
CRISP - An Interruption Management Algorithm
based on Collaborative Filtering∗

Tammar Shrot
Department of Software

Engineering
Shamoon College of

Engineering, Beer-Sheva,
Israel 84100

tammash@sce.ac.il

Avi Rosenfeld
Department of Industrial

Engineering
Jerusalem College of

Technology, Jerusalem, Israel
9116001

rosenfa@jct.ac.il

Jennifer Golbeck
Institute for Advanced

Computer Studies
University of Maryland,

College Park, USA 20742
golbeck@cs.umd.edu

Sarit Kraus
Department of Computer

Science
Bar-Ilan University,

Ramat-Gan, Israel 5290002
sarit@cs.biu.ac.il

ABSTRACT
Interruptions can have a significant impact on users working
to complete a task. When people are collaborating, either
with other users or with systems, coordinating interruptions is
an important factor in maintaining efficiency and preventing
information overload. Computer systems can observe user
behavior, model it, and use this to optimize the interruptions
to minimize disruption. However, current techniques often re-
quire long training periods that make them unsuitable for on-
line collaborative environments where new users frequently
participate.

In this paper, we present a novel synthesis between Collab-
orative Filtering methods and machine learning classification
algorithms to create a fast learning algorithm, CRISP. CRISP
exploits the similarities between users in order to apply data
from known users to new users, therefore requiring less in-
formation on each person. Results from user studies indicate
the algorithm significantly improves users’ performances in
completing the task and their perception of how long it took
to complete each task.

Author Keywords
Interruption Management (Cost Estimation), Collaborative
Filtering, Classification Algorithm

∗This work was supported in part by ERC grant #267523.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI’14, April 26–May 1, 2014, Toronto, Canada.
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2557109

ACM Classification Keywords
H.1.2 User/Machine Systems: Software psychology

INTRODUCTION
Real-time collaboration as part of the work process has be-
come increasingly common, through using chat tools while
editing, with collaborative-editing environments like Google
Docs, and with other platforms. However, users working
in a distributed way may lack the ability to perceive the
other’s work process; thus, social cues about when to inter-
rupt are lost. In domains like collaborative document editing
where users are communicating while editing, interruptions
for communication about the task are common [19]. For ex-
ample, two people may be working on a document together
and sending messages as they write. In person, one author
would not interrupt the other if she could see he was in the
middle of focused writing or editing. Online, though, she
can’t see this, so may send a message that pops up and dis-
rupts his workflow.

Similarly, system dialogues can be important for users to
complete tasks. However, a poorly timed message (for ex-
ample, one that pops up asking a user if they want to perform
a system update) can affect the user’s focus level which may
lead to averse effects on task performance and users’ frustra-
tion levels [1]. A system that can hold interruptions until less
disruptive points in a user’s workflow may improve the speed
and efficiency of the work.

Prior work has shown that interruptions can be extremely dis-
ruptive to users maintaining concentration on their tasks, and
indeed that completely eliminating interruptions may be the
best option [23]. User control over when interruptions hap-
pen and from what sources they are allowed is a trend that
can be seen in smartphones, for example, where users can
permit or deny apps the right to send notifications, often with

fine-grained control. However, while eliminating interrup-
tions may be ideal for allowing users to stay on task, when
working in an environment where interruptions are allowed
or are a natural part of the process (such as document co-
editing), an algorithmic approach to minimize disruption can
be helpful. Any solution requires estimating the cost of an
interruption for a user. Existing methods generally require
hours of observations to build a model for each person [1,
15]. For systems like Google Docs, where new users can eas-
ily be invited into the system, such a long training period can
be impractical.

Our contribution is a collaborative filtering-inspired in-
terruption management algorithm, designed to minimize
the negative effects of interruptions. By leveraging data from
other similar system users, a novel approach, the algorithm
is able to immediately begin effectively controlling interrup-
tions for a new user, offering a significant advantage over
existing techniques that require long training phases. We
demonstrate the positive effect this algorithm has on a user’s
speed for a collaborative editing task compared with inter-
ruptions that occur randomly or that are controlled by a rule-
based algorithm.

Our algorithm models people’s preferences for interruption
timing and uses those insights to control interruptions. Our
new approach, called CRISP (Collaborative Filtering and
Rule-based Interruption management via Similarity Profile),
leverages the underlying ideas of Collaborative Filtering al-
gorithms, an environment dependent rule-based algorithm,
and basic classification algorithms. The advantage of CRISP
over traditional learning methods is its significant reduction
in the learning time needed to model a given user. This al-
lows us to quickly decide about the efficiency of an interrup-
tion with only limited data and can avoid pitfalls such as pro-
tracted learning periods and elicitation of private user data. It
makes the algorithm ideal for systems that want this control
up and running for a user very quickly after they join.

This paper presents the details of our approach for model-
ing user preferences. We validate this with two user studies
while comparing it to random interruptions and a rule based
algorithm. We found that our algorithm allows users to work
faster and improves their perception of speed as well.

RELATED WORK AND BACKGROUND

Interruptions and User Performance
The importance of user attention and the impact of interrup-
tions has been studied from a variety of perspectives in the
HCI community. Adamczyk & Bailey [1] studied the impact
of interruptions on users’ emotional and cognitive states when
they were interrupted at different times in the course of their
task. They found that timing did have an impact and sug-
gested that an “attention manager” could be an effective tool
for minimizing the negative impact that interruptions have on
users.

