
Communicating with Unknown Teammates

Samuel Barrett1 and Noa Agmon2
and Noam Hazon3

and Sarit Kraus2,4 and Peter Stone1

Abstract.

Past research has investigated a number of methods for co-
ordinating teams of agents, but with the growing number of
sources of agents, it is likely that agents will encounter team-
mates that do not share their coordination methods. There-
fore, it is desirable for agents to adapt to these teammates,
forming an effective ad hoc team. Past ad hoc teamwork re-
search has focused on cases where the agents do not directly
communicate. However when teammates do communicate, it
can provide a valuable channel for coordination. Therefore,
this paper tackles the problem of communication in ad hoc
teams, introducing a minimal version of the multiagent, multi-
armed bandit problem with limited communication between
the agents. The theoretical results in this paper prove that
this problem setting can be solved in polynomial time when
the agent knows the set of possible teammates. Furthermore,
the empirical results show that an agent can cooperate with a
variety of teammates following unknown behaviors even when
its models of these teammates are imperfect.

1 Introduction

Given the growing number of both software and robotic
agents, effective teamwork is becoming vital to many tasks.
Robots are becoming cheaper and more durable, and soft-
ware agents are becoming more common, e.g. for bidding in
ad auctions. With this increase in agents comes an increase in
their interactions and the number of companies and laborato-
ries creating these agents. Therefore, there is a growing need
for agents to be able to cooperate with a variety of different
teammates. This need motivates the area of ad hoc teamwork,
where agents are evaluated based on their ability to cooper-
ate with a variety of teammates. Stone et al. [16] define ad
hoc teamwork problems as problems in which a team can-
not pre-coordinate its actions and introduce an algorithm for
evaluating ad hoc team agents.

Past work on ad hoc teamwork has focused on the case
where the ad hoc agent cannot (or does not) directly commu-
nicate to its teammates and can only coordinate by observing
its teammates’ actions. However, in an increasingly intercon-
nected world, this lack of reasoning about communication is
a missed opportunity. Therefore, the focus of this work is to
show that when there is some form of limited communication
using a common language, an agent can influence its team-
mates to improve the performance of the team. It is important
to consider that while the ad hoc agent can choose what mes-
sages to send, it cannot control how they will be interpreted.

1 University of Texas at Austin, {sbarrett,pstone}@cs.utexas.edu
2 Bar-Ilan University, {agmon,sarit}@cs.biu.ac.il
3 Ariel University, noamh@ariel.ac.il
4 University of Maryland

Thus, the goal is to find the optimal messages to send and
actions to select in order to influence the team to achieve the
best total reward.

This paper makes three main contributions. First, it in-
troduces a minimal domain for investigating teammate com-
munication based on a multi-armed bandit scenario. Second,
it proves that when its teammates fulfill some assumptions,
optimal behaviors can be found in polynomial time for sev-
eral scenarios (with two Bernoulli actions and three types
of messages). Third, the paper evaluates an empirical plan-
ning algorithm based on Upper Confidence bounds for Trees
(UCT) which extends to problems not covered in the theoret-
ical analysis. Thus, this paper shows that ad hoc agents can
optimally learn about their environment and their teammates
while both acting in the world and communicating with their
teammates. This learning is tractable and can be performed
in polynomial time in terms of the problem parameters. In
addition, even when it has imperfect assumptions about its
teammates, an ad hoc agent can still learn and adapt so as to
enable its team to perform effectively.

2 Background and Problem Description

This paper introduces a multiagent, multi-armed bandit prob-
lem that allows limited communication. The multi-armed ban-
dit setting is a fundamental problem in single agent reinforce-
ment learning [18], and a bandit setting without communica-
tion has been used to study ad hoc teamwork in the past [17].
It is chosen here to serve as a minimal decision making do-
main that exhibits the necessary properties for investigating
communication with unknown teammates.

The multi-armed bandit setting is a useful abstraction for
many decision making scenarios. For example, consider a sce-
nario in which a number of robots are deployed to transport
supplies following a disaster. These robots must repeatedly
carry supplies along one of a few possible routes which vary
in their speed and safety. In this setting, selecting a route
corresponds to pulling an arm. It is desirable for these robots
to share their knowledge about the routes, but this commu-
nication takes time and is limited to whatever messages their
teammates understand. A robot that is adept at reasoning
about ad hoc teamwork should adapt to its teammates’ usage
of these routes and help the team select the best routes. This
research moves towards this goal in the bandit setting.

