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Abstract. The concept of sequential two-sided search is widely used in
partnerships formation applications in various domains. However, when
considering the implementation of the method in Multi-Agent Systems
(MAS), one may notice a strong incentive for agents to deviate from the
traditional equilibrium sequential search strategy towards an extended
search method which combines simultaneous inquiries in each search
round. In the current paper we explore such a model, where agents
of a specific type can use this kind of simultaneous search technique.
Since all agents types strategies take into consideration the other agents’
strategies, the main focus is on the equilibrium analysis. By introducing
the agents’ expected utility functions, we manage to present a complete
equilibrium based analysis for the new model combining the simulta-
neous inquiries technique. The specific characteristics of the equilibria,
derived from the analysis, allow us to suggest efficient algorithms for
calculating each agent’s strategy. As a complementary application for
the proposed model, we suggest the buyer-seller two-sided search pro-
cess in C2C eMarketplace environments. Here, buyer agents utilize the
new search technique in order to enforce a new equilibrium which yields
a better utility for themselves. The perceived improvement in the agents
performance in comparison to the traditional two-sided search method
is demonstrated through simulations.

1 Introduction

The concept of two-sided search for forming partnerships among agents can be
found in many MAS applications [9]. The key issue for each agent engaged in such
search process is to determine the set of agents it is willing to form a partnership
with. The number of possible partners the agents seek is application dependent.
In this paper we focus on partnerships where each agent is satisfied with only one
partner. Typical applications that make use of size-two partnership formation
processes include buyer-seller, peer-to-peer media exchange, dual long distance
call partnering termination-services [15], dual backup services [14] etc. The main
characteristic of these applications is that an agent can gain a utility only if it
eventually partners with another agent. However, once a partnership is formed,
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adding additional agents as partners does not produce any additional benefit.
The search process for such partnerships is considered two-sided as all agents in
the environment engage in search. Thus a partnership eventually formed is the
result of the combined search activities of the agents forming it.

Traditionally, applications where individuals were engaged in dual search ac-
tivities (e.g. marriage and labor markets [2]), considered pure sequential search
where each party samples and evaluates one potential partner at a time. Never-
theless, while considering the migration of such models into MAS environments,
one must also take into consideration an important strength of autonomous
agents (in comparison to humans) - their ability to handle an enormous amount
of information and to maintain interaction with several other agents in parallel
[5]. This research is motivated by such strength, i.e., allowing agents to simul-
taneously interact with several other agents during each search round. We aim
to show that the use of the new method derives different equilibrium strategies
(in comparison to the pure sequential model) for the agents. The results of the
analysis suggests that as the choice of using the method is given to one of the
agents types, this type can only improve and never worsen its expected utility.

In order to demonstrate the suggested methodology, we use the legacy two-
sided agents search application - the buyer-seller search in Electronic commerce.
More specifically, we use the C2C (Consumer-to-Consumer) segment, where con-
sumers can be found at both ends of the transaction. We consider a C2C mar-
ketplace with numerous buyer and seller type agents. Each agent explores the
market for opportunities to buy or sell a specific item, equipped with its owner’s
personal preferences and requirements. Once a buyer agent and a seller agent be-
come acquainted, they interact, following given conventions defined by ontology
and language. If the buyer agent’s preferences and requirements for the prod-
uct attributes and functionalities are met, then a possible transaction between
the two of them can be considered associated with specific terms (including the
price) and policies. Dual commitment to the proposed transaction will result in
an agreement and an immediate utility for both sides. Otherwise both agents
will continue their search, looking for other candidates. Notice that the seller
agents in C2C marketplaces usually have a single item (or a limited quantity)
they wish to sell on an irregular basis. Therefore, even though the seller agents
do not proactively search for buyer agents, they are active in a selective manner
in order to maximize their total utility.

The utility an agent gains from any given transaction, is a function of many
factors. While for simple products (like CDs), it is mostly a matter of price, for
more complex products, the purchasing decision generally requires a complex
trade-off between a set of preferences. We apply the multi-attribute utility theory
(MAUT) 8], for analyzing preferences with multiple attributes in our agent-
based trading mechanism [9]. The reason for using such a function is two-folded.
First, most C2C users buy and sell assorted items that are often difficult to
describe, and are not easily evaluated. Since in most cases it will be a used item,
the value for the buyer will be influenced mostly by the specific functionalities
(including attributes like color, size, etc.), quality and current condition of the



product. Second, the transaction that will eventually be made will include many
terms and policies (concerning warranties, return policy, payment policy, delivery
time and policy, insurance for the delivery, etc.). All these terms have value
for both sides and can be critical to their buying/selling decision, regardless of
the manner of shopping [5]. Adding reputation and trust factors to the agents’
considerations, and keeping in mind that in many terms and policies buyers
and sellers do not have directly competing interests [4], one may conclude that
similar potential transactions may suggest different utilities for different buyers
and sellers agents.

