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Abstract
In many coalition formation games the utility of
the agents depends on a social network. In such
scenarios there might be a manipulative agent that
would like to manipulate his connections in the so-
cial network in order to increase his utility. We
study a model of coalition formation in which a
central organizer, who needs to form k coalitions,
obtains information about the social network from
the agents. The central organizer has her own ob-
jective: she might want to maximize the utilitar-
ian social welfare, maximize the egalitarian social
welfare, or simply guarantee that every agent will
have at least one connection within her coalition.
In this paper we study the susceptibility to manip-
ulation of these objectives, given the abilities and
information that the manipulator has. Specifically,
we show that if the manipulator has very limited
information, namely he is only familiar with his
immediate neighbours in the network, then a ma-
nipulation is almost always impossible. Moreover,
if the manipulator is only able to add connections
to the social network, then a manipulation is still
impossible for some objectives, even if the manip-
ulator has full information on the structure of the
network. On the other hand, if the manipulator is
able to hide some of his connections, then all ob-
jectives are susceptible to manipulation, even if the
manipulator has limited information, i.e., when he
is familiar with his immediate neighbours and with
their neighbours.

1 Introduction
Coalition formation is one of the fundamental research prob-
lems in multi-agent systems [Chalkiadakis et al., 2011].
Broadly speaking, coalition formation is concerned with par-
titioning a population of agents into disjointed teams (or
coalitions) with the aim that some system-wide performance
measure is maximized. Indeed, in many coalition formation
games there is a central organizer that would like to maxi-
mize some objective.

One assumption that is usually made is that the utility func-
tion of the agents is known and given as an input. However,

in some real-world scenarios the organizer obtains the infor-
mation regarding the utility function directly from the agents.
For example, when dividing students into classes, it is a com-
mon practice to ask the students about their social relation-
ships [Alon, 2019], since a student is more satisfied if the
number of friends she has within the class to which she is
assigned is maximized. Similarly, when assigning workers
to tasks, a manager would be interested in the interpersonal
relationships between potential team members. Ideally, the
agents would report their true social relationships so that the
organizer will be able to choose the most appropriate coali-
tion structure. However, there might be scenarios in which an
agent is better off manipulating the organizer by misreporting
his relationships.

Indeed, the problem of manipulation in the context of coali-
tional games has been studied recently [Wright and Vorobey-
chik, 2015; Flammini et al., 2017]. These studies have looked
for strategyproof mechanisms for forming the coalitions, at
the cost of non-optimal social welfare (SW). In this paper we
propose a complementary approach. We study in which sit-
uations there might be an agent with an incentive to manip-
ulate the organizer, and in which situations no agent has an
incentive to manipulate the organizer, and thus a special strat-
egyproof mechanism is not needed (see [Vallée et al., 2014]
for a similar approach). This analysis is in the same vein as
the works of [Gibbard, 1973] and [Satterthwaite, 1975] in the
context of voting, that studied in which situations there might
be a voter with an incentive to misreport her true vote.

We focus on k-coalitional games, where exactly k coali-
tions must be formed [Sless et al., 2018]. We assume that the
agents’ utilities depend on a social network that represents
the social relationships among the agents. Specifically, the
social network is modeled as an unweighted graph where the
vertices are agents and the edges indicate friendship among
the agents. The utility function of an agent is the number
of friends she has within the coalition to which she is as-
signed. Actually, our model is a special case of simple Ad-
ditively Separable Hedonic Games (ASHGs) [Bogomolnaia
et al., 2002]. In addition, there is an organizer that would like
to maximize some objective function, thus she needs to obtain
the structure of the social network from the agents’ reports re-
garding their friendships. In such situations, it is possible that
one manipulative agent would like to misreport his friendship
connections, in order to increase his utility. In particular, a



Directed Undirected

Add Remove Add Remove

Max-Util Strict(F 3a) Strict(F 2b) Strict(F 3a) Strict(F 2a)*
Max-Egal Strategyproof(T 2) Strict(F 2e) LB,UB(F 3b,3c), W-proof(T 1) Strict(F 2f)
At-least-1 Strategyproof(T 3) LB(F 2g), UB-Proof(T 4) Strict(F 3d) LB(F 2g),UB-proof(T 4)

Table 1: Summary of the results. The parentheses near a result refer to the corresponding figure (F) or theorem (T). The results hold for both
full information and distance 2, except for the result with the * , which holds only for the full information case. Key: LB/UB/Strict = the
objective is subject to LB/UB/Strict-improvement, W-proof = the objective is weak-proof.
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Figure 1: The possible utility values of the manipulator for each ma-
nipulation type.

manipulator may hide some of his connections or he may add
connections by reporting fake connections (with agents with
which the manipulator does not have real connections).