2.1 Ad Hoc Teamwork

While general multiagent research focuses on creating a coor-
dinated team to perform tasks, in ad hoc teamwork the goal is
to create agents that can cooperate with a variety of possible
teammates [16]. Specifically, we assume that there are several

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-45

45

existing teams of agents that can accomplish the task, and we
want to create an agent that can fit into any of these teams.
Compared to general teamwork research, the difference is that
these teams cannot be altered by us; we can only design a sin-
gle agent that should adapt to any of these teams. One might
assume that the best behavior of the agent is to match the
behavior of its teammates. However, matching their behavior
may be undesirable when the agent has access to additional
knowledge or better algorithms.

2.2 Models

The Markov Decision Process (MDP) is a useful model for
repeated decision making tasks. An MDP is a 4-tuple M =
(S,A, P,R) where S is a set of states, A is the set of actions,
P (s, a, s′) = Pr(sr+1 = s′|sr = s, ar = a) is the transition
function specifying the probability of reaching state s′ after
taking action a in state s, and R(s, a, s′) is the resulting im-
mediate reward function. In an MDP, the goal is to find an op-
timal policy π∗(s) that selects actions that maximize the long
term expected reward. Using Dynamic Programming (DP), it
is possible to find the optimal solution to an MDP in polyno-
mial time in terms of the number of states and actions [13].

An extended version of this model known as the Partially
Observable Markov Decision Process (POMDP) is also used in
our analysis. In this model, the agent cannot directly observe
its true state s. Instead, it receives imperfect observations of
the underlying state, Ω(s) = o ∈ O, where O is the set of
possible observations. The underlying states and transitions
remain unchanged from the original MDP, as does the agent’s
goal of maximizing the reward. However, the agent’s task is
harder because it must reason about the true state.

The difficulty of solving a POMDP is bounded by the size
of the δ-covering of its belief space. A belief state is the prob-
ability distribution over states that the agent may be in. The
belief space is a combination of what the agent can directly
observe about the world and its beliefs about the hidden state
of the world. For a metric space A, a set B is a δ-covering if
∀a ∈ A ∃b ∈ B such that |a− b| < δ. Intuitively, a δ-covering
can be thought of as a set of multi-dimensional balls with
radius δ filling the space. The covering number is the size of
the smallest δ-covering. From Theorem 5 in [10], it is known
that a policy that performs within ǫ of the optimal policy for
a POMDP can be found in polynomial time in terms of the
size of a given δ-cover set B where δ = poly(ǫ). This theorem
shows this result for the infinite horizon, discounted rewards
case, chosen because the discount factor bounds the expected
total reward. However, these results extend to our finite hori-
zon setting given that expected total reward is bounded by
the number of rounds and agents (n+ 1)R.

2.3 Bandit Setting

We formally define the bandit problem in this paper as the tu-
ple G = (A,C,P, R) where A is a set of two arms {arm0, arm1}
with Bernoulli payoff distributions, returning either 0 or 1,
C = {(ci, cost(ci))} is a finite set of possible communications
and their costs, P denotes the players in the problem with
|P| = n + 1 with n of the agents being a pre-designed team,
and R is the number of rounds. Each round in the problem
involves two phases: (1) a communication phase followed by
(2) an action phase. In both phases, all agents act simultane-
ously. In the communication phase, each agent can broadcast
a message of each type to its teammates:

• obs – Send the agent’s last selected arm and payoff
• meani – Send the agent’s observed mean and number of

pulls for armi

• suggesti – Suggest that the teammates pull armi

These message types are understood by all of the agents. In
the action phase, each agent chooses an arm and receives a
payoff. The team’s goal is to maximize the sum of payoffs
minus the communication costs. We use arm∗ to denote the
arm with the highest payoff. Note that the results in this
paper can be generalized to any number of fixed arms, other
discrete distributions, and other message types.

2.4 Teammate Behavior

If the teammates have different knowledge from each other,
this problem can be exponentially hard. However, we simplify
the problem by assuming that the ad hoc agent’s teammates
form an existing team, and therefore are tightly coordinated.
Therefore, this team’s behavior can be described as a function
of the team’s total number of pulls and successes of each arm
as they pool this knowledge using the message types provided
above. The team’s actions also rely on the ad hoc agent’s
pulls and successes that it has communicated, combining all
of the team’s pulls and successes as well as the ad hoc agent’s
into a single estimate of the quality of each arm. While the
assumption that all of the knowledge is shared via communi-
cation may not always hold, it may hold in many scenarios.
Section 5 considers agents that do not satisfy this assump-
tion, although the ad hoc agent still uses this assumption to
simplify planning. Each teammate’s behavior consists of an
action function, act, and a communication function, comm.
These functions specify the probability of the agent selecting
arms or sending messages.