The general framework of our model consists of an environment populated by
many agents, where each agent is associated with one of two types. Partnerships
are formed between single agents of the two types. Each agent is self-interested
and has no a-priori knowledge regarding the utility that can be obtained by
partnering with specific agents in the environment. In order to find an appro-
priate partner, each of the agents interacts with other agents of the opposite
type, evaluating the perceived utility from partnerships with these agents. The
perceived utility from any interaction is associated with a distribution function
(widely common assumption in traditional two-sided search models [2]). In the
current context, we limit the possibility of using the simultaneous search for one
of the types. Such a scenario is applicable in several environments, as will be
discussed in the following sections. The methodology and results presented in
this paper can be used as an infrastructure for future research, considering the
model where all agents types can use the new technique.

An inherent part of such a dual search model is the search ”cost”, reflecting
the resources required by the agent to perform its search activities. This includes
the cost associated with the interaction between agents, locating other agents,
analyzing and comparing offers, decision making, etc. Many authors have argued
that advances in communication technologies reduce search costs and other mar-
ket inefficiencies. However the general agreement is that these cannot be ignored
completely [1]. These should be considered when computing the total expected
utility for the agent, given a specific search strategy.

Upon meeting a potential partner agent, at any given stage of the search, the
agent needs to decide whether to form a partnership with the agent it has met
or to continue its search. If it will attempt to join the current agent and that
agent will commit to the partnership as well, then it will immediately gain the
expected utility from the partnership; Otherwise, the agent will need to continue
searching, bearing additional search costs. In the latter case the agent’s future
expected utility will be derived from the benefit future interactions might offer,
as well as the encountered agents’ willingness to form a partnership. Therefore,
an agent’s decision of whether to join the current possible partner depends on
the strategies set by the other agents. In a similar manner their strategies also
depend on the decision of the agent. Thus, we are looking for strategies that
are in equilibrium. As we will show in this paper, the equilibrium will consist
of reservation value based strategies. That is, the agent will set a reservation



value, x, accepting a partnership yielding a utility greater than or equal to x
and rejecting all partnerships with agents that yield a utility lower than z.3

An important output of our work is the in-depth analysis we suggest for the
model, shedding light on unique characteristics of the agents equilibrium policies.
Nevertheless, our main contribution is in the integration of the simultaneous
search capability into the agent’s search strategy in the two-sided model. This
suggests a more efficient search that significantly reduces some of the agent’s
fixed-natured search costs and increases its overall performance (in terms of
the perceived utility). Throughout the paper we suggest efficient tools for the
agent to find the optimal number of simultaneous interactions in a search round.
The proposed algorithms, can also be useful for the traditional two-sided pure
sequential search model as a specific case.

In the next section we address relevant multi-agent and search literature.
In section 3 we present the model. An equilibrium analysis and calculation al-
gorithms are given in section 4. We conclude and present directions for future
research in section 5.

2 Related Work

The search process for partners, often associated with agent matchmaking con-
cept, has wide evidence in literature [9, 17]. In its wider extent it can be seen as
part of the multi-agent coalition formation model found in the electronic market
[7,10]. While some mechanisms assume that an agent can scan as many agents
as needed, others use a central matcher or middle agents [3]. Few have consid-
ered the problem of finding matches for cooperative tasks without the help of
a predefined organization or a central facilitator [13,14]. However, to the best
of our knowledge, a distributed simultaneous search for partners has not been
studied.

The traditional two-sided search application initially evolved from the area of
search theory ([11], and references therein). These models focused on establishing
optimal strategies for the searcher, assuming no mutual search activities and were
classified as one-sided search. In an effort to understand the effect of dual search
activities, the ”two-sided” search research followed [16, 2].

