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ABSTRACT
In this paper we consider a common form of the English auction
that is widely used in online Internet auctions. Thisdiscrete bid
auction requires that the bidders may only submit bids which meet
some predetermined discrete bid levels and, thus, there exists a
minimal increment with which a bidder may raise the current price.
In contrast, the academic literature of optimal auction design deals
almost solely withcontinuous bid auctions, and, as a result, there
is little practical guidance as to how an auctioneer, who is seeking
to maximise his revenue, should determine the number and value
of these discrete bid levels. Consequently, in current online auc-
tions, a fixed bid increment is commonly implemented, despite this
having been shown to be optimal in only limited cases.

Given this background, in this paper, our aim is to provide the
optimal auction design for an English auction with discrete bid
levels. To this end, we derive an expression that relates the ex-
pected revenue of the auction, to the actual discrete bid levels im-
plemented, the number of bidders participating, and the distribution
from which the bidders draw their private independent valuations.
We use this expression to derive numerical and analytical solutions
for the optimal bid levels in the general case. To compare these re-
sults with previous work, we apply these solutions to an example,
where bidders’ valuations are drawn from a uniform distribution.
In this case, we prove that when there are more than two bidders, a
decreasing bid increment is optimal and we show that the optimal
reserve price of the auction increases as the number of bidders in-
creases. Finally, we compare the properties of an auction in which
optimal bid levels are used, to the standard auction approach which
implements a fixed bid increment. In so doing, we show that the
optimal bid levels result in improvements in the revenue, duration
and allocative efficiency of the auction.
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1. INTRODUCTION
Online Internet auctions continue to attract many customers and
currently sell goods worth over $30 billion annually. Now, at this
time, over 80% of these online auctions implement a single proto-
col; the open ascending price or English auction [5]. Under this
protocol, the auctioneer announces that an item is for sale, fixes the
opening bid and then allows bidders to increase the bid by a fixed
discrete amount. The auction proceeds until no bidder is willing
to further increase the bid and the item is awarded to the current
highest bidder in exchange of its bid’s payment.

In contrast to these actual implementations, most of the academic
literature on auction theory assumes that the bid increment is con-
tinuous and thus bidders may submit extremely small increments
in order to outbid the current highest bidder. As such, the liter-
ature implicitly makes two assumptions: (i) that bidders have no
time constraints, and (ii) that bidding is not costly. However, the
prevalence of discrete bid levels within online auctions contradicts
both these assumptions. Specifically, the use of discrete bid levels
radically reduces the number of bids submitted during the course
of the auction (because the price increases to the expected closing
price of the auction through much larger bid increments) and thus
reduces both the time that the auction takes and the communica-
tion costs required to inform all of the participants of the current
state of the auction. In addition to these effects, the introduction of
discrete bid levels causes many well known results from the contin-
uous bid auction literature to fail. For example, the bidders within
the auction no longer have a dominant bidding strategy [11] and, as
the item is no longer guaranteed to be allocated to the bidder with
the highest valuation, theRevenue Equivalence Theorem no longer
applies [3].

To rectify this ommission, our aim is to provide the revenue max-
imising design for an English auction with discrete bid levels. Now,
in our case, this optimal auction design involves determining both
the reserve price of the auction and the number and distribution of
the discrete bid levels. Previous work in this area has addressed this
question in a number of very limited cases. For example, Rothkopf
and Hastard considered several cases where the number of bidders
and the number of discrete bid levels was restricted to two [8].



In the case of two bidders with valuations that are independently
drawn from a uniform distribution, they showed that it was optimal
to use a fixed bid increment with evenly spaced bid levels [8]. How-
ever, it has proved difficult to generalize these results and thus for
instances with a larger numbers of bidders, whose valuations are
drawn from arbitrary distributions, there is no guidance available.
This lack of guidance means that most online auctions implement
discrete bid levels with a fixed bid increment, despite the limited
applicability of this result.

Thus, against this background, we derive general results that in-
dicate how the discrete bid levels should be set in order to maximise
the revenue of the auctioneer. Specifically, we extend the state of
the art in this area in four key ways:

1. We consider the same model of an ascending price auction
with discrete bid levels that was proposed by Rothkopf and
Harstad [8]. But, rather than considering simple instances
with limited numbers of bidders or bid levels, we are able
to derive, for the first time, a general expression for the ex-
pected revenue of the auction. This expression relates the
expected auction revenue to the specific discrete bid levels
used in that auction and is valid for any number of bidders
and any distribution of bidders’ private valuations.

2. We demonstrate how this expression is used to determine the
optimal bid levels and how these levels can be calculated nu-
merically. In order to compare our results with the majority
of the earlier work, particularly with that of Rothkopf and
Harstad, we consider an example case where bidders’ valua-
tions are drawn independently from a common uniform dis-
tribution. For such cases, we prove that when there are more
than two bidders participating within the auction, a decreas-
ing bid increment is optimal and thus the interval between bid
levels decreases with each bid level. For the first time, we are
able to calculate both analytically and numerically, how this
decrease should proceed for any number of bid levels and for
any number of bidders.

3. We show that contrary to the continuous bid result, the re-
serve price for auctions with a finite number of discrete bid
levels is dependent on the number of bidders participating
in the auction. Moreover, we show that this reserve price
should increase as this number of bidders increases and we
show how this result is calculated for any bidders’ valuation
distribution.