3 Applying the Models

When the ad hoc agent knows its teammates’ behaviors, it
can model the bandit problem as an MDP. The MDP’s state
is composed of the pulls and observations of the ad hoc
agent’s teammates as well as the messages it has sent. Let
K = (p0, s0, p1, s1) be the knowledge about the arms where pi
and si are the number of pulls and successes of armi. Then,
the state is given by the vector (Kt,Ka,Kc, r, phase, sugg),
where Kt is the team’s knowledge from their pulls, Ka is the
ad hoc agent’s knowledge from its pulls, Kc is the knowledge
that the ad hoc agent has communicated, r is the current
round number, phase is the phase of the round, and sugg is
the ad hoc agent’s most recent suggestion. As the n agents on
the team are coordinated, their actions depend on Kt and Kc

and not directly on Ka. We split Kc from Kt to model how
the ad hoc agent’s messages will affect the team. For exam-
ple, if the ad hoc agent already communicated an observation,
communicating its observations of the same arm will replace
its teammates’ memory of this observation.

Next, we reason about the number of states and actions
of the resulting MDP. Given that there are R rounds and n
teammates, pi and si in Kt are each bounded by nR, pi and
si in both Ka and Kc are each bounded by R. The round r
is bounded by R, and there are 2 possible phases of a round.
Finally, the most recent suggestion sugg takes on one of 3
values (arm0, arm1, or none). Therefore, the state space has
at most (nR)4 ·R ·R4 ·R4 · 2 · 3 = 6n4R13 states. While this
sounds large, a polynomial bound means that the problem is
tractable and existing algorithms can be applied.

S. Barrett et al. / Communicating with Unknown Teammates46

The actions of the MDP are the possible arms and the
available messages. Arms other than arm∗ are considered be-
cause their observations affect the messages that the ad hoc
agent can send to affect its teammates’ actions. Let ǫ repre-
sents no message, o ∈ {ǫ, obs}, m ∈ {ǫ,mean0,mean1}, and
s ∈ {ǫ, arm0, arm1}. In the communication phase, the ad hoc
agent can send one message of each type, resulting in an action
of the form (o,m, s). Therefore, there are 2 · 3 · 3 = 18 actions
in the communication phase, and 2 in the action phase.

The transition function P is composed of the act and
comm functions, the arms’ payoff distributions, and the ef-
fects of the ad hoc agent’s messages. Specifically, act and the
ad hoc agent’s chosen arms affect the pi values in Kt and Ka

respectively, while the arm distributions specify how these ac-
tions affect the si values in Kt and Ka. The ad hoc agent’s
messages and Ka define the changes to Kc and sugg . The re-
ward function R is a combination of the rewards coming from
the arms and the costs of communication.

4 Theoretical Analysis

To solve the general problem of ad hoc teamwork in the ban-
dit domain, we first tackle the simplest version of the prob-
lem and then progressively relax our assumptions. Specifically,
Sections 4.1–4.4 show that a number of ad hoc team problems
in the bandit setting are provably tractable, as summarized
in Table 1. Specifically, these results prove that ad hoc team
agents can plan approximately optimal behaviors involving
communication without taking more than polynomial time.

Knowledge of Teammate Knowledge of Solution
Section

Teammates Type Environment Type
Known Stochastic Known Exact 4.1

Finite Set Deterministic Known Exact 4.2
Parameterized Set Stochastic Known Approx. 4.3
Parameterized Set Stochastic Unknown Approx. 4.4

Table 1: Problems that are solvable in polynomial time.

4.1 Known Teammates and Arms

In this setting, the ad hoc agent knows the true distributions
of the arms and can observe its teammates’ actions and the
resulting payoffs. In addition, it knows the true stochastic
behavior (act and comm) of its teammates. Therefore, the
ad hoc agent has a full model of the problem described in
Section 3. It is possible to find the optimal solution to an
MDP using DP in time polynomial in the MDP’s size, which
is polynomial in the number of rounds R and teammates n.
Therefore, Proposition 1 directly follows.