The transition of these models into MAS environments is non-trivial. While
traditional models assume poisson arrival rates for new opportunities, we do see
room for agents that control their search intensity and even initiate simultaneous
interactions for improving their utility. The use of variable sample sizes was
suggested for the one-sided search [12], however, since there is only one searcher
in these models this became a simple optimization problem, with no equilibrium
concerns. The equilibrium concept is the key issue in the simultaneous two-sided

3 The reservation value of the search strategy is different than a reservation price usu-
ally associated with a buyer or a seller that are not involved in a search. While the
reservation price denotes an agent’s true evaluation of a specific potential transac-
tion, the reservation value of a search strategy is mainly a lower bound for accepted
transactions, derived from the expected utility optimization considerations.



search, as the agent needs to consider the effect of its strategy both on the other
agents’ strategies and on its own performance. This significantly increases the
complexity of the problem. Our model also differs in the way search ”costs”
are modelled. Unlike most traditional search models, where search ”costs” are
modelled by the discounting of the future flow of gains, we see these costs as an
actual explicit resource the agent needs to put into the search. This is mainly
because the search in MAS environments will usually last a few days\hours, and
will result in an immediate utility. Lastly, notice that while traditional models
[2] are more concerned with describing the equilibrium equations, we also require
algorithms and methods for deriving the agents policies for different settings and
the distributed computation of the equilibrium strategy.

3 The Two-Sided Simultaneous Search Model

Consider an environment populated with numerous agents of two types, where
each agent is interested in forming a partnership with an agent of the opposite
type. For illustrative purposes, we’ll continue with the model denoting the two
types as buyer and seller agents, residing in a C2C marketplace environment,
interested in buying or selling various items. Any random interaction between
a seller agent and a buyer agent, may yield a transaction for exchanging the
item according to well defined specific terms and policies. As suggested in the
introduction, the perceived utilities from any suggested transaction between two
specific agents, denoted by U* for the seller agent and U® for the buyer agent,
can be seen as randomly drawn from a population with p.d.f. f*(U®) and c.d.f.
F3(U*®) for the seller agent and f*(U®) and F?(U®) for the buyer agent (0 <
U#,Ub<o0). We assume that buyer (seller) agents, while ignorant of individual
seller (buyer) agents’ offers (preferences) are acquainted with the overall utility
distributions (a common assumption in search models, see for example [16]).
We consider simultaneous interactions only by agents of a specific type. This
suits the electronic marketplace applications, as in current C2C markets sellers
are usually approached by buyers, and they do not approach buyers in a proactive
manner. Thus, at any stage of its search each buyer agent randomly encounters
N seller agents interested in selling an item similar to the one the buyer agent
wishes to buy. Out of the set of N potential transactions, the buyer agent will
focus on the "best opportunity”, i.e., the one with the highest utility, denoted
by UY. This is in comparison to the traditional pure sequential model [2], where
each buyer agent is acquainted with only one seller agent in a search stage.
Each agent needs to allocate resources to maintain its search. We consider
this ”cost” per search stage to be composed of a fixed cost and a variable cost.
Setting a; and 3 as the fixed and variable components of the buyer agents’ search
cost, respectively, we obtain a total search cost per search stage of o + 3N. The
seller agents search sequentially, and thus their search costs can be seen as as.
We assume the agent’s utility from a given transaction, as well as the resources
required for maintaining the search, can be measured on a similar scale. Thus the
total search utility can be obtained by subtracting the search ”costs” from the



perceived utility for any given transaction. A model where different agents of the
same type will be using different search structures may also be considered. In this
case we will obtain similar sub-types of agents which can be integrated into the
appropriate equations along with their distribution in the general population. In
the current paper we present the analysis of the case where all agents of a specific
type (e.g. buyer agents) share the same cost structure, which is applicable for
most markets where the agents are supplied to the users by the market maker.

After reviewing and evaluating the potential partnership, defined by the pro-
posed transaction, each agent will make a decision whether to commit to it. A
transaction will take effect only if both agents are willing to commit to it. Oth-
erwise both agents will resume their search according to the same cost structure.
Since the agents are not limited by a decision horizon or the number of search
rounds, and the interaction with other agents does not imply any new informa-
tion about the market structure, their search strategy is stationary, i.e. an agent
will not accept an opportunity it has rejected beforehand, and the value N will
remain constant over time. As the agents are seeking to maximize their utility,
they will use a reservation value based strategy.

Consider an environment where buying agents use N simultaneous interac-
tions over each search round. The reservation values used by the buyer and seller
agents will be denoted as 2% and %, respectively. The expected future utility of
the buyer and seller agents, when using these reservation values, will be denoted
as V(%) and V*(z%). Due to space considerations, from this point onward, we
present only the equations associated with the buyer type agents. Unless stated
otherwise, similar modifications for seller type agents can be extracted using
similar methods.