4. We compare the revenue generated by the auction with op-
timal bid levels, with that generated in the more commonly
implemented auction with a fixed bid increment. We show
that for the same number of bid levels, the optimal auction
generates more revenue, decreases the duration of the auc-
tion and increases the allocative efficiency of the auction.

The results that we provide in this paper may be used in the design
of online auctions or may be used by automated trading agents that
are adopting the role of an auctioneer within a multi-agent system.

The remainder of the paper is organized as follows: in section
2 we present related work and in section 3 we develop our auction
model. In section 4 we derive a general expression for the expected
revenue of the auction and we use this result in section 5 to show
how the optimal bid levels can be derived analytically and deter-
mined numerically. Also in section 5, we compare with calculated
and simulated results, the properties of the auction when optimal
and fixed bid increments are implemented. Finally, we conclude
and suggest areas of future work in section 6.

2. RELATED WORK
The problem of optimal auction design has been studied extensively
for the case of auctions with continuous bid increments [7, 6]. In
such auctions, theRevenue Equivalence Theorem states that all fea-
sible efficient auctions generate the same revenue, thus the interest-
ing design question concerns the reserve price of the auction (i.e.
in continuous English auctions, the price at which the bidding com-
mences). In general, setting a reserve price increases the revenue
of the auction and, thus, optimal auction design is concerned with
finding the reserve price that maximises the expected revenue of the
auctioneer. For example, in the case of bidders’ valuations drawn
from a uniform distribution in the range[v, v], this work shows that
the reserve price of the auction should be themax(v, v/2) and is
thus independent of the number of bidders in the auction [7].

In contrast to the literature of continuous bid auctions, the case
of discrete bid levels has received little attention, although some
preliminary works exists. Much of this work is based on the as-
sumption that there is a fixed bid increment and thus the price of
the auction ascends in fixed size steps [10, 3, 11, 1, 2].

In more detatil, Yamey first considered this scenario and com-
mented that such bidding rules appear to have the effect of speed-
ing up the auction proceedings and hence reduce the costs of both
the auctioneer and the bidders [10]. He concluded that if the fixed
bid increment is small, the expected revenue of the auction will
approximate the second highest price.

Chwe also assumed fixed bid increments, but considered a first-
price sealed bid auction where bidders’ independent valuations were
uniformly distributed [3]. He showed that a symmetric unique Nash
equilibrium bidding strategy exists and that this equilibrium con-
verges to the equilibrium of the continuous bid auction, as the bid
increment reduces to zero. In addition, he showed that the expected
revenue of the discrete bid auction is always less than that of the
equivalent continuous bid auction. Thus, the auctioneer has an in-
centive to make the bid increments as small as possible, assuming
that the time and communication costs of the bidding can be ig-
nored.

Yu again considered auctions with fixed bid increments, but stud-
ied each of the four common auction protocols: the first-price sealed-
bid, second-price sealed-bid, English and Dutch auctions [11]. Ex-
tending Chwe’s result, she showed that in each of the auction pro-
tocols a symmetric pure strategy equilibrium exists. Specifically,
no dominant strategy was identified for the English protocol. Ad-
ditionally, for the second-price sealed-bid protocol, in equilibrium
some bidders will bid above their valuation and some others will
bid below their valuation1. Finally, for each of the protocols, it was
proved that as the number of bid levels become very large (i.e. the
bid increment becomes small), the equilibrium bids converge to the
equilibrium bids of the corresponding continuous bid auction.

In contrast to this work, Rothkopf and Harstad considered the
more general question of determining the optimal number and value
of these bid levels [8]. They provided a full discussion of how the
discrete bid levels affect the expected revenue of the auction and
they considered two different distributions for the bidders’ private
valuations: a uniform and an exponential distribution. In the case
of the uniform distribution, they considered two specific instances:
(i) two bidders with any number of allowable bid levels, and (ii)
two allowable bid levels and any number of bidders. In the first
instance, evenly space bid levels (i.e. a fixed bid increment) was
found to be the optimal. Whilst in the second instance, the bid in-

1This is in contrast to the dominant strategy that exists in the
second-price sealed-bid continuous bid auction, where bidders bid
their true private valuations.



crement was shown to decrease as the auction progressed (this de-
crease was described analytically). For the exponential distribution
of bidders’ valuations, the instance of just two bidders was again
considered and the optimal bid increment was shown to increase as
the auction progressed.

In this paper, we extend the work of Rothkopf and Harstad. We
consider the same model of the ascending price auction, but derive
the optimal bid levels in the general case with any distribution of
bidders’ valuations, any number of bid levels, and any number of
bidders. In contrast to their work, we make no assumptions regard-
ing the value of the first bid level, and thus we derive the optimum
reserve price of the auction at the same time as deriving the opti-
mal bid levels. Compared to the continuous case auction, where
it is well known that the optimal reserve price is independent of
the number of bidders [7, 6], here we show that for auctions with
discrete bid levels, the optimal reserve price is indeed dependent
on the number of bidders. Moreover, we show that whilst the opti-
mal reserve price approaches that of the continuous auction as the
number of bid levels increases, it approaches this limit slowly.

3. AUCTION MODEL
We consider an auction in whichn risk neutral bidders are attempt-
ing to buy a single item from a risk neutral auctioneer. Bidders have
independent private valuations,vi, drawn from a common continu-
ous probability density function,f(v), within the range[v, v]. This
probability density function has a cumulative distribution function,
F (v), and with no loss of generality, we can state thatF (v) = 0
andF (v) = 1.