Proposition 1. An ad hoc agent that knows the true arm

distributions and its teammates’ behaviors can calculate its

optimal behavior for maximizing the team’s shared payoffs in

poly(R,n) time.

4.2 Teammates from a Finite Set

In this section, we relax the constraint on knowing the team-
mates’ behaviors. Rather than knowing the specific behavior
of its teammates, the ad hoc agent instead knows that the
behaviors are drawn from a known, finite set of deterministic
behaviors. In addition, it still knows the true distributions of
the arms. This case is of interest because a finite set of behav-
iors can often cover the space of likely behaviors. For example,
analysis of ad hoc teamwork [3] and using machine learning
with psychological models [14] suggests that a small number
of behaviors can represent the spread of possible behaviors.

In general, this finite set of behaviors can vary, but in
this analysis, we consider two types of teammates: 1) greedy
agents and 2) ones that choose arms using confidence bounds
in the form of UCB1 [1]. The UCB1 agents select actions using

arm = argmax
i

si
pi

+ c
√

ln(p0+p1)
pi

(1)

where c = 1. The ad hoc agent is given a prior probability
distribution over teams following either of these behaviors.
The teammates are assumed to use the ad hoc agent’s com-
municated pulls when selecting their actions. Additionally, we
assume that these teammates share all information with each
other and send messages that the ad hoc agent can hear, but
these messages do not reveal the teammates’ behaviors.

To analyze this problem, we add the ad hoc agent’s beliefs
about its teammates into the state space that the agent plans
over. As the teammates are deterministic, there are three pos-
sibilities for the belief space: both models are still possible,
only the greedy model is possible, or only the UCB1 model is
possible. Therefore, the combined belief and world state space
is three times larger than the world state space, and the re-
sulting MDP has state space of size 18n4R13. In general, the
increase in size is 2k−1 where k is the number of models, but
we assume that k is fixed and not a problem parameter. The
transition function can be modified to simultaneously update
the ad hoc agent’s beliefs as well as the world state based
on whether a teammate model predicts the observed actions.
Therefore, the MDP can again be solved using DP in polyno-
mial time. Proposition 2 follows directly from this reasoning.

Proposition 2. An ad hoc agent that knows the true arm dis-

tributions and that its teammates’ behaviors are drawn from

a known set of two deterministic behaviors can calculate its

optimal behavior for maximizing the team’s shared payoffs in

poly(R,n) time.

4.3 Teammates from a Continuous Set

In this section, we further relax the constraints on the team-
mates’ behaviors, considering a continuous set of stochastic
behaviors rather than the discrete set of deterministic behav-
iors used in the last section. We still consider a small number
of possible behaviors, specifically ε-greedy and UCB(c). For
these behaviors, ε is the probability of taking a random ac-
tion, and c is the scaling factor of the confidence bound in
Eq. 1. Therefore, the ad hoc agent must maintain a belief dis-
tribution over values of ε, values of c, and p the probability of
the teammates being ε-greedy. The ad hoc agent is given the
prior knowledge that ε, c are uniformly distributed over [0, 1],
and it starts with an initial estimate of p. While we use two
models for simplicity, this analysis can be extended for any
fixed number of parameterized models.

To analyze this problem, we model the problem as a
POMDP as discussed in Section 2.2. The transition function
for the fully observable state variables remains the same as in
the original MDP. In this setting, the belief space has three
partially observed values: ε, c, and p the probability of the
teammates being ε-greedy versus UCB(c). The value of p is
updated using Bayes’ rule given the probability of the models
predicting the observed actions, and the updates to the prob-
ability distributions of ε and c are described in Lemma 1. The
remainder of the POMDP remains as defined above.

In Lemma 1 and Theorem 1, we show that in this expansion
of the problem, the ad hoc agent can perform within η of the
optimal behavior with calculations performed in polynomial

S. Barrett et al. / Communicating with Unknown Teammates 47

time. This result comes from reasoning about the δ-covering
of the belief space, which defines the difficulty of solving the
POMDP as discussed in Section 2.2.

Lemma 1. The belief space of the resulting POMDP has a

δ-covering with size poly(R,n, 1/δ).