After reviewing the best potential transaction, U}, found over the current
search round, each buyer agent has to make a decision whether to reject this
opportunity and continue the search or commit to the transaction. Continuing
the search will result in an expected future utility of V?(2%;). Committing to
the potential transaction will result in a utility of U¥, if the other agent commits
as well, or otherwise it will force the agent to keep searching with an expected
future total utility of V?(2%;). Thus the buyer agents’ expected utility can be
calculated as*:

VP(al) = B|U ¢ 1[(UX> o) N (U° = aiy)]+ (1)

+VP(aly) o (U < afy) U(U® < ay)] —ap — BN

Here, o1[(U% > 25;) N (U® > z5%)] represents the indicator of the event where
a specific buyer agent and its ”"best” encountered seller agent (in the current
search round) found the perceived utility from a transaction between the two of
them to be greater or equal to their reservation values ((U% > 28,)N(U* > z%/)).

4 Detailed formulation and proofs, as well as the seller agents modifications, can be
found at http://www.cs.biu.ac.il/ sarit/Articles/multiSearch.pdf.



Denoting the c.d.f., p.d.f. and the mean of the maximum utility for the buyer
agent in an N-size sample of sellers as FY%, f& and E[UY], we attain:

(1= F*(ay) [,Z o ufR(y)dy — ap — BN
(1= FR(23))(1 = Fs(ay))

The above equation can be used by each agent to calculate its expected
utility, when using different reservation value strategies, given the cost search
parameters and the strategy used by agents of the opposite type. From this equa-
tion we can derive an agent’s reaction to changes in the other agents strategies,
towards a complete equilibrium analysis. Notice that equation (2), as well as the
rest of the following suggested analysis, is also applicable for the traditional pure
sequential two-sided search, simply by using N=1.

Vi(aly) =

(2)

4 Equilibrium Strategies

Our goal is to supply the buyer agents with tools for calculating their optimal
number of simultaneous interactions, N*, to be used in their search. For this
purpose, we first analyze the equilibrium strategies that will be used by each
agent, for any given number of simultaneous interactions, N. This is achieved
by understanding how an agent’s strategy is affected by changes in the strategy
used by agents of the other type. Then, based on the analysis given, we are able
to suggest an efficient algorithm to find the optimal N.

4.1 An Agent’s Expected Utility Analysis

Notice that an immediate result from (2) is:

N
lim Ve(zh) = —o0 ; lim V(zly) = EIUX] — w0

T —00 z3,—0 ].—FS(LL'JSV)

3)

The content of (3) is intuitive: if the reservation value %, is very large, the

chances of obtaining a utility greater than this reservation value, from a given
search round, are small. Thus, repeated search rounds must be taken, leading
to an overall low utility. If, on the other hand, the reservation value, 2%, is very
small, almost surely a potential transaction suggesting a better utility can be
obtained during the first search round.

The following Theorems 1-3, suggests several additional important proper-
ties of the agents’ expected utility function, to be used later, for designing the
calculation algorithms for the agents’ strategies.

Theorem 1. The expected utility function Vb(xl]’\,) is quasi concave, with a
unique maxima satisfying:

VP (aly)=aly (4)



Sketch of Proof: Deriving equation (2) we obtain:

AV (ah) SRR () — k)
dzfy (1 - F(a}))

= r(2}) (V' (a}) — 2} ()

A solution for (5) requires that V®(z%) = z¥%. Note that f%(z%) > 0 implies

r(z%) > 0, hence for 2% satisfying Vb(z%;) = 24

297b (b , !
CE @)V ) k) RV @) D <0 (0
TN

Thus V¥(24,) and V*(x%) are quasi concave with a unique maxima.[J

Equality (4) is very common in models integrating a reservation value. It sug-
gests that the expected utility when using the optimal reservation value equals
the optimal reservation value. Intuitively, we can say the agent’s optimal reser-
vation value can be found when it is indifferent between the utility that can
be obtained from a transaction and the utility associated with continuing the
search.

Figure 1, illustrates the agents’ expected utility as a function of the reserva-
tion value in two settings. The environment used in this figure contains numerous
buyer and seller agents, where each interaction between any buyer and any seller
agents produce utilities drawn from a triangular distribution function®, defined
over the interval (0,100). Buyer agents are associated with fixed and variable
costs coefficients o, = 2 and § = 0.5, and seller agents are associated with a
search cost a; = 2.5 (thus when buyer agents use N=1, all agents’ search cost
structures are symmetric).