Within these settings we study different objectives for the
organizer and analyze their susceptibility or resistance to ma-
nipulation. Specifically, we study the objective of maximiz-
ing the utilitarian social welfare (Max-Util), maximizing the
egalitarian social welfare (Max-Egal), and the At-least-1 ob-
jective, where the organizer is only interested in guaranteeing
that every agent will have at least one friendship connection
within her coalition. Moreover, we study different settings
regarding the abilities and information that the manipulator
has. Specifically, we study a manipulator that is able to report
fake friendship connections (i.e. add edges) and a manipu-
lator that is able to hide some of his friendship connections
(i.e., remove edges). We study the situation in which the ma-
nipulator has full information regarding the structure of the
network and situations in which the manipulator has limited
information: he may be familiar only with his connections to
his immediate neighbours in the social network (denoted dis-
tance 1), or he may also be familiar with their connections to
other agents (denoted distance 2). (In both scenarios the ma-
nipulator knows about the existence of all agents in the social
network, but not how they are connected.)

Table 1 summarizes our results for the full information and
distance 2 settings. Overall, all of the objectives are suscep-
tible to manipulation by removing edges, even in the case of
distance 2. On the other hand, in some settings there are ob-
jectives that are resistant to manipulation by adding edges,
even in the case of full information. Note that the results for
distance 1 do not appear in the Table, since in almost all of
the cases the objectives are resistant to manipulation.

2 Related Work
There are several studies that developed strategyproof mech-
anisms for forming coalitions. Dimitrov and Sung [2004] dis-
cussed ASHGs where agents have both positive and nega-
tive edges, and provided a strategyproof algorithm for finding
stable outcomes. Rodrı́guez-Álvarez [2009] analyzed strate-
gyproof core stable solutions’ properties. They showed that
single lapping rules are necessary and sufficient for the exis-
tence of a unique core-stable partition. Aziz et al. [2013a]
showed that the serial dictatorship mechanism is strate-
gyproof with appropriate restrictions over the agents’ pref-
erences. Flammini et al. [2017] focused on the utilitarian
SW in ASHGs and Fractional Hedonic Games, and proposed
strategyproof mechanisms at the cost of non-optimal social
welfare. Wright and Vorobeychik [2015] studied a model of
ASHG that is very similar to our model, but instead of re-
stricting the number of coalitions they restricted the size of
each coalition. Within their model they proposed a strate-
gyproof mechanism that achieves good and fair experimental
performance, despite not having a theoretical guarantee. All
of these works have looked for strategyproof mechanisms,
while our approach is to study in which situations a strate-
gyproof mechanism is indeed needed, and in which situations
it is not needed since manipulation is impossible.

Our approach is similar to the approach of Vallée et al.
[2014], who studied general hedonic games and Sybil attacks,
i.e., manipulations, by adding false agents to the game. Vallée
et al. showed that hedonic games with Nash stability as the
solution concept are very robust to Sybil attacks, but when
contractual individual stability is the solution concept then
every game is manipulable. Recently, Alon [2019] considered
the At-least-1 objective, and analyzed whether a group of ma-
nipulators can guarantee being in the same coalition in every
game. Alon showed that such manipulation is almost always
impossible.

3 Definitions
Let A = {a1, . . . , an} be a finite, non-empty set of agents,
and let G = (A,E) be a graph with no self loops, represent-
ing the friendship connections between the agents. The set of
immediate neighbours of ai in G is denoted by N(ai). We
also refer to G as the social network. A coalition C ⊆ A is
a subset of agents; we do not require that agents in a coali-
tion form a connected component in the corresponding social
network. Let u(ai, C) be the utility that agent ai would ob-
tain from being in coalition C. This value is simply the sum



of edges corresponding to the immediate neighbors of ai that
are members of C. That is, u(ai, C) = |C ∩N(ai)|.