The bidders participate in an ascending price auction, whereby
the bids are restricted to discrete levels which are determined by the
auctioneer. We assume there arem + 1 discrete bid levels, starting
at l0 and ending atlm. At this point, we make no constraints on
the actual number of these bid levels, nor on the intervals between
them.

In the work of Rothkopf and Harstad, the standard oral English
auction is considered and thus, when implemented with discrete bid
levels, there is no dominant bidding strategy. In our work we mod-
ify the auction protocol in such a way that the bidders have a domi-
nant strategy, and the analysis of the auction revenue developed by
Rothkopf and Harstad is still valid. Under this modified protocol,
the auctioneer proposes the first bid level,l0, and then all bidders
willing to pay this price and thus continue within the auction, indi-
cate this to the auctioneer. At this point, the auctioneer randomly
selects one bidder from amongst these willing bidders. This bid-
der is nominated as the current highest bidder and this nomination
is announced to all the participants. The auctioneer then proposes
the next bid level,l1, and again bidders indicate their willingness
to remain in the auction. Again, one bidder from amongst these
willing bidders is randomly selected as the current highest bidder.
The auction proceeds, with the price ascending through the discrete
bid levels, until no bidders are willing to pay the new higher offer
price. The auction then closes and the item is sold to the current
highest bidder2.

Unlike the conventional oral auction with discrete bid levels, un-
der our modified auction protocol, bidders have a simple dominant
strategy; they should continue to participate in the auction and thus
bid at each bid level, until the current bid level exceeds their pri-
vate valuation. There is no need for the bidders to strategise over
the valuations of the other bidders, nor need they strategise over the
timing of their bids. As such, this auction protocol is particularly

2This auction protocol is similar to the Japanese variant of the En-
glish auction, with the addition of discrete bid levels [?].
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Case 3

Case 2

Case 1

Two or more bidders have valuations between[li, li+1) and no
bidders have valuationsv ≥ li+1.

One bidder has a valuationv ≥ li+1, one or more bidders
have valuations in the range[li, li+1) and the bidder with the
highest valuation was selected as the current highest bidder at
li.

One bidder has a valuationv ≥ li, one or more bidders have
valuations in the range[li, li+1), and the bidder with the high-
est valuation was not selected as the current highest bidder at
li−1.

li−1 li li+1

Figure 1: Diagram showing the three cases whereby the auction
closes at the bid levelli. In each case, the circles indicate a
bidder’s private valuation and the arrow indicates the bid level
at which that bidder was selected as the current highest bidder.

attractive in computational setting where the bidders are likely to
be automated trading agents with limited complexity.

4. AUCTION REVENUE
In order to calculate the optimal bid levels, we must first find an
expression for the expected revenue of the auctioneer, given the
specific discrete bid levels used in that auction. Following the work
of Rothkopf and Harstad, we can describe the probability of the
auction closing at any particular bid level by considering three ex-
haustive and mutually exclusive cases [8]. These three cases are
shown in figure 1 and they describe all the possible configurations
of bidders’ valuations that lead to the auction closing at a bid level
of li. In the diagram, the valuations of the bidders are shown as
circles and the arrows indicate which bidder was nominated as the
current highest bidder at each bid level. We can describe each case
as:

Case 1 Two or more bidders have a valuation greater than bid level
li, but none of these bidders have valuations greater than
li+1. Thus, once the bid price has reachedli, no bidder is
able to increase the bid any further, and the item is allocated
to the current highest bidder. In this case, the revenue earned
by the auctioneer is less than that which would have been



earned in a continuous auction (i.e. the second highest valu-
ation) and the outcome may be inefficient as the item is not
necessarily allocated to the bidder with the highest valuation.

Case 2 Two or more bidders have valuations betweenli andli+1

and a single bidder has a valuation greater thanli+1. As
this single bidder was also the current highest bidder when
the bid level reachedli, none of the other bidders have val-
uations sufficient to raise the bid toli+1. Thus the auction
closes at the priceli and the item is allocated to the bidder
with the highest valuation. Again, the revenue earned by the
auctioneer is less than that which would have been earned
in a continuous auction, but the outcome is allocatively effi-
cient.

Case 3 This is identical to case two, with the exception that the
bidder with the highest valuation is not the current highest
bidder. Thus, this bidder is forced to raise the bid level fur-
ther and the auction closes at the bid levelli, rather thanli−1.
Again this case is allocatively efficient, however the revenue
earned by the auctioneer is actually greater than that earned
in a continuous auction.

The expected revenue of the auction is thus dependent on the proba-
bility of each of these three cases occurring. Each of these probabil-
ities can be described in terms of the cumulative distribution func-
tion of the bidders’ valuations,F (v). Thus, given thatP (case1, li)
represents the probability that case one occurs and that the auc-
tion closes at bid levelli, we can describe the probability of this
case occurring by consideringk bidders having valuations between
bid levels li and li+1. The probability of this occurring is sim-
ply described by[F (li+1) − F (li)]

k, whilst the probability that all
the othern − k bidders have valuations belowli is described by
F (li)

n−k. Thus, we can findP (case1, li) by summing over all
possible values ofk to give:

P (case1, li) =
n

∑

k=2

(

n

k

)

F (li)
n−k [F (li+1) − F (li)]

k (1)

Likewise, we can perform a similar calculation for case two, where
we havek bidders with valuations betweenli and li+1, one bid-
der with a valuation greater thanli+1 andn − k − 1 bidders with
valuations belowli. In this case we must also consider the probabil-
ity that the bidder with the highest valuation is the current highest
bidder. Under our assumption that this selection is random, this
probability is simply given by 1

k+1
, and thus the whole expression

is described as:

P (case2, li) =

n−1
∑

k=1

(

n − 1

k

)

n

k + 1
F (li)

n−k−1

× [F (li+1) − F (li)]
k [1 − F (li+1)] (2)

Finally, we consider case three, which is identical in form to case
two, with the exception that the bidder with the highest valuation
was not nominated as the current highest bidder at bid levelli−1

and must thus raise the price toli. The probability of this occur-
ring is k

k+1
, rather than the factor1

k+1
that occurred in case two.