In the first setting, all agents use
pure sequential search (N = 1). The
middle curve describes the expected
utility of any of the agents in this sce-
nario as a function of the reservation
value used (the horizontal axis). In the 30 4, -\
second setting, buyer type agents use Va(xa)
the new simultaneous search method
(N = 4). In this scenario buyer type N W S S

utility
60

V., (x5)
50 {===—"— V) VR

40+ TN

20 A

agents have the incentive to use the 0 reservation value ‘ ‘
new technique since their utility in- 20 40 60\ ko \ 100

. T J A
creases for any reservation value when

using it (represented by the upper Fig, 1. Agent’s expected utility function
curve). Similarly, the expected utility _ specific environment

for seller type agents (represented by
the lower curve) always decreases when the buyer agents adopt the method.

5 This can be related to most electronic marketplaces. It reflects a high probability to
draw an opportunity producing a low utility, and vice versa.



The incentive for the buyer

agents to use the combined si- 0

multaneous search technique is 0.4 1 No Incentive

strong. Any single buyer agent 03 1 to Search

V\.IIH plfefer tO. use more than a o Better Utility

single interaction during a search %27 " Using

round, if he finds the expected 01 | simultaneous 5Z:itterUsin

utility to be higher in this man- Search SequyentiaIgSearch

ner. Figure 2 demonstrates this 0 ‘ ‘ ‘ ‘
phenomena for the uniform dis- 0 ol 02 /8 03 04 0>

tribution function. As the utility
varies from 0 to 1, the bottom tri-
angular area represents all plausible oy, and 8 combinations where the agents will
consider a pure sequential search (e.g. where the expected utility for the agents
in a pure sequential equilibrium strategy is positive). Out of this area, we have
isolated (on the left side) all combinations of a; and § (setting ay = ap + 3)
where an agent can increase its expected utility by deviating from such a pure
sequential strategy (assuming all other agents’ strategies are sequential). We
learn from the graph that buyer agents have an incentive to deviate from the
traditional pure sequential search strategy for many plausible combinations of
ap and [ values. Furthermore, the advantage of the new technique is mostly in
combinations of small «;, and 3 values (in comparison to the average utility from
a partnership), which characterizes most MAS applications.

Fig. 2. Incentive for simultaneous search.

Theorem 2. Given the reservation value that was set by the seller agents, x%;,
the buyers agents’ optimal reservation value, % satisfies:

mb

w+ AN = (1= ) B0k - [ (= Fy)dy) (7)

y=0

Sketch of Proof: Deriving the expected utility given in equation (2), setting
it to zero, and using integration by parts for calculating fyojmb Y ff(,(y)dy, we
YN

finally obtain equation (7).0]

From Theorem 2 we can conclude that the buyer agents’ optimal reservation
value (and thus the total utility for these agents, based on Theorem 1) decreases
in ap and G. This also has an intuitive explanation - as the search costs increase,
the agent becomes less selective, reducing its reservation value. Secondly, we can
conclude from Theorem 2 that the buyer agents’ optimal reservation value (and
thus the total utility for the agent), given the seller agent’s reservation value,
decreases as xf%; increases. Similar results can be obtained for the seller.

Both equation (4) and (7), and their appropriate modifications for the seller
agent, can be used for calculating the optimal reservation values of any agent
type in the search, given the reservation values used by the agents of the opposite
type. However, for most distribution functions, it is impossible to extract zj
and z%; using direct calculations. Fortunately, the characteristics of the optimal
strategies (given the other agents’ reservation values) as proved in Theorems 1-2



enable us to suggest an efficient algorithm for estimating these values up to any
required precision level.

The idea is that using equation (2) for calculating the expected utility V°(z%;),
and comparing the result with x’}v, we can clearly determine if the current
reservation value used is greater or lesser than the optimal value. As long as
Ve(28) > a8 holds, the reservation value used is smaller than the optimal
reservation value and vice versa. Bounding the interval in which the optimal
reservation value resides, we can use a binary search for finding a good estima-
tion of the value. Notice that in most cases the distribution functions of U® and
U? are finite (assuming a person’s utility from a specific exchange is finite). How-
ever, we can find a bounding interval even for an infinite distribution function
as Theorem 3 below suggests.

Theorem 3. The values xl;w and x?v_ satisfying (1—F* (%)) fyofzb yf¥(y)dy =
=ab
ap + BN and x’}v, = E(U}(,) — ﬁb@m, respectively, can be used as upper and

lower bounds for the buyer agents’ optimal reservation value (given the seller
agents’ reservation value). Similar bounds can be found for the sellers’ optimal
reservation value.