We assume that there is a central organizer that would like
to partition the agents into k coalitions in order to satisfy
some objective, obj. Let Πk denote the set of partitions of A
that contain exactly k non-empty subsets where 0 < k ≤ n.
We refer to elements of Πk as coalition structures (CS), and
typically use P, P ′, . . . to denote such coalition structures. We
assume that the utility of agent a depends only on the mem-
bers of her coalition. Therefore, if P ∈ Πk, C ∈ P , and
a ∈ C, then we use the notation u(a, P ) to refer to u(a,C).
Note that there may be several coalition structures that sat-
isfy a given objective obj. We denote this set of coalitions as
Oobj(G) ⊆ Πk and refer to them as solutions. In many cases
we omit the reference to obj when it is clear.

In our setting the social network is formed based on self
reports of the agents. That is, each agent ai is asked by the or-
ganizer to list all of her friendship connections. Formally, let
R = {r1, . . . , rn} be the set of reports, where ri ⊆ A \ {ai}.
In such a scenario there might be a manipulative agent m. We
begin by assuming that m has full information regarding the
social network (we relax this assumption in Section 5) and the
objective of the central organizer, obj. Moreover, we assume
that m is able to misreport his friendship connections and
thus add non-existing edges connecting him to other agents
or omit existing edges between him and other agents. We de-
note these two types of manipulators by m+ and m−, respec-
tively. We did not consider a manipulator that is capable of
both adding and removing edges since it does not add any new
results: in all of our objectives only one capability is needed
to show susceptibility to manipulation. Let Gm = (A,Em)
be the resulting social network known to the organizer after
the manipulation rm, and let Nm(a) be the set of immediate
neighbours of a in Gm. Note that if G is directed then we
assume that m is able to add or remove only outgoing edges,
i.e., add an edge (m, ai) /∈ E or remove an edge (m, ai) ∈ E.
m is not able to add or remove incoming edges, i.e., add an
edge (ai,m) /∈ E or remove an edge (ai,m) ∈ E. That is,
N(a) = Nm(a) for every agent a 6= m. If G is undirected
then a manipulation by adding edges is relevant when the or-
ganizer adds an edge (ai, aj) to G if either ai ∈ rj or aj ∈ ri.
On the other hand, a manipulation by removing edges is rele-
vant when the organizer adds an edge (ai, aj) to G only when
both ai ∈ rj and aj ∈ ri. When the context is clear we will
sometimes refer to Gm as the manipulation.

Clearly, the goal of the manipulator is a successful manip-
ulation. Indeed, in our setting there are several ways to define
what a successful manipulation is, since there may be several
coalition structures that satisfy obj in G and in Gm, but the
utility of m might be different in each such coalition struc-
ture. Formally, given a network G and objective obj:
Definition 1. A manipulation rm is a lower bound improve-
ment (LB-improvement) for a manipulator m if:

min
P∈Oobj(Gm)

(u(m,P )) > min
P∈Oobj(G)

(u(m,P )).

A manipulation rm is an upper bound improvement (UB-
improvement) for a manipulator m if:

max
P∈Oobj(Gm)

(u(m,P )) > max
P∈Oobj(G)

(u(m,P )).

That is, LB-improvement eliminates coalition structures
with low utility for the manipulator, while UB-improvement
adds coalition structures with higher utility for the manipula-
tor. For example, assume that for an objective obj and a graph
G there are two possible CSs. That is, Oobj(G) = {P1, P2}.
Moreover, assume that u(m,P1) = 1 and u(m,P2) = 2.
If there exists a manipulation rm where Oobj(G

m) = {P2}
(or any other P satisfying u(m,P ) = 2) then Gm is a
LB-improvement. If there exists a manipulation rm where
Oobj(G

m) = {P1, P3} and u(m,P3) = 3 then Gm is an UB-
improvement. LB-improvement can be considered risk aver-
sion of some sort, while UB-improvement suits an optimistic
manipulator looking for higher utilities.