Note that this description implies that there exists a bid level be-
low li and thus the expression that we derive is only valid for bid
levelsl1 . . . lm. In order to include the instance in which the auc-
tion closes at the bid levell0, we do so separately and note that this
occurs when all but one bidder have valuations belowl0. Thus the

final expression is described as:

P (case3, li) =































nF (l0)
n−1 [1 − F (l0)] i = 0

n−1
∑

k=1

(

n − 1

k

)

kn

k + 1
F (li−1)

n−k−1

× [F (li) − F (li−1)]
k [1 − F (li)] i > 0

(3)

Now, as these three expressions completely describe all the possible
ways in which the auction may close at any particular bid level, we
can find the expected revenue of the auctioneer by simply summing
over all possible bid levels and weighting each by the revenue that
it generates. Thus the expected revenue of the auction is given by:

E =
m

∑

i=0

li [P (case1, li) + P (case2, li) + P (case3, li)] (4)

The resulting expression at this stage is extremely complex due
to the combinatorial sums in equations 1, 2 and 3. However, as
detailed in appendix A, it is possible to significantly simply this
expression (noting that with no loss of generality we can define
F (lm+1) = 1), to give the final result:

E =
m

∑

i=0

F (li+1)
n − F (li)

n

F (li+1) − F (li)

[

li(1 − F (li)) − li+1(1 − F (li+1)
]

(5)

This expression is a key result and all of the results that we present
in this paper stem from the fact that we have been able to express
the revenue of the auction in a relatively compact form. Unlike
previous work that has considered simple instances of the auction,
for example, those with just two bidders or two bid levels, this is
a general expression. It relates the revenue of the auction to the
actual bid levels used, and is valid for any number of bid levels,
any number of bidders, and for any valuation distribution function
which is described byF (v). Also, unlike the earlier work, we make
no assumptions about the positions of the first and last bid level.
Whereas, Rothkopf and Hastard fixed these at the extremes of the
bidders’ valuation distribution (i.e.l0 = v andlm = v), we make
them free parameters and allow them to take any value. Sincel0
is equivalent to the reserve price of the auction, we thus determine
the optimal reserve price and the optimal bid levels by the same
process.

5. OPTIMAL AUCTION DESIGN
The expression derived in the last section describes the expected
revenue of the auction when discrete bid levelsl0 . . . lm are used.
Having derived this, a key question that we can now ask is how does
this revenue compare to that obtained in the equivalent continuous
auction? Rothkopf and Harstad considered the case where bidders’
valuations are drawn from a uniform distribution, and showed that
the revenue of the auction with discrete bid levels is always less
than that obtained in the continuous case [8]. This argument is
based on the observation that the expression for the probability of
case three occurring isk times the probability that case two occurs.
However, the loss in revenue (compared to the second highest valu-
ation) that occurs in case two isk times the gain that is achieved in
case three. Thus, the loss of revenue that occurs in case two is ex-
actly canceled by the gain in revenue that occurs in case three. This
leaves case one as the sole determinant of the auction revenue, and
since in this case the revenue of the auctioneer is always less than



the second highest valuation, the auction with discrete bid levels
generates less revenue than the continuous case.

In general, for any distribution of the bidders’ valuations, the
revenue generated by the auction with discrete bid levels is less
than that obtained in the equivalent continuous auction. However,
this loss in revenue must be balanced against the savings in time
and communication cost that result from using the discrete bid lev-
els. Specifically, the number of discrete bid levels strictly bounds
the maximum duration and communication costs of the auction (in
terms of the number of times that the bid level is raised and thus the
number of times that the auctioneer must update all the participants
about the state of the auction). Thus optimal auction design in the
case of auctions with discrete bid levels consists of finding the val-
ues of the bid levels that maximise the auction revenue, given that
the number of these bid levels is constrained.

Thus, in this section, we present two alternative methods for per-
forming this optimisation. The first is a numerical method which is
applicable to any bidders’ valuation distribution, and allows us to
calculate the optimal values for bid levelsl0 . . . lm. The second is
an exact analytical method, which although it is valid for all bid-
ders’ valuation distributions, sometimes yields expressions which
can not be solved. Thus, in order to compare these approaches
and to allow comparison with the majority of the earlier work, we
consider a uniform distribution of bidders’ valuations (the uniform
distribution is one in which the analytical expressions are solvable).
Having derived the optimal bid levels in this case, we then compare
the properties of the auction, using calculated and simulated results,
against an auction in which the standard fixed bid increment is im-
plemented.