Sketch of Proof: For the upper bound, assume reservation value z%; satisfies
the above condition. Substituting =% in (2) will yield: V*(z%) = 0 < 2% And
thus, using theorem 1 we can conclude that ml}\, is an upper bound for the opti-
mal reservation value. The lower bound is valid simply because the overall utility
function is concave (Theorem 1) and equation (4) holds. O

At this point we have suffi-
cient knowledge to sketch the P §
. i Optimal Strateg%/ 3
graph of the buyer agents’ ex LoV (X)) =xb
pected utility as a function |
of the reservation value used,
VO (28;) (which reflects simi-
lar characteristics to the seller 3 3 3
agents’ graph V*®(z%)). The |}—" . . N
basic structure of ‘Ehév ZLrve jg  [rowerbound | |
given in Figure 3. Thus, an ef-
ficient algorithm for calculat-

Upper bound

N

. , . Bounding interval
ing an agent’s optimal reser- V) S X, T VIE) <
vation value, up to any preci- X

sion p, given the strategy of Fig.3. Specific characteristics of an agent’s ex-
the opposite type agents and pected utility function V*(z%)

the number of simultaneous

interactions used can be suggested. This algorithm will later be used as part
of the mechanism for extracting the equilibrium reservation values.

Algorithm 1 An algorithm for calculating the optimal reservation value :U?V for
the buyer agents.



Input: p - precision level; N - number of simultaneous interactions used by the
buyers; x3; - seller agents’ reservation value.

01. 3 d;/:,],(vo) <0, return (0);
02. Set Typper and Tiower according to theorem 3;
03. Set d = (Tiower — Tupper)/2;

04 Set x = (l'lower + xupper)/Q;

05. Calculate V°(x) using Equation (2);

06. if | VP (x) — x |> p then set d=d/2;

07. else return(z);

08. if V®(x) > x then set z=1+d;

09. else set r=x-d;

10. goto 5;

The algorithm will always reach the agent’s optimal reservation value, up to any
precision p, in a finite number of steps. Step 01 gives an immediate result if
the optimal strategy is to accept any agent®. Based on theorem 3, the optimal
reservation value is bounded in the interval (Zupper;Ziower). Using theorem 1
we can determine if the optimal reservation value is bigger or smaller (steps 08-
09) and thus refine our bounding interval (steps 05-06). Notice that for all finite
distribution functions the algorithm uses a binary search over a bounded interval.
The complexity of the main calculation (step 05) in the loop is determined
by the distribution functions. Some functions (e.g. normal distribution) require
approximation, while others (exponential, uniform, etc.) only entail a simple
direct calculation. A similar algorithm can be suggested for the seller agent,
replacing the calculation in step 5 with the appropriate modification for Equation
(2).

Before completing this section we would like to emphasize that in a given sam-
ple there may be several seller agents suggesting utilities that might be greater
than the buyer agent’s reservation value. Thus buyer agents can improve their
expected utility by considering committing also to the next best seller agents in
the sample, upon receiving a rejection from the best seller agent in the sample.
In this case, we need to redefine the c.d.f and p.d.f of acceptance and rejection
for the buyer agents and the seller agents. Even though we are unable to present
our analysis for this specific case, due to lack of space, we do wish to emphasize
that the number of optimal simultaneous interactions, IV, in this scenario might
be different than in the regular model presented earlier. Nevertheless, this vari-
ant further improves both buyer and seller agents’ performances. It reduces the
overall search costs for the buyer agents, and for the seller agents it increases
the probability of being accepted by the buyer agents, even if these seller agents
are not associated with the highest utility in the buyer agents’ sample.

5 If the calculation is not immediate, it can be skipped and the algorithm will even-
tually return the correct reservation value for this case, 2% = 0.



4.2 Finding the Equilibrium Reservation Values

The equilibrium in our model can be described by a set (N, z%;, 2%;) where the
buyer agents cannot gain a better utility by changing N and\or 2% and the seller
agents cannot gain a better utility by changing x%;. Using the analysis given in
the former section, we can now combine the reactions of both types of agents to
changes in the other agents’ reservation value, towards equilibrium.