There is a stronger variant of manipulation which is both
LB- and UB-improvement. An even stronger variant is where
every coalition structure is strictly better than every possible
coalition structure that would have been generated with m’s
true preferences. Formally:
Definition 2. A manipulation rm is a weak-improvement
for a manipulator m if it is both LB-improvement and
UB-improvement for him. A manipulation rm is a strict-
improvement for a manipulator m if:

min
P∈Oobj(Gm)

(u(m,P )) > max
P∈Oobj(G)

(u(m,P )).

Revisiting our example, a manipulation where
Oobj(G

m) = {P3} is a strict-improvement. Note that
the utility u(m,P ) is always calculated over the original
graph G with the manipulator’s true neighbours. We refer
to the different manipulations: LB, UB, weak, and strict-
improvement, as manipulation types. Finally, we define the
susceptibility and resistance to a manipulation type of a given
objective.
Definition 3. An objective obj is subject to LB-improvement
by manipulator m over (un)directed networks if there exists
a (un)directed social network G and a manipulation rm such
that rm is a LB-improvement for m. Otherwise, we say that
obj is LB-proof against m.

The definitions for the other manipulation types are similar.
When an objective is both LB- and UB-proof, we say that
it is strategyproof. Figure 1 demonstrates the possible utility
values of the manipulator for each manipulation type.

4 Full Information
We begin our analysis of the objectives and their suscepti-
bility or resistance to the different types of manipulation. To
show susceptibility to manipulation, we provide figures that
depict the scenarios in which manipulation is possible. We
use k = 2 in all of our proofs, but they can easily be ex-
tended for any k. We use the following notations: In all of
the figures the vertex m represents the manipulator. A node is
represented by a circle, and a rectangle with a number X rep-
resents a clique of X agents. An edge going to (from) a clique
represents edges going to (from) all nodes in the clique. An
edge going to (from) a clique with a number X represents
X edges going to (from) arbitrarily chosen X nodes in the
clique. If the graph is directed, then an undirected edge (a, b)
represents two directed edges, (a, b) and (b, a). If we prove



a result regarding an undirected graph and refer to a figure
with a directed graph then every directed edge represents an
undirected edge. Overall, Figure 3 provides scenarios for m+

and Figure 2 provides scenarios for m−. Therefore, the dot-
ted edges in Figure 2 are the fake edges that are added by the
manipulator, while the dotted edges in Figure 2 are the edges
that are removed by the manipulator.

We note that almost all of the susceptibility results in the
full information setting (except for Proposition 1) are derived
by the results of susceptibility in the distance 2 setting (see
Section 5.1). Therefore, in this section we mostly provide the
results regarding resistance to manipulation.

4.1 Max-Util
Maximizing the utilitarian social welfare (Max-Util) is a very
common objective in hedonic games [Aziz et al., 2015]. It
was also studied from the perspective of graph theory, since
finding a CS (with k coalitions) that maximizes the utilitarian
SW is equivalent to finding a minimum k-cut [Brânzei and
Larson, 2009]. Utilitarian SW is defined as the sum of the
utilities of all agents. Formally, it is

∑
a∈A

u(a, P ).

Max-Util is always susceptible to manipulation; in all of
the situations that we consider, this objective is subject to
strict-improvement. Recall that our susceptibility results are
derived from the distance 2 setting. However, there is one sit-
uation in which the susceptibility to manipulation in the dis-
tance 2 setting is not known , and thus we show that even in
this situation Max-Util is subject to strict-improvement.

Proposition 1. Max-Util is subject to strict-improvement by
a manipulator m− over an undirected network.

Proof. Consider the network G as depicted in Figure 2a. Re-
call that k = 2. Clearly, the minimum 2-cut is obtained by
cutting the upper clique ({a, b, c, d, e, f}) from the rest of
the network, yielding a minimum 2-cut of size 3. The ma-
nipulator’s utility is thus 5. By removing the dotted edges,
the minimum 2-cut is obtained by cutting the lower clique
({n, o, p, q, r, s}), yielding a minimum cut of size 2. The ma-
nipulator’s utility is strictly improved from 5 to 6.