5.1 Numerical Solutions
In order to find the optimal bid levels for any given number of bid-
ders and any bidders’ valuation distribution, we must simply find
the set of values forl0 . . . lm that maximises the revenue expres-
sion shown in equation 5. Performing this maximisation numer-
ically is reasonably straightforward, with the only particular diffi-
cultly being that the expression is indeterminate if everli = li−1 or
li = li+1. To avoid this event, we use an iterative routine whereby
we sequentially update each bid level in turn. Thus, whilst fix-
ing all other bid levels, we find the value ofli which maximises
the revenue expression, but only allowingli to vary in the range
li−1 < li < li+1. Between these limits, the revenue expression
is well behaved and has a single maximum. This maximum can
be found using a simple hill climbing routine or a more sophisti-
cated gradient based method. Thus, we sequentially update allli in
turn and then iterate the process until the bid levels converge to the
necessary accuracy. This iterative procedure is shown as pseudo-
code in figure 2 where the expressionE(l0, . . . , lm) represents the
revenue expression shown in equation 5.

This numerical routine is valid for any bidders’ valuation distri-
bution that we can describe byF (v). Thus, in the case of the uni-
form distribution with range[v, v], f(v) = 1

v−v
andF (v) = v−v

v−v
.

In the examples that follow, we choose this range to be[1, 10] and
thusv = 1 andv = 10. In figure 3 we show the optimal bid levels
diagrammatically for three different numbers of bidders (n = 2, 20
and40). In figure 4 we show the results plotted over a continuous
range of the number of bidders varying continuously from 2 to 100.

For the case wheren = 2, we find that the optimal distribution
of bid levels is to have a fixed bid increment and thus evenly spaced
bid levels. The first bid level,l0 occurs atmax(v, v/2), as expected
from the literature of optimal reserve prices in continuous auctions
[6, 7]. Now, when Rothkopf and Harstad fixed the first and last
bid levels such thatl0 = v andlm = v, they showed that within

d ← ∞

t ← 0

a ← max(v, v/2)

for i=0:m

li(t) ← a + i ∗ (v − a)/m

while d > stopping condition,

l0(t + 1) ← arg max
x

E(x, l1(t), . . . , lm(t))

v < x < l1(t)

lm(t + 1) ← arg max
x

E(l0(t), . . . , lm−1(t), x)

lm−1(t) < x < v

for i=1:m-1

li(t + 1) ← arg max
x

E(l0(t), . . . , x, . . . , lm(t))

li−1(t) < x < li+1(t)

d ← 0

for i=0:m

d ← max(d, li(t + 1) − li(t))

t ← t + 1

Figure 2: Pseudo-code representing an algorithm to find the
numerical solutions for the optimal bid levels for any distribu-
tion of bidders’ private valuations.

this range evenly spaced bid levels with a fixed bid increment are
optimal when there are only two bidders. However, as the number
of bidders increases, we find that the value of the optimal first bid
level, l0, increases and also that the bid levels become increasingly
closer spaced (i.e. the bid increment decreases as the auction pro-
gresses). This behavior is dependent on the particular distribution
from which the bidders’ valuations are drawn, and, intuitively, we
can see that given a fixed number of bid levels, we should set them
closer together in areas where we are most likely to differentiate
the bidders with the highest valuations. Thus, in the uniform case,
as the number of bidders increases, we are more likely to find the
bidders with the highest valuations increasingly closer to the up-
per limit of the distribution and thus the bid levels should become
closer together in this area. With other valuation distributions, dif-
ferent patterns emerge. For example, in the case of an exponential
distribution, which we do not consider in detail in this paper, the
bid increment begins by decreasing with each bid level, reaches a
minimum size and then begins to increase again. In this case, the
point at which the bid levels are most closely spaced is where we
are most likely to find the bidder with the second highest valuation.

5.2 Analytical Solutions
Whilst the previous section presented a numerical solution that al-
lows us to solve for the optimal values of the discrete bid levels, it
is valuable to be able to perform this maximisation analytically. To
do so we must find the partial derivatives of the revenue expression
given in equation 5, with respect to any individual bid levelli. We
can then solve this expression for∂E/∂li = 0, and thus find the
value ofli that maximises the revenue.

Thus to perform this differentiation, we must note that eachli
occurs in the summation of equation 5 twice. For example, the bid
level l5 occurs in the summation term wheni = 5, asF (li), and
also in the proceeding term wheni = 4, asF (li+1). Thus, for a
uniform bidders’ valuation distribution, we substitute our analytical
expressionF (li) = li−v

v−v
into these two terms and differentiate
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Figure 3: Optimal bid levels (m=10), plotted for three example
numbers of bidders (n=2, 20 and 40)with private valuations
drawn from a uniform distribution with range [1,10].

them to give:

∂E

∂li
=

(li+1 − v)n − (li−1 − v)n

(v − v)n

+
nli−1(li − v)n−1 − nli+1(li − v)n−1

(v − v)n
(6)

In order to find the value ofli that maximises the revenue, we must
make this partial derivative equal to zero (i.e.∂E/∂li = 0) and
solve the resulting expression. This gives the result:

li = v + n−1

√

(li+1 − v)n − (li−1 − v)n

n(li+1 − li−1)
(7)

This expression relates any individual optimal bid level to the bid
levels on either side of it. Thus, if we consider the specific case
wheren = 2, we can simplify this expression to give:

li =
li−1 + li+1

2
(8)

Thus, the value ofli is midway betweenli−1 andli+1, and as this
is true for all li, the optimal distribution of bid levels is an even
spacing with a fixed bid increment. If we consider the case when
n > 2, we can show that:

li >
li−1 + li+1

2
(9)

Again, as this is true for allli, the optimal distribution of bid lev-
els consists of a decreasing bid increment, whereby the bid levels
become closer together as the auction progresses (see Appendix B
for a proof of this result).