Proof. The resulting size of the δ-covering is a product of the
contributing factors. These factors come from the underlying
MDP state s, ε, c, and p. Using Proposition 1 of [10], we know
that the fully observed state variables result in a multiplica-
tive factor that is polynomial in R and n. Therefore, since
the ad hoc agent directly observes s, it only results is a factor
of poly(R,n). The probability of the two models p is a single
real value in [0,1], resulting in a factor of 1/δ. The parameter
ε has a uniform prior, so the posterior is a beta distribution,
relying on two parameters, α and β. These parameters corre-
spond to the (fully observed) number of observed greedy and
random pulls; thus, each are integers bounded by nR. There-
fore, the probability distribution over ε can be represented
using a factor of size (nR)2.

The parameter c has a uniform prior, and UCB agents select
arms using Eq. 1, combining the communicated and team’s
pulls by setting pj = ptj +pcj and sj = stj +scj . The teammates
will only select the lower arm when c is above a certain value
and the higher arm when c is below a certain value. Therefore,
the top and bottom ranges of c can be updated using linear
programming from observing their actions. Note that the pos-
terior remains uniform; only the range changes. Therefore, the
probability distribution over c can be represented using two
real values in [0, 1] that are the top and bottom of the uniform
range of c, resulting in a factor of 1/δ2. Multiplying all of of
these factors results in a δ-covering of size poly(R,n, 1/δ).

As discussed in Section 2.2, a POMDP can be solved ap-
proximately in polynomial time given a covering set. Given
this result and Lemma 1, Theorem 1 follows directly.

Theorem 1. Consider an ad hoc agent that can observe its

teammates’ actions, knows the true arm distributions, and

knows that its teammates are drawn from a known, continuous

set of ε-greedy and UCB teammates. This agent can calculate

an η-optimal behavior in poly(n,R, 1/η) time.

4.4 Unknown Arms

The previous sections assumed that the ad hoc agent al-
ready knew the underlying distributions of the arms (i.e. the
POMDP’s transition function), but in many cases the ad hoc
agent may not have this information. Therefore, it is desirable
for the ad hoc agent to reason about trading off between ex-
ploring the domain, exploring its teammates, and exploiting
its current knowledge. In this section, we prove that the ad
hoc agent can optimally handle this tradeoff while planning
in polynomial time. We again assume that the ad hoc agent
knows its teammates’ pulls and results, either by observing
them directly or by listening to its teammates’ messages.

The belief space of the POMDP is increased to track two
additional values, one for the Bernoulli success probability of
each arm. The probabilities of these values can be tracked
using a beta distribution similar to ε in Lemma 1, resulting
in an additional multiplicative factor of (nR)2. Therefore, the
covering number has size poly(R,n, 1/δ). Theorem 2 follows
naturally from this result and the reasoning in Theorem 1.

Theorem 2. Consider an ad hoc agent that does not know

the true arm distributions, but has a uniform prior over their

success probability, knows that its teammates’ behaviors are

drawn from a continuous set of ε-greedy and UCB teammates,

and can observe the results of their actions. This agent can

calculate an η-optimal behavior in poly(n,R, 1/η) time.

5 Empirical Evaluation

This section investigates whether the problem is empirically
tractable in addition to being theoretically tractable. The re-
sults show that modeling the problem as a (PO)MDP and
planning using this model significantly improves the perfor-
mance of the team compared to several intuitive baseline be-
haviors in several scenarios. In this setting, calculating the ex-
act optimal behavior becomes impractical as the problem size
grows. Therefore, in the empirical setting, we use Partially
Observable Monte-Carlo Planning (POMCP) [15]. POMCP
has been shown to be effective on a number of large POMDPs,
and similar planning methods have been effective for ad hoc
teamwork [3]. While POMCP is not guaranteed to find an
optimal solution given our limited computation, our results
show that it plans an effective behavior in our setting.

5.1 Methods

POMCP is a Monte Carlo Tree Search (MCTS) algorithm
that is based on the Upper Confidence bounds for Trees
(UCT) algorithm [11]. Specifically, POMCP starts from the
current state and performs a number of simulations until
reaching the end of the problem. In the simulations, the agent
selects its actions using upper confidence bounds on its cur-
rent estimates of the available actions. The results of pulling
arms are randomly sampled given the arms’ distributions. For
its teammates, the ad hoc agent plans as if they use either the
ε-greedy or the UCB algorithms. To model the effects of send-
ing suggestions, agents are given a probability of following the
most recent suggestion, with the probability being uniformly
drawn from [0,1]. In all of the evaluations, we assume that the
ad hoc agent can observe its teammates’ actions and payoffs.
The ad hoc agent knows the true distributions of the arms
except where otherwise noted (Figure 3).