Notice that an important result from (7), is that an agent’s reservation value
decreases as a function of the reservation value used by the agents of the opposite
type, e.g. for any specific N we obtain that:

b s
dzy dzf;

. b . s

dws,” ik, <0 z;l,lgloo Ty = ;c}%lgloo xy =0 (8)
This behavior is illustrated in

Figure 4. From (8) we con- :cag::Jyting‘
clude that at least one equi- someone
librium exists (in the extreme

case, we obtain an equilib- = e :
rium where agents of a spe- H :
cific type or of both types ac-
cept any agent of the opposite
type). In some cases we can
be sure that there will be a
single equilibrium (for exam-
ple, for the uniform distribu-
tion function). However, the-
oretically, a general distribu-
tion function might produce
several equilibria with uncer-
tainty regarding the identity
of the one that will eventually be used. None of these equilibria dominate the
other for both agent types (buyer agents and seller agents). Also notice that
if there is more than one equilibrium, then the total number of equilibriums is
odd. The research of multiple non-dominating equilibriums in game and agents
theory is quite rich [6], and thus we leave this case for future research. Within
this context we would prefer to limit the rest of the paper to the scenario where
the agent faces a singular equilibrium.

An equilibrium reservation value, for any given NN, can be calculated by
setting one of the agent types’ reservation value to 0, and sequentially calculating
the optimal reservation value of the two agent types in turns (using either a direct
calculation, or algorithm 1), based on the last reservation value calculated in
former stage. An illustration of this process is given in Figure 4. Such calculation
sequences always converge as each agent increases and decreases its reservation
value (as a reaction to the changes in the other agent’s reservation value) in a
decreasing rate, in each subsequent stage of the process detailed.

Buyer's
reservation

Seller's value

reservation
value N\t Equilibrium

H reservation
value

Seller's reservation Value

P ) i Rarel
0 (acéept anyone) Buyer’s reservation Value accep{ing
someone

Fig. 4. Agents’ reaction curves



Notice that the agent can check the singularity of the equilibrium found,
simply by repeating the process while initializing the opposite agent type to
zero. If the same equilibrium is reached when starting from both directions,
then this is a singular equilibrium.

Figure 5 illustrates the changes in the b
strategies of agents of the two types, for
the specific environment detailed in Fig-
ure 1. From this figure we can clearly
see that the singular equilibrium point is
where buyer type agents use x4 = 65.6
and seller type agents use zj = 9.2. This
is in comparison to the (46.5,46.5) equilib-
rium reservation values, associated with
the traditional two sided search model
(for N = 1), obtained from the middle
curve in figure 1 by calculating V;(x) = z.
Recall that in Theorem 1 we obtained Fig.5. Equilibrium analysis (N=4)
Ve (24,) = 2% (and similarly for the seller
type agents), thus in the former scenario, the buyer type agents increase their
revenue at the account of seller type agents. This is always true since the buyer
agents become more selective, thus decreasing the probability for seller agents to
be accepted in a given encounter (which increases the number of search rounds
for seller agents, resulting in increased search costs for them).

Now that agents of both types are _
capable of calculating the equilibrium ™" Vi (xR) = (x})
strategies, given the number of simultane-
ous interactions, N, we move on to han-
dle the buyer agents problem of setting
the optimal value N*. Figure 6, illustrates
the equilibrium expected utility for buyer
agents, as a function of the sample size
N they set, for the sample environment
outlined earlier. In this case, the optimal
expected utility will be obtained when us- N
ing N=11. Thus using the simultanecous  * " . . 0 o 0 w0 e v 1

1 3 5 7 9 11 13 15 17 19
search method was beneficial for buyer
agents. Fig. 6. Extracting best N

N
o
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As suggested earlier, any buyer agent is interested in the sample size N*, that
will produce the best equilibrium utility for it. This task requires bounding the
range of possible values for N*. The following theorem suggests such an upper
bound (we can use N =1 as a lower bound for N*).

Theorem 4. The upper bound value for N* is the solution to the equation:
s b
N = max(LgU‘ L LU}‘%]_%).

Sketch of Proof: First, we will prove the following Lemmas 1-3.



Lemma 1. (1) dEUN >0 (2) dgzlzjv’v <0

Sketch of Proof: (1) Simply split every sample of size N+1 into two samples
of size N and 1. Taking the maximum of these two samples, the new random
variable maz (U, U®) will yield a better expected utility. (2) Formulating the
explicit expression E[U},,] — 2E[U} 1] + E[U}] and integrating by parts we
obtain an expression which is always negative, for any N > 1. O

[U]

Lemma 2. For any N satisfying N > , the seller’s utility decreases in N.