Analyzing users themselves provides insight into when in-
terruptions are best handled. Salvucci & Bogunovich [22]
found that when subjects were interrupted during high cogni-
tive workload tasks, they deferred dealing with notifications

94% of the time. However, during low workload periods, they
deferred only 6% of the time. This illustrates that users do
have periods in which interruptions are easier to deal with.
Other work by Iqbal & Bailey [15] modeled users working
on a task and identified the “best” and “worst” times to in-
terrupt a user. Their results showed the interruptions at the
“best” time significantly improved the user experience.

Several previous works have student different aspects of the
interruption management problem. Arroyo & Selker [2] de-
veloped the Disruption Management Framework, a system
that takes into consideration the users’ motivation in how they
handle interruptions. The framework was developed to sup-
port interruption mediating in multitasking environments and
is constructed of 3 layers. The layers are built to take into
consideration tasks’ related information, users’ related infor-
mation and information related to the users’ current behav-
ioral pattern. Interruption was also addressed in McCrickard
et al. [18], which identified relevant metrics and evaluation
strategies for peripheral displays. In particular, they described
a classification model based on 3 elements of awareness: in-
terruption, reaction, and comprehension. Fogarty et al. [9]
developed a sensor-based statistical model of a person‘s in-
terruptability level. This model worked well, but required
hours of video recording which limited the scope of the study.
In our work we focused on developing an automated method
that needs less time to collect its data.

Applications of this idea have occurred in a number of do-
mains. Bowers et al. [4] found that in tasks where context re-
lated to the interruption, such as adding annotations to videos,
interrupting a video at the time its context related to the sys-
tem’s question was preferred. Fischer et al. [7] studied in-
terruption timing in mobile applications and found that when
interruptions occurred at natural breakpoints, they were less
disruptive than a random baseline. This emphasizes the im-
portance of detecting users’ patterns of interaction and timing
such that a system can automatically identify these opportune
times when they occur.

Our work builds on this research by creating a new sys-
tem that automatically models users’ preferences for inter-
ruption timing and uses that to control messages communi-
cated through the system. In addition, we used the break-
points identified by those researchers as baseline in order to
validate the contribution of our system.

Cost Estimation of Interruptions
One of the most important issues concerning the initiation
of interruptions is the ability to accurately estimate the cost
arising from the interruption. Accurate estimation will en-
able interruption only when it will have a positive impact on
the group’s performance [8]. Interruptions have two ways to
negatively affect users: a long term effect and a short term ef-
fect. Both the long and short term effects must be taken into
account when calculating the cost of the interruptions.

Previous research has investigated how to estimate the cost of
interruptions [13, 25]. Fleming & Cohen [8] were the first to
build a user-specific model which generally takes the user’s
specific factors into account. They used cost estimation to

create a decision making mechanism in order to decide when
to initiate communication. However, they assume that they
have statistical data about the users’ knowledge and utility
values. Our algorithm quickly builds a model with no indi-
vidual background information. Tan & Richardson [26] stud-
ied the cost of interruptions to facilitate delaying when an in-
terruption will occur. Our algorithm has similar features for
deciding when to interrupt. Bailey & Iqbal [3] studied inter-
ruption managing in text editing environment after long ob-
servation they developed identified breakpoints and subtasks
during workload, which considered good timing to interrupt
users.

The key difference between our research and previous works
is that we study cost-estimations that can work in dynamic do-
mains in which the environment’s conditions rapidly change,
actions occur quickly, and users’ abilities change over time.
In contrast, previous work required long and expensive train-
ing sessions to gather the necessary information for the algo-
rithm to function.

Collaborative Filtering
One of the ways our algorithm can quickly create a model for
timing interruptions is by relying on data from other users as
initial background. This approach borrows insights from Col-
laborative Filtering. Collaborative Filtering (CF) is a method
of making automatic predictions (filtering) about the prefer-
ences of a user by collecting data on the preferences of many
users (collaborating). There are many examples of recom-
mendation systems via Collaborative Filtering [12, 29].

Collaborate Filtering models can be built based on users or
items. User Based collaborative filtering systems find other
users that have displayed similar tastes to the active user and
recommend the items similar users have preferred [20]. That
is, if user u1 and user u2 shown similar taste then items that
u1 likes will be offered to u2 and vise verses. Users’ similar-
ity is calculated by comparing users’ history and identifying
similar ranks to the same items. Item-based models recom-
mend items that are most similar to the set of items the active
user has rated [17]. That is, if user u liked item i1, then items
found to be similar to i1 will be offered to u. The assump-
tion within CF models is that similar users will always make
similar decisions, thus de-emphasizing the role of individual
preferences.

Hybrid approaches are also common. Karypis [16] was the
first to recommend an approach that combines the best of the
Item-based and the User-based (classic Collaborate Filtering)
algorithms, by first identifying a reasonably large neighbor-
hood of similar users and then using this subset to derive the
Item Based recommendation model. Vozalis et al. [27] have
developed a hybrid method consisting of a number of steps.

Classification
We use two machine learning classification algorithms, the k-
nearest neighbor (k − NN) algorithm [6] and a rule-based
algorithm [5], to find people who behave most like the user,
and to identify situations that are reflections of what the user

might encounter. Rules are used to identify the natural break-
points (as described in [3] model). The k-nearest neigh-
bors (k − NN) algorithm [6] is a method for classifying
objects based on closest training examples in the given la-
beled database. k-nearest neighbors is a type of instance–
based learning, where the function is only approximated lo-
cally and the computation is done only at classification time.
This creates a dynamic, multi-model ad-hock clustering of
the subjects.