5.2 Results

The evaluations use 100 trials with teams where ε, c, and the
arms’ success probabilities are selected randomly uniformly
between 0 and 1. This randomness is fixed across the differ-
ent ad hoc agent behaviors to allow for paired statistical tests.
As the ad hoc agent does not know its teammates’ behaviors,
it initializes its beliefs by sampling both behavior types with
random parameter values. The results are average team re-
wards normalized by the average reward if all agents repeat-
edly pull the best arm. Statistical significance is tested using
a Wilcoxon signed-rank test with p < 0.05, denoted by “+”
in the figures when comparing POMCP to all other methods.

We compare four behaviors of the ad hoc agent:
• Match - Plays as if it were another agent of the team’s

type, but can observe all agents’ results
• NoComm - Pulls the best arm and does not communicate
• Obs - Pulls the best arm and sends its last observation
• POMCP - Plans using POMCP
Match, NoComm, and Obs serve as baselines. Pulling the best
arm and sending other messages were tested, but generally
produced worse results than either NoComm or Obs. Match

S. Barrett et al. / Communicating with Unknown Teammates48

is only used as a baseline when the arms’ payoffs are unknown.
Unless otherwise specified, there are 10 rounds and 7 team-
mates and we use 3 arms to test how our approach scales to
bigger problems than are theoretically proven. Furthermore,
the costs for sending messages are known by all agents and
randomly selected for each run. These costs are sampled from
[0,m|c|], where |c| is size of the message (3 for mean, 2 for
obs, and 1 for sugg) and m = 0.75 unless otherwise specified.

0.08 0.16 0.32 0.64 1.28 2.56

Message Cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(a) ε-greedy teammates

0.08 0.16 0.32 0.64 1.28 2.56

Message Cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(b) UCB teammates

Figure 1: Normalized rewards with varied message costs with a
logarithmic x-axis. Significance is denoted by “+”

Figure 1 presents the results when the ad hoc agent encoun-
ters the problem discussed in Section 4.3, cooperating with
teams that are ε-greedy or UCB, with varied message costs.
Note that NoComm is unaffected by the message costs as
it does not communicate. The results indicate that the agent
can effectively plan its actions, significantly outperforming the
baselines. The performance of POMCP diminishes as the cost
of messages rises because affecting the teammates becomes
more costly. However, the POMCP approach will plan not to
communicate when the message costs get too high. The results
are similar when the ad hoc agent knows its teammates’ true
behavior, rather than assuming that both types are possible.

5.3 Externally-created Teammates

While we evaluate the ad hoc agent when it encounters team-
mates that are using the ε-greedy and the UCB algorithms,
we also consider a number of agents that were not created
by the authors, denoted externally-created teammates. These
agents serve as a sample of the variety of teammates an ad
hoc agent might encounter in real scenarios. These agents were
designed by undergraduate and graduate students as part of
an assignment on agent design. To prevent any bias in the
creation of the agents, the students designed the entire team
without considering ad hoc teamwork. These agents use the
same three types of messages available to the ad hoc agent.

Section 2 specifies that the teammates are assumed to be
tightly coordinated and know each other’s actions and payoffs
via communication. However, the externally-created agents
do not always choose to share this information, breaking this
assumption. In addition, the externally-created agents follow
a variety of behaviors, serving as a diverse set of imperfect
agents that may be created by different designers attempting
to solve real problems. We specifically did not analyze their
behaviors to prevent biasing the design of our ad hoc agent.
In our planning, we still assume that the teammates form
a coordinated team of ε-greedy and UCB agents for ease of
planning, and our results show that this approach is effective
despite its inaccuracies.

Given that the externally-created teams quickly converge
to the best arm, all approaches perform similarly with these
teammates. Therefore, we investigate the worst case scenario
for the team: the best arm performs poorly early in the sce-

nario, possibly misleading the team into not pulling the arm
later. To create this setting, we consider the case where in
the first 5 rounds, the teammates’ pulls of the best arm are
biased to have a lower chance of success. In this setting, both
the teammates and the ad hoc agent are unaware of the ini-
tial bias of the arm. Therefore, this test evaluates how well
the ad hoc agent can use its prior knowledge to correct the
misinformation its teammates have observed.

Figure 2 shows the results with externally-created agents.
In these evaluations, we test the sensitivity of the agent to
various problem parameters, investigating under which condi-
tions POMCP outperforms the baselines. Note that the mes-
sage costs are also applied to the externally-created team-
mates, which know the current message costs, so the perfor-
mance of NoComm is now affected by message costs.