5.3 Optimal Reserve Price
Aside from the changing bid increment, the most notable feature
of the numerical results plotted in the previous section, is that the
value of the starting bid level,l0, increases as the number of bidders
increases. This bid level represents the reserve price of the auction.
If there are no bidders willing to pay this amount, the auction closes
with no sale occurring and the item is discarded by the auctioneer.
The literature of optimal auction design in continuous auctions, in-
dicates that this reserve price,v∗, is independent of the number of
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Figure 4: Optimal bid levels (m=10), plotted against an increas-
ing number of bidders with private valuations drawn from a
uniform distribution with range [1,10].

bidders within the auction [6, 7] and is described by:

F (v∗)n−1 [v∗f(v∗) + F (v∗) − 1] = 0 (10)

In the case of the uniform distribution with range[v, v], this gives
a value ofv∗ = max(v, v/2). In addition, in discrete bid auctions
with a fixed bid increment, it has been shown that the optimal re-
serve price matches this continuous auction result [9]. However,
in contrast to these two results, we show that in the case of a fixed
number of discrete optimal bid levels, the reserve price is not inde-
pendent of the number of bidders participating in the auction.

As before, we can derive an analytical solution for the value of
l0 by again considering the partial derivatives of the revenue ex-
pression in equation 5. This time we differentiate with respect to
l0, and as this only occurs within one term of the summation, this
gives the result:

∂E

∂l0
=

(l1 − v)n − (l0 − v)n − n(l0 − v)n−1(l0 − v + l1)

(v − v)n

(11)

As before, in order to maximise the revenue, we must solve for
∂E/∂l0 = 0. However, unlike the derivation of the otherli, we
can not solve the resulting expression analytically. However, we
can simplify it slightly to give:

(l1 − v)n − (l0 − v)n − n(l0 − v)n−1(l0 − v + l1) = 0 (12)

If we consider a large number of bid levels and thusl1 = l0 + δ
whereδ is small, we can see that the above expression has solutions
close tol0 = v andl0 = v/2. These findings agree with the contin-
uous auction results. However, in figure 5, we show the numerical
results for this optimal reserve price as we increase the number of
finite discrete bid levels (i.e.m = 10, 100 and1000). In each case,
we can see that when the number of bidders is small, the optimal
reserve price approaches the continuous auction result. However,
as the number of bidders increases, the optimal reserve price also
increases. By increasing the number of discrete bid levels (i.e. in-
creasing m), we can delay this increase slightly. However, even for
moderate number of bidders, we require an extremely large num-
ber of discrete bid levels in order to approach the continuous result.
For example, as shown in figure 5, even with 1000 bid levels, the



optimal reserve price is only close to the continuous result when
there are less than 20 bidders.
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Figure 5: Optimal auction reserve price for three different
numbers of discrete bid levels(m=10, 100 and 1000). Results
are shown for an increasing number of bidders with private val-
uations drawn from a uniform distribution with range [1,10].

5.4 Auction Properties
Finally, having shown that we can derive both numerical and ana-
lytical solutions for the optimal bid levels, we consider how these
optimal bid levels affect the properties of the auction. We consider
three properties: (i) the expected revenue of the auction (i.e. the
property that we have maximised in the derivation of the optimal
bid levels), (ii) the expected duration of the auction (measured in
terms of the number of bid levels that the price has been raised
through) and (iii) the allocative efficiency of the auction expressed
as the probability that the item is sold to the bidder with the high-
est private valuation3. Given these measures, we then compare the
auction with optimal bid levels with the more commonly imple-
mented auction where the bid increment is fixed and the bid levels
are evenly spaced betweenv andv. As in the previous examples,
we assume an instance in which there are bid levelsl0 to l10 (i.e.
m = 10) and we vary the number of bidders continuously from
n = 2 to 100.

For each number of bidders, we use the numerical methods pre-
sented in section 5 to find the optimal bid levels. We then use these
bid levels to calculate the expected revenue, duration and efficiency
of the auction. The first is calculated using the revenue expression
shown in equation 5. The other two properties are calculated as
described in appendices C and D. We then compare these measures
to those calculated when a fixed bid increment is used. We present
these calculated results alongside simulation results, where we im-
plement the auction, assign private valuations to the bidders within
the auction and then simulate the bidding process. We record the
closing price of the auction, the duration of the auction and the
number of times that the winner of the auction was the bidder with
the highest valuation. We simulate this auction 10,000 times for
different bid valuations and average over these simulation runs to

3Note that an alternative measure of the efficiency of the auction
could be the expected amount that the value of the winning bid falls
below the highest valuation. However, we observe that this measure
shows a similar trend to that of the expected auction revenue, and
thus don’t present it here.
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Figure 6: Simulation and calculated results for the three key
auction performance measures when evenly spacing (dashed
lines) and optimal (solid lines) discrete bid levels are used. In
this example,v

¯
=1, v̄=10and m=10. The simulation results are

averaged over 10,000 auctions and the resulting error bars are
significantly smaller than the size of the symbols.



present average results. In all cases, the size of the error bars on
these results are significantly smaller than the size of the plotted
symbols (for example, in the case of optimal bid levels with 30
bidders, the expected revenue of the auction is9.41 ± 0.01), and
thus we omit them.