Many previous works combine several machine learning al-
gorithms in order to achieve better results than each algo-
rithm archives individually. Huang et al.’s [14] approach was
to combine algorithms that discover global structure in the
data with algorithms that discover local structures in the data.
We use a similar approach. However, while most hybrid ap-
proaches use different algorithms in each phase, they use the
same data in both phases. Our approach differs as we col-
lect different types of information - the user’s task informa-
tion and general domain information - and use different in-
formation in separate phases. Rzeszotarski & Kittur [21] had
a similar idea of using information gathered from past AMT
worker in order to generate a labeled corpus that will assist
in minimizing the time it takes the system to make a decision
about a new user. They used a corpus of past users’ behaviors
in order to quickly model and evaluate task fingerprinting.
They used past information gathered from AMT workers in
order to capture crowdsourced behavior and make inferences
about their task performance.

Our work builds on our past work by Shrot et al. [24]. How-
ever, while our work was checked online with real people
against other algorithms in real word conditions, Shrot et al.
only considered interruptions within a simplistic video game.
Furthermore, they only checked data offline and thus could
not decide if interruptions should be posed during task exe-
cution as this work does. In addition, Shrot et al. exclusively
considered CF-based algorithm and did not consider incorpo-
rating previous interruption management research such as the
models this work considered ([3]).

CRISP – A SYNTHESIS BETWEEN CF AND CLASSIFICA-
TION
Our proposed algorithm, CRISP, (Figure 1) is motivated by
the Collaborative Filtering hybrid approach. CRISP has three
phases: a “rule based” algorithm phase (Line 2), a “user”
phase (Lines 3-4 in the algorithm), and an “item” phase
(Lines 5-7 in the algorithm). The first phase uses rules to
identify natural breakpoints that are relatively unintrusive in-
terruption points. The second phase uses user-specific data to
identify similar users in the database and to construct an en-
vironment of similar users. The third phase of the algorithm
decides if it is a good or bad time to interrupt. This leverages
data from “similar” users that were discovered in the second
phase.

The algorithm’s structure is inspired by elements of Collab-
orative Filtering. Similar to Collaborative Filtering meth-
ods, classification tools are used to identify the user’s neigh-
borhood (similar users) for making recommendations about

1. Accept a new non labeled situation s = (ip, h).

2. If ip is following the rule based algorithm RULES Label
the situation based on RULES, else:

3. Use h to create a user profile p for s.

4. Use the profile p and the database db to build a neighbor-
hood NGB of l situations that were found to be similar
(through user’s similarity) to s.

5. IP = ∅

6. ∀s′ = (ip′, h′) s.t. h′ ∈ NGB IP = IP
⋃
{ip′}

7. Build a classification model CM between ip and IP using
a classification algorithm.

8. Label the new situation s according to the classification
decision of CM .

Figure 1. CRISP. An algorithm for deciding whether it is a good or bad
timing to interrupt the user right now. s = state; ip = interruption profile;
h = user’s history

future interruption times. However, Collaborative Filtering
methods cannot feasibly be implemented in interruption man-
agement domains because the interruption managing system
in this mixed agent–user environment does not have access to
users’ characteristics data nor does it have access to a specific
user’s votes on his past interruption. Consequently, differ-
ent methods must be found to model new users’ and items’
similarities. CRISP (Figure 1) contains information from old
and different situations that were already examined. In these
situations the outcome of the interruption is already known.
Therefore, it is possible to label these interruptions as either
good or bad interruption timing. Since our data can be la-
beled, our solution is to use traditional machine learning clas-
sification algorithms. The classification algorithms are used
to quickly compare the users (in the second phase) and items
(in the third phase) without resorting to a shared database of
all users’ characteristics or voting history.

The basic element of information used is the user’s state (us).
A user’s state is a vector that contains numerical or other
discrete values for different attributes about the user’s work
progress and user’s state. These attributes include informa-
tion such as percentage of the task accomplished and time left
to complete the task. All values in the vectors’ attributes are
normalized to the same scale and all vectors in a given domain
will have the same attributes. A time element is an element
t ∈ {0...Tmax} that represents the time that has passed since
the beginning of the task (t was in milliseconds in our exper-
iments). A timed state (ts) is a pair (t, us) that represents the
user’s state at time t.

As mentioned earlier, we use two types of data – user-specific
data and state-specific data. The user-specific data is the
user’s latest history data (h). User history h is a collection
of k timed states gathered within a short period of time de-
fined as Tsamp. The length of these states was between 3 and
6 seconds gathered in 30 to 60 second intervals in our exper-
iments. These intervals were chosen based on previous work
([3]) as observed subtask lengths.

The second data type - the state specific data - is the interrup-
tion profile (ip). ip is a timed state that represents the user’s
state immediately prior to the time of the interruption. It is
also important to note that h and ip usually refer to differ-
ent attributes in the vectors. I.e. h will mostly be calculated
using attributes that represent the user’s behavioral pattern,
while ip will mostly be calculated based on local and tempo-
ral attributes that represent the current situation.

A situation (s) is a pair of user’s latest history h and the
interruption profile ip that immediately follows it. That is,
s = (h, ip) s.t. ip = (t∗, u∗s) and
∀(t′, u′s) ∈ h (t∗ − Tsamp) ≤ t′ < t∗. Therefore, a situation
is constructed from two distinct data types, both user spe-
cific and state specific data, giving us a wider point of view
about the interruption’s influence. A labeled situation is a pair
(s, label) that matches a situation with the label of whether it
is a “good” situation for interruption or not, namely, whether
the group’s gain from this interruption is higher than the cost
of the interruption.

CRISP’s (Figure 1) input is a small database of labeled situ-
ations (db) and a non-labeled situation s, for which we wish
to discover whether it is a “good timing” or not. In the first
phase the algorithm checks the given situation based on its
initial rule based algorithm. If the situation is matching one
of the given rules it will label it according to the appropri-
ate rule in the algorithm. In the Experimental Setup section
we detail exactly what rules were implemented. If none of the
rules apply, it will continue to the next phase of the algorithm.