4.2 Max-Egal
We now consider the objective of maximizing the egalitar-
ian social welfare (Max-Egal), i.e., maximizing the utility of
the agent that is worst off. Formally, it is min

a∈A
(u(a, P )). The

objective egalitarian social welfare has also been studied in
ASHGs [Peters, 2016; Aziz et al., 2013b]. Maximizing the
egalitarian SW might result in a decrease in the average utility
of the agents (which is correlated to the utilitarian SW) but it
tries to ensure that all of the agents will have some minimum
utility. Now, let Eg(P,G) be the egalitarian SW of a coali-
tion structure P in graph G. The following theorems show
that Max-Egal is resistant to manipulation by adding edges.
The intuition is that by adding edges the manipulator is not
able to pretend to be the agent with the minimum utility, and
he may increase the utility of the other agents by at most 1.

Theorem 1. Max-Egal is weak-proof against manipulator
m+ over undirected networks.

Proof. Let

u0 = min
P∈O(G)

({u(m,P )}), u1 = max
P∈O(G)

({u(m,P )}).

We will refer to the CS yielding u0 as P0. Assume by contra-
diction that Max-Egal is subject to weak-improvement. That
is, there exists a manipulation rm and a CS Pm ∈ O(Gm)
such that u(m,Pm) > u1. That is, Pm /∈ O(G). In addition,

∀ P ∈ O(Gm), u(m,P ) > u0. (1)
Since the manipulator can only add edges, it holds that

Eg(Pm, Gm) ≥ Eg(P0, G). Moreover, if Eg(Pm, Gm) =
Eg(P0, G) then P0 ∈ O(Gm), which is not possible accord-
ing to inequality 1. Therefore, Eg(Pm, Gm) > Eg(P0, G).
Since the manipulator is able to add at most one new edge to
every agent and G is undirected, then ∀a ∈ A \ {m},

u(a, Pm) ≥ Eg(Pm, Gm)− 1 ≥ Eg(P0, G).

In addition, u(m,Pm) > u1 ≥ Eg(P0, G). Overall,
∀a ∈ A, u(a, Pm) ≥ Eg(P0, G). That is, Eg(Pm, G) ≥
Eg(P0, G), and thus Pm ∈ O(G), which is a contradic-
tion.

Theorem 2. Max-Egal is strategyproof against a manipula-
tor m+ over directed networks.

Proof. Let

u0 = min
P∈O(G)

({u(m,P )}), u1 = max
P∈O(G)

({u(m,P )}).

We will refer to the CS yielding u0 as P0. Note that for every
P ∈ O(G) it holds that Eg(P,G) ≤ u0. Assume by contra-
diction that Max-Egal is subject to UB-improvement. That is,
there exists a manipulation rm and a CS Pm ∈ O(Gm) such
that u(m,Pm) > u1. That is, Pm /∈ O(G).

Since the manipulator can only add edges, it holds that
Eg(Pm, Gm) ≥ Eg(P0, G). Moreover, if Eg(Pm, Gm) =
Eg(P0, G) then P0 ∈ O(Gm), which is not possible. There-
fore, Eg(Pm, Gm) > Eg(P0, G). Recall that in directed net-
works the utility of the other agents does not change. There-
fore ∀a ∈ A \ {m},

u(a, Pm) ≥ Eg(Pm, Gm) > Eg(P0, G).

In addition, u(m,Pm) > u1 ≥ Eg(P0, G). Overall,
∀a ∈ A, u(a, Pm) ≥ Eg(P0, G). That is, Eg(Pm, G) ≥
Eg(P0, G), and thus Pm ∈ O(G), which is a contradiction.

Now, assume by contradiction that Max-Egal is subject
to LB-improvement. That is, there exists a manipulation rm
such that

∀ P ∈ O(Gm), u(m,P ) > u0. (2)
That is P0 /∈ O(Gm). Denote an arbitrary CS in O(Gm)
as Pm. It holds that Eg(Pm, Gm) > Eg(P0, G

m) and
Eg(P0, G) ≥ E(Pm, G).

Again, in directed networks the utility of the other
agents does not change. Therefore, if after the manipulation
Eg(Pm, Gm) > Eg(Pm, G), it can only change by the
utility of m. But u(a, Pm) > u(a, P ), hence even before
the manipulation Eg(Pm, Gm) > Eg(Pm, G), in contradic-
tion.



4.3 At-least-1
In the At-least-1 objective the organizer is only interested in
ensuring that every agent will have a utility of at least 1. This
objective is very general, and it may result in many possible
CSs. It has mostly been studied in the context of graph theory
[Stiebitz, 1996; Alon, 2006; Bang-Jensen et al., 2016].