We show these simulated and calculated comparisons in figure 6.
If we first consider the case of the auction with evenly spaced bid
levels, as expected, we see that the revenue of the auction increases
as the number of bidders increases. Thus, the auction closes at a
higher bid level and we also see an increase in the auction dura-
tion as bidders must raise the offer price through more bid levels
in order to reach this closing price. We also see a large loss in the
allocative efficiency of the auction. This loss of efficiency results
from the fact that the fixed bid increments are unable to discrimi-
nate between the bidder with different valuations, as their numbers
increase. Of the three cases discussed in section 4, case one be-
comes increasingly likely as there are several bidders with valua-
tions above the current bid level, but no bidders are able to raise
the bid level further. Thus the item is allocated randomly to one of
these bidders, with the corresponding loss of allocative efficiency
and auction revenue4.

In the case of the optimal bid levels, the bid interval becomes
increasingly smaller in order to prevent this loss of allocative effi-
ciency. Reducing the bid increment makes it more likely that a bid
level will fall between the bidders with the first and second high-
est valuations. Thus, case one (as discussed in section 4) becomes
increasingly less likely to occur, and since the gain and loss of rev-
enue due to cases two and three cancel each other out, reducing
this likelihood results in an increase in the expected revenue of the
auction. In addition, the initial widely spaced bid increments and
optimal reserve price, ensure that the bidders do not have to raise
the bid level too many times before it approaches the price at which
the auction is likely to close. This results in an improvement in the
observed duration of the auction, and thus when we use the optimal
bid levels we see improvements in all three of these measures.

6. CONCLUSIONS
In this paper we considered a common form of the English auction
that is widely used in online Internet auctions. Under this protocol,
bidders may only submit bids which meet bid levels determined
by the auctioneer, and, in most current implementations, these bid
levels are equally spaced with a fixed bid increment. Our aim was
provide the optimal auction design for this setting which involved
determining both the reserve price of the auction and also the num-
ber and distribution of these discrete bid levels.

To this end, we derived a general expression which describes
the revenue of the auction in terms of the actual bid levels imple-
mented, the number of bidders participating, and the distribution
from which these bidders’ valuations are drawn. We showed that
for a fixed number of bid levels, we were able to derive numeri-
cal and analytical solutions for the optimal bid levels. In order to
compare these results with previous work, we considered the ex-
ample instance in which the bidders’ valuations are drawn from a
4Note that the allocative efficiency, in the case of optimal bid lev-
els, is low when there are very few bidders, due to the reserve price
of the auction. For example, withn bidders and a reserve price
v∗, then an upper bound for this efficiency is simply the probabil-
ity that at least one bidder has a valuation above the reserve price,

and is thus1 −
(

v∗
−v

v−v

)n

. For the case of the example plotted in

figure 6, whenn = 2 this has a value of 80.25%. As the number
of bidders increases, it becomes increasingly unlikely that all the
bidders’ valuations will fall below the reserve price, and thus this
upper bound on the allocative efficiency increases.

uniform distribution. For this, we proved that when there are more
than two bidders, it is optimal to implement a decreasing bid incre-
ment so that the interval between bid levels decreases as the auc-
tion proceeds. Moreover, we showed that as the number of bidders
increases, the optimal reserve price of the auction also increases.
Finally, we compared an auction implementing these optimal bids
levels to the more common approach of evenly spaced levels, and
showed that using the optimal discrete bid levels result in improve-
ments in the revenue, duration and allocative efficiency of the auc-
tion.

Our future work, consists of extending the analysis that we have
performed here to examples where the bidders’ valuations are drawn
from other distributions. For example, an exponential distribution
in which there is no upper valuation limit. Preliminary results in
this case indicate that the optimal bid increment is quite complex.
We find that it initially decreases, reaches a minimum size and then
subsequently increases again. We intend to explore this behaviour
in more detail, by considering the limiting case wherem is suffi-
ciently large that we can express this result in terms of the density
of bid levels. Furthermore, since our determination of the optimal
bid levels depends on knowing both the number of bidders that are
participating in the auction and the distribution from which their
valuations are drawn, we are exploring methods to learn these pa-
rameters through observations of repeated auctions. As in this pa-
per, we believe it is possible to derive a probabilistic expression
relating the revenue of the auction to these parameters, and if we
can achieve this, we expect to be able to use standard techniques
from probabilistic inference in this task.
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APPENDICES

A. EXPECTED AUCTION REVENUE
Our initial expression for the revenue of the auction is derived by
summing the three cases whereby the auction closes at bid levelli,
over all possible bid levels:

E =
m

∑

i=0

li [P (case1, li) + P (case2, li) + P (case3, li)] (13)

In equations 1, 2 and 3, we presented expressions for these three
probabilities. However, in order to reduce the complexity of the
final expression, we are able to simplify the combinatorial sums in
these expressions. To do so, we initially adjust the limits of the
summations and hence adjust the corresponding binomial terms.

P (case1, li) =

n
∑

k=2

(

n

k

)

F (li)
n−k [F (li+1) − F (li)]

k (14)

P (case2, li) =
n

∑

k=2

(

n

k

)

F (li)
n−k [F (li+1) − F (li)]

k−1

× [1 − F (li+1)] (15)

P (case3, li) =































nF (l0)
n−1 [1 − F (l0)] i = 0

n
∑

k=2

(

n

k

)

(k − 1)F (li−1)
n−k

× [F (li) − F (li−1)]
k−1 [1 − F (li)] i > 0

(16)

Now, from the identity
∑n

k=0

(

n

k

)

an−kbk = (a + b)n, we can
derive the result that

∑n

k=2

(

n

k

)

an−kbk = (a+b)n−nan−1b−an.
Thus, we can immediately simplify equations 14 and 15 to give:

P (case1, li) = F (li+1)
n

− nF (li)
n−1[F (li+1) − F (li)] − F (li)

n (17)