In the second phase (“user” phase) the algorithm builds a
user’s similarity model between the new given situation (s)
and the given labeled situations in the database (db) (Lines 3–
4 in the algorithm). This phase uses only the historical data
(h). The user similarity model is built according to the simi-
larity between the “user’s latest history” data in the situations.

Specifically, h is a set of k vectors that represents the user’s
behavior in the short period (Tsamp) sampled before the in-
terruption (30 to 60 seconds in our experiments). For each
situation, the algorithm calculates how each attribute’s value
changed (on average) between the sampling in h (Line 3
in the algorithm). The user’s profile is the vector of aver-
ages changes. Then, similarity between two user situations is
measured as the distance between the two calculated profiles
(Line 4 in the algorithm).

The assumption behind this approach is that users with sim-
ilar profiles (same average change in values) undergo the
same process and therefore most probably act in similar ways.
This model represents the user’s similarity level between the
new situation (s) and the given labeled situations. Once the
user’s similarity model is completed, the algorithm uses the
k-nearest neighbor (k − NN) algorithm [6] to choose the
l most similar situations as the new situation neighborhood.
This neighborhood is used in the algorithm’s next stage. For
the experiments l was selected as a percentage of the entire
database length (10%) and in our experiments this was 60 of
the 600 users in the database.

The next stage of the algorithm (Lines 5 to 8 in the algorithm)
uses only interruption profile (ip). Once the user’s profile and
neighborhood are constructed, the algorithm builds an inter-
ruption profiles similarity model between the situations that
belong in the neighborhood. A machine learning classifica-
tion algorithm runs over the neighborhood’s situations and
returns the calculated classification.

The net result is that once a new situation arrives, the algo-
rithm needs only a very short time to gather enough data in
order to decide how to treat it. This allows for a faster and
more accurate classification than the base machine learning
algorithms alone could provide.

EXPERIMENTAL DESIGN
Our experiments were designed to see if interruptions, as con-
trolled by CRISP, offered users benefits over other interrup-
tion timing in terms of speed, efficiency, and user perception
of task difficulty. We were inspired by Bailey & Iqbal [3] to
studied this problem in the context of a text editing task. Our
context was a text editing task where pop-up messages inter-
rupted users with information they had to note down. These
simulated interruptions from a collaborator might occur when
working together on a document. The experiment was run on
Amazon Mechanical Turk (AMT) and our AMT usage paral-
lels previous work [21].

Tasks
The user’s task was to locate and correct all spelling and
grammatical errors within the text. For every mistake fixed,
the subject earned a bonus (given in order to motivate our
subjects). The assignment had a time limit (10 minutes) and
the participant was instructed to fix as many mistakes possible
before the end of the assignment. To simplify the logging pro-
cess we disabled the subjects’ ability to change the position
within the text document by using the mouse. This forced the
subjects to only use the keyboard, something that was easier
to log. The experimental environment is shown in (Figure 2)
with a message over the text being edited.

Interruptions
User interruptions have been previously categorized as being
either external or internal with external interruptions being
initiated by other people [10]. While this work noted that both
types of interruptions occur with nearly equal frequencies, we
focus on external interruptions as the system potentially has
more control over these events, as opposed to internal inter-
ruptions which people initiate for themselves.

Users were interrupted as they were editing the document.
There are two types of interruptions: (1) Unexpected inter-
ruptions and (2) Interruptions caused by communication (e.g.
messages sent by the system or other users). Both of these in-
terruptions can be classified as immediate interruptions as per
McFarlance’s taxonomy [19]. The first type of interruptions
represent an unexpected and uncontrolled event that interferes
with the user’s regular course of action. These are interrup-
tions that we cannot control and they have nothing to do with
the user’s task or the agent. They are usually rare and reflect a
highly disturbing phenomenon. We simulated those interrup-
tions by random events that erase the user’s document. These

Figure 2. The experimental text-editing interface. This screen capture
shows a communication interruption in the form of a pop-up window.

occur rarely (no more than 2 events per document, usually
only 1). In order to avoid disruption from these events, sub-
jects were instructed to save frequently and load the last saved
document after it was erased. Note that our algorithm does
not try to control these interruptions, because they essentially
represent system errors or accidental use of the system (hit-
ting a series of keystrokes that have a bad effect). We have
included them in the study since they represent events that af-
fect user behavior. The second type of interruptions are those
caused by communication. We simulated a situation where
two users were collaboratively editing a document. The sub-
ject was correcting typos and the other user, whom we sim-
ulated, sent requests for the subject to update the format of
references in the document.

In the experiments, the agent that represented the other user
made 10 interruptions as the subject edited the document. The
interruptions appear in a popup window (Figure 2). Once the
window opens, the focus moves to it and the user may not edit
or move in the document. The users are instructed to make a
note of the change on paper for later editing. After noting the
change, the subject clicks “OK” and returns to editing.

Experimental Protocol
The experiment contains 3 documents.
Example A short, 2 paragraph (about 1000 chars) document
with 3 mistakes.
Document A A long (about 4500 chars) document with 50
mistakes.
Document B A different long (about 4500 chars) document
with 50 mistakes.

In order to check the efficacy of CRISP we compared the tim-
ing of its interruptions with either a random interruption al-
gorithm (first experiment) or a rule based - breakpoints iden-
tified algorithm (second experiment). All the algorithms have
to time their interruptions while following the same basic pat-
tern:

• No communication interruption takes place in the first 30s
(seconds) of the task. This time is used to gather informa-
tion regarding the user behavior (h).
• The first communication interruption is scheduled some-

where between the second 30s of the task either randomly,
according to breakpoint identification, or using CRISP).
• Once the first communication interruption is finished, a

new 30s information gathering phase (h) begins, followed
by an interruption in the following 30s interval.
• This cycle repeats until the 10 minute time limit is reached.

