisfy

certain optimality criteria among all correlated equilibria, e.g., equi-

libria that maximize the social welfare, or Pareto optimal equilibria.

We leave this question open for future work and only highlight

the challenges here. Unlike in normal-form games or many other

succinctly representable multiplayer games where correlated equi-

libria can be computed efficiently [17], our model features a very

different utility structure, where a player’s utility from playing a

mixed strategy is not a linear combination of their pure strategy

utilities because of different attacker responses induced by these

strategies. This means that we are unable to use existing approaches

in order to compute correlated equilibria in our setting.

6 CONCLUSION
This paper demonstrates an intriguing phenomenon in security

scenarios involving multiple defenders: even when the defenders

face a common enemy, it is often not possible for them to reach a

consensus on how to coordinate. Our analysis highlights the un-

derlying causes of this phenomenon: there is a competition among

the defenders, where each defender drives the attacker towards a

target that she considers less important. Our impossibility results

immediately call for more innovative ways to promote coordina-

tion. In scenarios where strategyproofness is not necessary, one

open question outlined above is how to compute a correlated equi-

librium with good social welfare properties. While we view the

problem from the perspective of mechanism design, in reality there

are other natural means to be considered as well, such as negotia-

tion, contracting, and coalition formation. These will be interesting

directions to explore in order to obtain more positive results.
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