0.08 0.16 0.32 0.64 1.28 2.56

Message Cost

0.0

0.2

0.4

0.6

0.8

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(a) Message costs with loga-
rithmic x-axis.

10 20 30 40 50

Num Rounds
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(b) Numbers of rounds.

2 3 4 5 6 7 8 9 10

Num Arms

0.4

0.5

0.6

0.7

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(c) Numbers of arms.

1 2 3 4 5 6 7 8 9

Num Teammates

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(d) Numbers of teammates.

Figure 2: Normalized rewards with varied parameters when coop-
erating with externally-created teammates.

As the cost of communicating increases, NoComm becomes
closer to the optimal behavior. As the number of rounds in-
creases, communicating is more helpful because there is more
time to reap the benefits of better informing the teammates.
With more arms, it is harder to get the teammates to select
the best arm, so communicating is less helpful. With more
teammates, communicating is more likely to be outweighed
by other agents’ messages, but there is more benefit if the
team can be convinced, hence the improvement of Obs. Over-
all,the results in these scenarios tell a similar story, specifically
that reasoning about communication helps an ad hoc agent
effectively cooperate with various teammates, even when its
models of these teammates are incomplete or incorrect.

5.4 Unknown Arms

While the previous sections investigated how an ad hoc agent
can cooperate with a variety of teammates, the ad hoc agents
were provided with prior knowledge about the underlying dis-
tributions of the arms. This section investigates a scenario
in which the ad hoc agent is also uncertain about the true
payoffs of the arms and must simultaneously learn about the
world and its teammates, as discussed in Section 4.4. We still
assume that the ad hoc agent can observe the payoffs of its
teammates’ actions, for example by listening to their mes-
sages. Figure 3 shows the results for this scenario. When using

S. Barrett et al. / Communicating with Unknown Teammates 49

the POMCP behavior, the ad hoc agent samples its starting
states by randomly selecting the payoff value of each arm.
In the NoComm and Obs settings, the ad hoc agent chooses
arms ε-greedily, with ε = 0.1, because it does not know the
true best arm. To encourage more sharing, the base message
cost is set to m = 0.04. The results show that even when the
ad hoc agent is unsure of the arms’ payoffs, it performs better
by cooperating using communication.

1 2 3 4 5 6 7 8 9

Num Teammates
0.60

0.65

0.70

0.75

0.80

0.85

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

Match

(a) Mix of ε-greedy and UCB
teammates.

1 2 3 4 5 6 7 8 9

Num Teammates
0.65

0.70

0.75

0.80

0.85

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

Match

(b) Externally-created team-
mates.

Figure 3: Normalized rewards when dealing with unknown arms
and varying numbers of teammates.

6 Related Work

Multiagent teams have been well studied, with previous re-
search mainly focusing on creating standardized methods for
coordination and communication. The SharedPlans frame-
work assumes common recipes exist across teammates [8]. In
STEAM [19], team members build a partial hierarchy of joint
actions. The TAEMS framework [9] consists of a hierarchy
of rules, where agents coordinate through common groups,
tasks, and methods. While these algorithms are effective in
many settings, they assume that all teammates are using the
same teamwork mechanism.

On the other hand, ad hoc teamwork focuses on the case
where the agents do not share a coordination algorithm. Bowl-
ing and McCracken [4] consider robots playing soccer in which
the ad hoc agent has a playbook that differs from its team-
mates’. In [12], Liemhetcharat and Veloso reason about select-
ing agents to form ad hoc teams. Barrett et al. [3] empirically
evaluate an MCTS-based ad hoc team agent in the pursuit
domain, and Barrett and Stone [2] analyze existing research
and propose one way to categorize ad hoc teamwork problems.
A more theoretical approach is Wu et al.’s work [20] into ad
hoc teams using stage games and biased adaptive play.

Goldman et al. [7] investigate learning to communicate.
However, they assume very little about the meaning of mes-
sages and therefore learn over a long period of time, as op-
posed to the faster adaption enabled by our assumptions of
the messages’ meanings. Other work investigates agents that
explicitly model and reason about their opponent’s beliefs in
the form of interactive POMDPs [6] and interactive dynamic
influence diagrams (I-DIDs) [5].