The length of this pattern was chosen based on [3] observa-
tion regarding subtask length.

The protocol for each subject was as follows:

1. Learning stage: Running the “Example” document with
random interruption.

2. Document Editing: Running “Document A” document with
either CRISP-timed communication interruption or compar-
ison (random or rule-based) interruptions.

3. Answering a questionnaire.
4. Document Editing: Running “Document B” document

with either CRISP-timed communication interruption or
comparison (random or rule-based) interruptions.

5. Answering a questionnaire.

All subjects completed the example document editing (step
1) first, as a training and task learning session. The order
in which they completed scenarios 2 and 4 varied. 50% of
the users edited Document A before editing Document B,
and 50% did it the other way around. In addition, order of
the interruption algorithms was randomized. This was done
to negate any effects from the order of the documents or the
combination of document and algorithm.

In all but the first scenario (the learning stage), once the users
finished a task, they were asked to complete a questionnaire.
The first question was a request to quote one of the citation
changes provided by the system in one of the interrupting
pop-ups. This was a filtering question meant to discover the
users that did not follow the task instructions. In our exper-
iments we found one such user that ignored the task of co-
operating with the agent. This user was removed from our
analysis. After answering that question, users complete the
NASA-TLX (Task Load Index) assessment [11]. This sur-
vey is used to measure a subjects’ perception of the mental,
physical, and temporal demands of a task in addition to their
perceptions of their own performance, effort, and frustration.
We compared the speed with which users edited and read the
document and their NASA-TLX scores among conditions to
see how helpful each was.

Subjects
In the first experiment, 30 people participated. All were US
citizens. Eighteen were female (60%) and 12 were male. The
average age was 32.1 with a standard deviation of 9.5. The
education level varied: 9 subjects’ degree was a high school
diploma, 17 had either a BA or BSc degree, and 4 had a post-
graduate degree.

In the second experiment we had 18 people, all US citizens.
Nine were female (50%), and 9 were male. The average age

was 32.5 with standard deviation of 12. The education level
varied here as well: 7 subjects’ degree was a high school
diploma, 9 had either a BA or BSc degree, 1 had a MSc de-
gree and 1 had a post-graduate degree.

EXPERIMENTAL SETUP
This section describes how CRISP’s Rule based, User and
Item stages were implemented in a text editing environment.
The rule component of CRISP has only one rule - if the user
just re-loaded her document from a saved version, it is a good
time to initiate a communication. This rule is based on the
fact that loading the document moves the user to the begin-
ning of the documents, which means she has already lost fo-
cus, and disturbing her right now will not cause a massive
interruption.

The user stage of the algorithm is based on the behavioral
information collected about the user. In the text editing envi-
ronment the attributes that were taken for the us profile were
as follows. All times are in milliseconds.

Last action This attribute is for the rule–based part. It saves
the last meaningful action taken by the user.

Profile length The length of time this data was gathered in.
The values range: 30K to 60K. Used for normalization.

Key number The number of times the user pressed any key
during the gathering of information (during h).

Alpha number The number of times the user pressed any
alphabetic key.

Mouse move number The number of times the user moved
the mouse in this h.

Average time Mouse Move The average length of a single
mouse move as record in this h.

Location distance The percentage of the document that was
scanned during this h, measured by the change in docu-
ment position from the start of h to its end.

Max location distance The maximum movement (in %) the
user did in this document during h.

Moving indication An indicator that compares the user’s
past moving behavior (beginning of h) to her current mov-
ing behavior (end of h) to see if she is accelerating, slowing
down or maintaining the same rhythm of work.

Fix distance Same as Location distance, but tracking the
percentage of mistakes fixed.

Max fix distance Same as Max location distance, but track-
ing the percentage of mistakes fixed.

Fixing indication Same as Moving indication, but tracking
the percentage of mistakes fixed.

Save number The number of times the user saved the docu-
ment during h.

Load number The number of times the user loaded the doc-
ument during h.

Interruption number The number of document erasing in-
terruptions in h.

Average length of interruption The average time it took the
user to copy the citation on page and close the pop-up win-
dow in all the communication interruption she experienced
so far in this document.

Average return from interruption The average time it took
the user to return and do some action in the document after
she closed the pop-up window.

Average real return from interruption The time it took the
user to do a meaningful action (move in the document, edit,
save, etc. in contrast to just moving the mouse) after clos-
ing the pop-up window.

The item stage of the algorithm uses current state parame-
ters in order to try and find the most similar states in the user
database and learn what decision to make based on the clas-
sification model built from them. In the text editing environ-
ment the attributes that were taken for the us profile to be
used in this stage were as follows.

Time The time that passed from the beginning of the task in
milliseconds.

Location in document The current location of the user in
the document (%).

Correction of document The current number of mistakes
that have been corrected in the document (%).

Time from last key The time that passed from the last time
the user pressed a key on the keyboard.

Time from last alpha Same as “Time from last key” only
for alpha keys.

Time from last fix The time that passed from the last time
the user fixed a mistake in the document.

Time from last save The time that passed from the last time
the user saved the document.

Time from last load The time that passed from the last time
the user loaded the document.

Time from last interruption The time that passed from the
last interruption.

Total number of mouse move The total number of mouse
moves the user has made so far.

Time from last mouse move The time that passed from the
last time the user moved the mouse.