P (case2, li) =
1 − F (li+1)

F (li+1) − F (li)

[

F (li+1)
n

− nF (li)
n−1 [F (li+1) − F (li)] − F (li)

n
]

(18)

The case forP (case3, li) is more complex as we have an addi-
tional factor ofk − 1 inside the summation. However, we can

use the observation that this factor arises through the differentia-
tion of bk−1 to derive the identity

∑n

k=2

(

n

k

)

(k − 1)an−kbk =

b2 d

db

[

1
b

∑n

k=2

(

n

k

)

an−kbk
]

. Thus, by substituting in the previous
result and differentiating the expression, we can show that

∑n

k=2
(

n

k

)

(k − 1)an−kbk = (a + b)n−1 [b(n − 1) − a] + an. Using this
result in equation 16 gives:

P (case3, li) =























nF (l0)
n−1 [1 − F (l0)] i = 0

1−F (li)
F (li)−F (li−1)

[

F (li−1)
n − F (li)

n

+nF (li)
n−1(F (li) − F (li−1))

]

i > 0

(19)

Now, we can substitute these three expressions into our expression
for the expected revenue of the auction (equation 13), to give:

E =
m

∑

i=0

li
1 − F (li)

F (li+1) − F (li)

[

F (li+1)
n

− nF (li)
n−1(F (li+1) − F (li)) − F (li)

n
]

+
m

∑

i=1

li
1 − F (li)

F (li) − F (li−1)

[

F (li−1)
n

+ nF (li)
n−1(F (li) − F (li−1)) − F (li)

n
]

+ l0nF (l0)
n−1(1 − F (l0)) (20)

Clearly, many terms in these expressions cancel with each other.
The middle terms of each summation are equal and opposite when
li is betweenl1 andlm. Additionally, the term that is left over from
this cancellation (i.e. wheni = 0), cancels with the additional term
P (case3, l0). This gives the simpler result:

E =
m

∑

i=0

li
1 − F (li)

F (li+1) − F (li)
[F (li+1)

n − F (li)
n]

+
m

∑

i=1

li
1 − F (li)

F (li) − F (li−1)
[F (li−1)

n − F (li)
n] (21)

Finally, by changing the indices of the second summation and using
the fact that, with no loss of generality, we can state thatF (lm+1) =
1, we can combine these two summations to give the final result:

E =

m
∑

i=0

F (li+1)
n − F (li)

n

F (li+1) − F (li)
[li(1 − F (li)) − li+1(1 − F (li+1)]

(22)

This final expression relates the expected revenue of the auction-
eer to the discrete bid levels used in the auction and the cumula-
tive distribution from which the bidders’ independent valuations
are drawn.

B. PROOF OF OPTIMAL DECREASING
BID INCREMENTS

In order to show that the optimal bid levels show a decreasing bid
increment whenn > 2, it is sufficient to show that in this case:

li >
li−1 + li+1

2
(23)

Thus, using the result from equation 7, we must show that:

v + n−1

√

(li+1 − v)n − (li−1 − v)n

n(li+1 − li−1)
>

li−1 + li+1

2
(24)



If we definea = li−1 − v andb = li+1 − v, then we must show,
for 0 < a < b, that:

bn − an

b − a
> n

(

a + b

2

)n−1

(25)

PROOF. If f(t) is a convex function withf ′′(t) > 0 over the
interval [a, b], then it follows from Jensen’s inequality and the def-
inition of convexity that:

1

b − a

∫ b

a

f(t)dt > f

(

a + b

2

)

(26)

We takef(t) = ntn−1. This is a convex function withf ′′(t) > 0
whenn > 2. Substitutingf(t) into equation 26 and integrating
between the limits gives, as required:

bn − an

b − a
> n

(

a + b

2

)n−1

(27)

C. EXPECTED AUCTION DURATION
The analysis presented earlier for the derivation of the expected rev-
enue of the auction, also allows us to predict the expected duration
of the auction. In order to do the former, we calculated the proba-
bility of the auction closing in each of the three cases discussed in
section 4 and then performed a weighted sum, where these prob-
abilities were weighted by the revenue that they earned. Thus, to
calculate the expected duration, we perform the same summation,
but we weight each probability by the number of bid levels that the
price has been raised through (i.e. if the auction closes at bid level
li then the price must have been raised throughi + 1 bid levels).
Thus this gives:

t =

m
∑

i=0

F (li+1)
n − F (li)

n

F (li+1) − F (li)

[

(i + 1)
[

1 − F (li)
]

− (i + 2)
[

1 − F (li+1)
]

]

(28)

Thus an auction which closes atl0 has a duration of one unit and
one in which none of the bidders have valuations sufficient to bid
l0 has a duration of zero.

D. EXPECTED AUCTION EFFICIENCY
The efficiency of the auction (i.e. the probability that the item is
allocated to the bidder with the highest valuation) is determined
by again considering the three cases that describe how the auction
closes. Cases two and three both represent efficient cases where the
item is allocated to the bidder with the highest valuation. However,
inefficiency occurs both when the item is not allocated to any bidder
at all (i.e. all bidders have valuations belowl0) and with probability
(k − 1)/k in case two. Thus the expression for efficiency is given
as:

Efficiency= 1 −
m

∑

i=0

n
∑

k=2

(

n

k

)

k − 1

k
F (li)

n−k

× [F (li+1) − F (li)]
k − F (l0)

n (29)

Unlike the combinatorial summations encounter earlier, it is not
possible to further simplify this expression.