Sketch of Proof: Substituting N = N’ > % in the appropriate seller’s
modification for (1), and using integration by parts, we find that the derivative
of V#(x%) is negative for z% > 0. O

Lemma 3. For any N which holds:

N > maz(=§ ElU” ],M) the buyer agents’ utility decreases in N.

Sketch of Proof: From Lemma 2, we ascertain that in this case the seller agents
will accept any buyer agent, thus (1 — F*(x%)) = 1. Substituting N = N’ >

b
W in (1), and using integration by parts, we find that the derivative of

VO(2Y) is negative for 2% > 0. O

Coming back to the proof of Theorem 4, notice that for any N’ satisfying the
inequality of the theorem, all agents’ equilibrium strategy will be to accept any
agent of the other type, and their expected utility decrease in N’. Also notice that
since E[UY] is concave (according to Lemma (1)) and oy + BN is linear, there

E[UX]-ay E[UX]-a
3

is always a value N which satisfies N = and for every N > —5—

b
% must also hold. [J

N+1>

Once we have bounded the range of possible values for the optimal number of
simultaneous interactions to be used by the buyer agents, we can suggest a simple
algorithm for finding N*, given the environment characteristics (distribution
functions and search cost parameters).

Algorithm 2 - An algorithm for finding the optimal number of simultaneous
interactions, N*.

01. Set Nypper according to Lemma 3

02. For (N=1;N < Nypper;N++) calculate the utility associated with the equi-
libria Vb(x’jv) using Algorithm (1), and the appropriate convergence mechanism
that was described earlier in this section.

03. Return the N associated with the mazimal utility calculated in 2;

Notice Algorithm 2 is finite and will always yield N*, as it scans all integers
over a bounded interval. Nevertheless, the complexity highly depends on the
characteristics of the utilities distribution functions.

Before continuing to the conclusions section we would like to report that we
have also examined a model where all agents are capable of using the combined



simultaneous search. Though it is not used in current markets, we do see room
for such model in future C2C marketplaces, where seller agents will use more
proactive methods to approach buyer agents. In this case the equilibrium charac-
teristics are highly influenced by the structure of resources both agents types are
required to invest during search. Other than the additional complexity derived
from a process where agents of both types change both N and the reservation
value, simultaneously, this case also requires a mechanism for resolving deadlocks
that may occur in these many-to-many communication scenarios.

5 Discussion

In this paper we have presented a thorough analysis of the two-sided search model
when agents of a specific type make use of simultaneous search interactions
in order to improve their equilibrium revenue. The capability for using such
search technique is inherent in the infrastructure of autonomous information
agents. Furthermore, as demonstrated in section 4, there is a strong incentive
for the agent to use such technique in many different environment settings. We
emphasize that the agent’s utility will never decrease when using our proposed
mechanism. As the agent can control the number of simultaneous interactions
used in each search round, in the worst case scenario, the proposed calculations
will indicate that the optimal number of interactions is 1, thus the expected
utility will be identical to the case where the traditional pure sequential method
is used. In fact, the latter method is actually a specific case of our general model,
using a single interaction over each search round.

Obviously the optimal number of interactions to be used is highly correlated
with the ratio of the fixed and variable costs of the agents’ search. Increasing the
number of interactions suggests a complex tradeoff for each agent. On one hand,
it can reduce the average cost of evaluating another agent (as the fixed cost is
shared). On the other hand, the agent risks having spare interactions over the
last sample taken, since the partner eventually selected could have been reached
by sampling fewer agents if a single interaction method had been used. As the
fixed cost becomes more dominant in the overall cost structure, the agents will
find it more beneficial to use more simultaneous interactions. In the absence
of any fixed costs the agents will obviously use the traditional pure sequential
search method, and if the variable cost is negligible, the agents will strive to
interact with as many other agents as possible in each search round. The nature
of MAS applications suggests considerable costs which can be categorized as
fixed costs. The most trivial is the agent’s maintenance cost per time unit, when
operating in the environment. Other fixed costs include self advertisement, fixed
batch processes and possibly costs of reporting results to the user after each
search round. Thus the new method is highly applicable and beneficial for MAS
environments.

We show the special characteristics of the agents’ optimal strategies, and the
derived equilibrium. We also proffer efficient tools for calculating the optimal
number of simultaneous interactions in each search round.



Though we focus on implementing the new search method for agents of a
single type, the basic analysis and methodology can be widely used in exploring
the dynamics of future models which will also combine the use of proactive si-
multaneous search by agents of the other type. A first step towards this direction
can be found in [15]. We also see great importance in understanding the changes
in such models when the agents can negotiate over the division of the overall
utility.
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