The agent collect all of these attributes (from both stages) of
the user’s state every second. This information is necessary
to construct the user’s state (us) either for user’s history (h)
(first stage) or interruption profile (ip) (second stage).

Algorithm Example
If Dan is editing a document and there is a message for him,
the system wants to choose the optimal time to interrupt him.
The algorithm first checks if Dan just completed a task, some-
thing that would signify a breakpoint [3]. If yes, it is a good
time to interrupt. If not, CRISP searches for the k most similar
usersin the database (in this example we will choose k = 2).
In order to find similar users we must first calculate Dan’s
current behavioral profile. For example we will focus on 3 at-
tributes that CRISP uses: Key number (normalized to 30 sec-
onds), Fix distance, Save number. Let’s assume Dan typed
an average of 20.4 keystrokes per minute (yielding a value
of 10.2 keystrokes normalized to a 30 second interval), fixed
4 percent of the mistakes and saved twice during his current
session. Our database is constructed of 3 users: Alice, Bob
and Chuck, and they have their own values for those parame-
ters. Let’s assume their values are as shown in table 1.

By comparing the distance between the vectors it is clear that
Alice and Bob are much more similar to Dan than Chuck.
Chuck is a much more active user. Therefore, since we want

Table 1. Data for example users
Key number Fix distance Save number

Alice 8.5 2 1
Bob 11.4 6 2
Chuck 36.1 8 2

the k = 2 most similar users, we choose Alice and Bob as the
users that constitute Dan’s neighborhood.

Next, we search Alice and Bob’s data for situations most sim-
ilar to the one Dan is currently in. Similar situations are de-
fined as being around the same location within the document
that Dan is currently editing (Location in the Document), with
a similar number of mistakes fixed (Correction in the docu-
ment) and done at a similar work rate (time from last key, time
from last alpha, or time from last fix). These values are com-
bined as a weighed sum as described previously. We search
for the situation within the cluster with the highest similarity
to Dan’s current situation. CRISP then checks if this situation
was a good or bad interruption, and decides if it will interrupt
Dan or not accordingly. If it was a good time, the algorithm
will interrupt. If it was a bad time, it will not.

Bootstrapping the Experiment
We bootstrapped CRISP with a small initial database, that con-
tains a set of pre-labeled situations. In order to create that ini-
tial database we ran an offline data collection phase. In this
offline data collection phase we had 20 subjects. All were US
Citizens. Thirteen were female (65%) and 7 were male. The
average age was 33.5 with a standard deviation of 13.3. The
education level varied: 12 subjects’ highest degree was a high
school diploma, 6 had either a BA or BSc degree, and 2 had
a post-graduate degree. As previously stated, Amazon’s Me-
chanical Turk was used to select participants. In our experi-
ment we only allow USA citizens (that were also born in the
USA) in order to disable noise due to English not being the
subjects’ main language. Each subject open the experiment
on her machine and the size of the window was not fixed.
Yet, we limit the maximal number of characters a subject can
see in any given moment.

Interruptions were generated randomly each 30 ∼ 60 sec-
onds, and the data was gathered. Each subject performed
the entire experimental protocol as described above, but both
scenario 2 and scenario 4 had random interruptions. The sub-
ject’s state and status were sampled every 10 seconds and also
before and after each interruption.

At the end of the research protocol each communication in-
terruption was labeled as either “good” or “bad” according to
the effects it had on the users’ final outcomes at the end of the
experiment (the state of the user at the end of the documents,
including errors caught and how far they have made it through
the document), their emotional state (measured by the NASA-
TLX survey), and according to the magnitude of interruption
and frustration it caused the user. Unlike Shrot et al. [24], the
labeling process was not automatic, since this approach is too
simplified and cannot work in a complex domain such as text
editing. Instead, the communication was labeled manually
according to the effect it had on the user’s performance and

emotional state (based on Bailey & Iqbal [3]’s model). The la-
bels were determined based on an analysis of the differences
in the information gathered before and after the interruptions
(i.e. the difference in typing speed as could be observed by
the “Key number” attribute mentioned in Experimental Setup
section) as well as the differences between how well the sub-
ject completed the task and the score she gave that task in the
NASA-TLX survey. The data resulting from this offline data
collection phase was used to bootstrap the live experiments.

RESULTS
First Experiment: CRISP vs. Random
The results of our experiment showed significant improve-
ments in actual performance and user perception of perfor-
mance with the CRISP algorithm over random interruptions.

Fixing Errors

Figure 3. The percentage of the mistakes fixed and document scanned as
a function of the different algorithms (CRISP vs Random).
The best and most obvious indicator of success is how much
of the task was completed. We measure this by how many
of document’s mistakes were fixed. Users performed signifi-
cantly better with CRISP (see Figure 3). They fixed an average
of 50.2% of the errors when interruptions were made using
CRISP compared with only 38.0% of errors with the random
interruptions. These results are statistically significant (two-
tailed paired-t-test, p < 0.01).

Scanning the Document
A second indicator of success is that with CRISP the users
were able to scan significantly more of the document be-
fore the 10-minute deadline (two-tail paired-t-test, p < 0.01).
Since users were only using the keyboard and could not scroll
with the mouse, we could measure the percentage of the doc-
ument scanned by tracking the location of the cursor. We
measured how far into the document each user went. With
CRISP, users covered 88.7% of the document, compared with
only 72.2% with the randomized interruptions. Results are
shown in Figure 3.

User Perception Results
An interesting results is that, unlike in the performance in-
dicators that are significantly better using CRISP, most of
the NASA-TLX indicators show no significant difference be-
tween the random timing algorithm and CRISP.