7 Conclusion

Past research on ad hoc teamwork has largely focused on sce-
narios in which the ad hoc agent cannot (or does not) di-
rectly communicate with its teammates. This work addresses
this gap by introducing an agent that reasons about commu-
nicating in ad hoc teams. In order to theoretically analyze
this problem, we introduce a minimal domain that allows for
communication. Then, we prove that an agent can optimally
plan how to cooperate with a its teammates using only poly-
nomial computation, even when it may encounter an infinite

variety of teammates in the form of parameterized behavior
models. Furthermore, we empirically evaluate an algorithm
for planning in these problems and show that it allows an
agent to adapt to teammates that were created by a variety
of developers, even when the agent has only imperfect models
of its teammates. Finally, we also empirically show that the
ad hoc agent can effectively learn about its environment and
its teammates simultaneously.

ACKNOWLEDGEMENTS
This work has taken place in the Learning Agents Research Group

(LARG) at UT Austin. LARG research is supported in part by NSF

(CNS-1330072, CNS-1305287) and ONR (21C184-01). This research is

supported in part by the U.S. Army Research Laboratory and the U.S.

Army Research Office under grant number W911NF-08-1-0144 and by

ERC grant #267523.

REFERENCES

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, ‘Finite-
time analysis of the multiarmed bandit problem’, Machine
Learning, 47, 235–256, (May 2002).

[2] Samuel Barrett and Peter Stone, ‘An analysis framework for
ad hoc teamwork tasks’, in AAMAS ’12, (June 2012).

[3] Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld,
‘Teamwork with limited knowledge of teammates’, in AAAI,
(July 2013).

[4] Michael Bowling and Peter McCracken, ‘Coordination and
adaptation in impromptu teams’, in AAAI, (2005).

[5] Prashant Doshi and Yifeng Zeng, ‘Improved approximation of
interactive dynamic influence diagrams using discriminative
model updates’, in AAMAS ’09, (2009).

[6] Piotr J. Gmytrasiewicz and Prashant Doshi, ‘A framework
for sequential planning in multi-agent settings’, JAIR, 24(1),
49–79, (July 2005).

[7] Claudia V. Goldman, Martin Allen, and Shlomo Zilberstein,
‘Learning to communicate in a decentralized environment’,
Autonomous Agents and Multi-Agent Systems, 15(1), (2007).

[8] B. Grosz and S. Kraus, ‘The evolution of SharedPlans’, in
Foundations and Theories of Rational Agency, (1999).

[9] Bryan Horling, Victor Lesser, Regis Vincent, Tom Wagner,
Anita Raja, Shelley Zhang, Keith Decker, and Alan Garvey.
The TAEMS White Paper, January 1999.

[10] David Hsu, Wee Sun Lee, and Nan Rong, ‘What makes some
POMDP problems easy to approximate?’, in NIPS, (2007).

[11] Levente Kocsis and Csaba Szepesvari, ‘Bandit based Monte-
Carlo planning’, in ECML ’06, (2006).

[12] Somchaya Liemhetcharat and Manuela Veloso, ‘Modeling mu-
tual capabilities in heterogeneous teams for role assignment’,
in IROS ’11, pp. 3638 –3644, (2011).

[13] Martin L Puterman and Moon Chirl Shin, ‘Modified policy it-
eration algorithms for discounted Markov decision problems’,
Management Science, 24(11), 1127–1137, (1978).

[14] Avi Rosenfeld, Inon Zuckerman, Amos Azaria, and Sarit
Kraus, ‘Combining psychological models with machine learn-
ing to better predict people’s decisions’, Synthese, 189, 81–93,
(2012).

[15] David Silver and Joel Veness, ‘Monte-Carlo planning in large
POMDPs’, in NIPS ’10, (2010).

[16] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S.
Rosenschein, ‘Ad hoc autonomous agent teams: Collaboration
without pre-coordination’, in AAAI ’10, (July 2010).

[17] Peter Stone and Sarit Kraus, ‘To teach or not to teach? Deci-
sion making under uncertainty in ad hoc teams’, in AAMAS
’10, (May 2010).

[18] Richard S. Sutton and Andrew G. Barto, Reinforcement
Learning: An Introduction, MIT Press, Cambridge, MA,
USA, 1998.

[19] M. Tambe, ‘Towards flexible teamwork’, Journal of Artificial
Intelligence Research, 7, 83–124, (1997).

[20] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen, ‘Online
planning for ad hoc autonomous agent teams’, in IJCAI,
(2011).

S. Barrett et al. / Communicating with Unknown Teammates50