The only exception was the Temporal indicator, where the
users were asked “How hurried or rushed was the pace of

Figure 4. The Temporal value (0 to 20 scale) given in the survey as a
function of the different algorithms (CRISP vs Random).

the task?”. In this indicator, as seen in Figure 4, using CRISP,
users felt less rushed during the task. On a 20 point scale,
they rated the time pressure with CRISP at a 14.6, but gave
a significantly higher difficulty score of 16.3 to the task with
random interruptions (two-tailed paired-T-test, p < 0.01).

Second Experiment: CRISP vs. Rule-Based Breakpoints
In this experiment we wanted to compare our algorithm to
some of the state of the art work done in this field. One
common and high-performing technique is to identify natural
“breakpoints” in the user’s workflow. Points at which user’s
attention has broken from the current task are good times for
interruption since there is minimal disruption that will occur.
Many researchers have done work on creating rules for iden-
tifying breakpoints and they have demonstrated their effec-
tiveness ([1, 3, 7, 15, 22]).

Figure 5. The percentage of mistakes fixed and document scanned as a
function of the different algorithms (CRISP vs Rule–Based).

In this second experiment we ran the same protocol as before,
only this time instead of comparing CRISP to randomly timed
interruptions, we compared it to a rule–based algorithm that
timed its interruptions to known breakpoints in the workflow.
We used the breakpoints that were identified in prior work
([3]): finishing a sub-task, saving one’s work, and extreme
attention shifts. Within our task finishing a sub-task was fix-
ing a textual mistake, saving one’s work was identical to their
work, and extreme attention shifts were represented by delete
interruptions and when the user loaded the document.

As can be seen in Figures 5 and 6, the results are similar to
those of the first experiment. Users performed much better

(scanned more and fixed more) with CRISP, and they felt less
rushed during the task (two-tailed paired-T-test, p < 0.01 for
all results). There were no significant differences for almost
all of the other NASA-TLX indicators.

Figure 6. The Temporal value (0 to 20 scale) given in the survey as a
function of the different algorithms (CRISP vs Rule–Based).

Yet, there is one interesting exception: the “Performance”
indicator. In this experiment we found a significant differ-
ence between CRISP and the rule–based algorithm. Users
ranked the rule–based algorithm significantly higher (one-
tailed paired-T-test, p < 0.05), indicating a belief that they
preformed better with the rule–based algorithm than with
CRISP. In reality (as can be seen in Figure 5) the reverse
is true. Despite this slight difference in users’ perception,
we demonstrated in this section that CRISP helped users per-
form significantly better in their text correction task com-
pared to two different sets of users using the Random and a
Rule-Based algorithm (Figures 3 and 5), and the CRISP users
performed significantly better in the temporal category in the
NASA-TLX temporal category.

There are several limitations to our study. First in order to
simplify the calculation we limit the editing environment in
two ways: (1) We disabled the ability to move in the docu-
ment using the mouse. (2) We asked the users to write down
the changes rather than applying them. As these changes are
unnatural and not evident in actual text editing tasks, the re-
sults of this study may be limited. An additional limitation is
that the system only supported two participants: The user and
the interruption management system. In many real-word sys-
tems, such as Google Docs, the environment will often con-
tain more participants. Nonetheless, we posit that different
users can be models through CRISP. Last, the experiments
were conducted using AMT, which may or may not accu-
rately model users in all settings. We hope to further study
these potential limitations in the future.
DISCUSSION AND FUTURE WORK
This paper introduces a novel approach to limit the disruptive
impact that interruptions have on users when they are working
in a system. We introduced an algorithm, CRISP, that mod-
els user behavior and uses this to control the timing of mes-
sages sent by the system or other users. In our experiments,
we found that when compared to randomly timed interrup-
tions and those controlled by a standard rule-based approach,
CRISP-controlled interruptions allowed users to work more
quickly. Users also reported feeling less time pressure with

CRISP. This indicates that interruption control techniques
build from user actions can improve a user’s workflow when
interruptions might arise.

As this paper demonstrates, CRISP excels in modeling user
behavior with only limited data through identifying how sim-
ilar users react to interruptions using collaborative filtering
(CF) models. While CF models do generally compare similar
users based on their individual differences, assuming much
more information exists about a given user, the general com-
parisons between users made by CF models could potentially
be further differentiated– something that could significantly
aid in predicting how different users react to interruptions
[28]. In order to address such individual differences directly
and differently from a CF approach, cognitive models of users
must be created through either extensively learning users in a
given task, or through observing external user traits such as
working memory capacity [28]. Creating hybrid approaches
combining CF approaches with individual cognitive models is
an interesting challenge that we leave for future work.

Our algorithm, CRISP, has been presented and tested in the
context of document editing, but the general technique could
be applied in other contexts. As long as data from other
users’ interactions is available, our collaborative-filtering in-
spired approach can be effective. This makes CRISP particu-
larly applicable in collaborative online applications. Applica-
tions that could benefit from this technique are common and
growing in popularity. Collaborative editing in systems like
Google Docs or real-time collaborative code editing are ex-
amples of places that users can interrupt and unintentionally
disrupt one another’s work flow. A system control to hold
messages until a less disruptive time (mediating communi-
cation) could make these experiences smoother. Similarly,
system messages can interrupt users as well. These may be
notifications of updates or other system messages in online
editing environments, but even the common pop-up messages
requesting subscriptions or offering help on websites could
be better controlled. Users may be more likely to quickly
dismiss these windows if they interrupt their workflow, but
they may be more likely to read them if they come at a less
disruptive point in a user’s interaction with a site.

Our contribution described here is this new approach to in-
terruption management that uses a collaborative filtering-
inspired algorithm which we have demonstrated is effective
in exemplar environments. Our goal was not to show this
is the best possible interruption management algorithm, but
rather to demonstrate that it works well. The benefit of a
quick startup time compared to other algorithms makes the
technique an important addition to the domain of interrup-
tion management algorithms. For future work, the techniques
we presented may be combined or integrated with other algo-
rithms with a goal of achieving top performance. In addition,
it will be interesting to investigate other domains and prob-
lems. For example, tasks with higher cognitive demand than
the one used here may show greater impact from interruption.

REFERENCES

1. Adamczyk, P. D., and Bailey, B. P. If not now, when?:
the effects of interruption at different moments within
task execution. In CHI (2004), 271–278.

2. Arroyo, E., and Selker, T. Attention and intention goals
can mediate disruption in human-computer interaction.
In Human-Computer Interaction–INTERACT. 2011,
454–470.

3. Bailey, B. P., and Iqbal, S. T. Understanding changes in
mental workload during execution of goal-directed tasks
and its application for interruption management. TOCHI
14, 4 (2008), 21.

4. Bowers, C. P., Byrne, W., Cowan, B. R., Creed, C.,
Hendley, R. J., and Beale, R. Choosing your moment:
interruptions in multimedia annotation. In
Human-Computer Interaction. 2011, 438–453.

5. Clancey, W. J. The epistemology of a rule-based expert
system - a framework for explanation. Artificial
Intelligence 20, 3 (1983), 215–251.

6. Dasarathy, B. Nearest neighbor (NN) norms: nn pattern
classification techniques. IEEE Computer Society Press
tutorial. 1991.

7. Fischer, J. E., Greenhalgh, C., and Benford, S.
Investigating episodes of mobile phone activity as
indicators of opportune moments to deliver notifications.
In MobileHCI (2011), 181–190.

8. Fleming, M., and Cohen, R. A user modeling approach
to determining system initiative in mixed-initiative ai
systems. In User Modeling. 2001, 54–63.

9. Fogarty, J., Hudson, S. E., Atkeson, C. G., Avrahami,
D., Forlizzi, J., Kiesler, S., Lee, J. C., and Yang, J.
Predicting human interruptibility with sensors. TOCHI
12, 1 (2005), 119–146.

10. González, V. M., and Mark, G. Constant, constant,
multi-tasking craziness: managing multiple working
spheres. In CHI (2004), 113–120.

11. Hart, S. G., and Staveland, L. E. Development of
nasa-tlx (task load index): Results of empirical and
theoretical research. Human mental workload 1, 3
(1988), 139–183.

12. Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl,
J. An algorithmic framework for performing
collaborative filtering. In SIGIR (1999), 230–237.

13. Horvitz, E., and Apacible, J. Learning and reasoning
about interruption. In Proceedings of the 5th
international conference on Multimodal interfaces
(2003), 20–27.

14. Huang, K., Yang, H., King, I., and Lyu, M. R. Machine
learning: modeling data locally and globally. IEEE
Transactions on Neural Networks 19, 2 (2008),
260–272.

15. Iqbal, S. T., and Bailey, B. P. Investigating the
effectiveness of mental workload as a predictor of
opportune moments for interruption. In CHI (2005),
1489–1492.

16. Karypis, G. Evaluation of item-based top-n
recommendation algorithms. In Proceedings of the tenth
international conference on Information and knowledge
management (2001), 247–254.

17. Linden, G., Smith, B., and York, J. Amazon.com
recommendations: Item-to-item collaborative filtering.
Internet Computing, IEEE 7, 1 (2003), 76–80.

18. McCrickard, D. S., Chewar, C. M., Somervell, J. P., and
Ndiwalana, A. A model for notification systems
evaluationassessing user goals for multitasking activity.
TOCHI 10, 4 (2003), 312–338.

19. McFarlane, D. Comparison of four primary methods for
coordinating the interruption of people in
human-computer interaction. Human-Computer
Interaction 17, 1 (2002), 63–139.

20. Middleton, S. E., Shadbolt, N. R., and De Roure, D. C.
Ontological user profiling in recommender systems.
ACM Transactions on Information Systems (TOIS) 22, 1
(2004), 54–88.

21. Rzeszotarski, J. M., and Kittur, A. Instrumenting the
crowd: using implicit behavioral measures to predict
task performance. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology (2011), 13–22.

22. Salvucci, D. D., and Bogunovich, P. Multitasking and
monotasking: The effects of mental workload on
deferred task interruptions. In CHI (2010), 85–88.

23. Shneiderman, B., and Bederson, B. B. Maintaining
concentration to achieve task completion. In
Proceedings of the 2005 conference on Designing for
User eXperience (2005), 9.

24. Shrot, T., Rosenfeld, A., and Kraus, S. Leveraging users
for efficient interruption management in agent-user
systems. In IAT, vol. 2 (2009), 123–130.

25. Tambe, M. Electric elves: What went wrong and why. AI
Magazine 29, 2 (2008), 23.

26. Tan, M. K. S., and Richardson, A. Please do not disturb:
Managing interruptions and task complexity. In PACIS
(2011).

27. Vozalis, M., and Margaritis, K. G. On the combination
of collaborative and item-based filtering. In 3rd Hellenic
Conference on Artificial Intelligence (SETN) (2004).

28. Werner, N. E., Cades, D. M., Boehm-Davis, D. A.,
Chang, J., Khan, H., and Thi, G. What makes us resilient
to interruptions? understanding the role of individual
differences in resumption. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting,
vol. 55 (2011), 296–300.

29. Xu, J., Zhang, L.-J., Lu, H., and Li, Y. The development
and prospect of personalized tv program
recommendation systems. In Proceedings Fourth
International Symposium on Multimedia Software
Engineering (2002), 82–89.