Note that there are some instances where there is no CS that
guarantees a utility of at least 1 to every agent. We call such
an instance infeasible, and we then write O(G) = ∅. In infea-
sible instances we assume that the utility of all of the agents
is 0. We show that, in contrast to the previous objectives, At-
least-1 is less susceptible to manipulations. Specifically, we
show that an UB-improvement is almost always impossible,
and LB-improvement is impossible by adding directed edges.
The intuition is that adding edges is beneficial only if the net-
work is undirected and the new edges transform an infeasible
instance into a feasible instance, and by removing edges the
manipulator is not able to introduce new solutions.

Theorem 3. At-least-1 is strategyproof against manipulator
m+ over directed networks.

Proof. Let u1 = max
P∈O(G)

({u(m,P )}), and recall that if

O(G) = ∅ then u1 = 0. Assume by contradiction that the
At-least-1 objective is subject to UB-improvement. That is,
there exists a manipulation rm and a coalition structure Pm ∈
O(Gm) such that u(m,Pm) > u1. That is Pm /∈ O(G), and
∀a ∈ A, |Nm(a)| ≥ 1. Since u1 ≥ 0 then u(m,Pm) ≥ 1.
In addition, recall that in a directed network, ∀a ∈ A \
{m}, N(a) = Nm(a), thus ∀a ∈ A \ {m}, u(a, Pm) ≥ 1.
Overall, ∀a ∈ A, u(a, Pm) ≥ 1 and thus Pm ∈ O(G), which
is a contradiction.

Regarding LB-improvement, since the manipulator is only
able to add edges then O(G) ⊆ O(Gm). Therefore, no LB-
improvement is possible if O(G) 6= ∅. If O(G) = ∅, then
u1 = 0. Now, assume by contradiction that the At-least-1
objective is subject to LB-improvement. That is, there exists
a manipulation rm for which min

P∈O(Gm)
({u(m,P )}) is at least

1. Since u1 = 0 that would imply an UB-improvement as
well, which is impossible (as shown above).

Theorem 4. At-least-1 is UB-proof against manipulator m−
over directed and undirected networks.

Proof. Since m is only able to remove edges then for every
manipulation rm it holds that O(Gm) ⊆ O(G). Therefore,

max
P∈O(G)

({u(m,P )}) ≥ max
P∈O(Gm)

({u(m,P )}) and no UB-

improvement is possible.

5 Limited Information
We now focus on more realistic settings, in which the manip-
ulator is not familiar with the full structure of the network. In-
stead, we assume that the manipulator is either familiar only
with his immediate neighbours in the network, or he may also
be familiar with the neighbours of his immediate neighbours.
Within this setting we need to revise our definitions of suc-
cessful manipulations. Specifically, since the manipulator is
familiar only with a partial network, we define suitable safe

manipulations. Informally, a safe manipulation is a manipu-
lation in which the manipulator is not worse off in all of the
possible completions of the partial network, and there exists
at least one completion of the partial network in which the
manipulator is better off.

Formally, let A0 = {m}. Let G1 = (A,E1) be a graph,
E1 ⊆ E, where (u, v) ∈ E1 if either u or v belongs to A0.
Similarly, let A1 = {u : (u, v) ∈ E1 ∨ (v, u) ∈ E1}. Let
G2 = (A,E2) be a graph, E2 ⊆ E, where (u, v) ∈ E2 if
either u or v belongs to A1. Given d ∈ {1, 2}, a possible
network Gd of Gd is a network Gd = (A,Ed) where Ed =
Ed ∪ E′ such that if (u, v) ∈ E′ then neither u and v belong
to Ad−1. We assume that the manipulator is familiar with Gd

and the objective obj. We denote the settings in which the
manipulator is familiar with G1 (G2) by distance 1 (distance
2). Indeed, since the manipulator is always familiar with his
immediate neighbours he can still add or remove edges as in
the full information setting. However, since the manipulator
is only familiar with Gd he needs to consider the effect of
his manipulation on every possible network Gd. Given Gd

and a manipulation rm, let Gd
m

be the possible network after
the manipulation rm. We can now revise our definitions of
successful manipulations. Given a partial network Gd and an
objective obj:
Definition 4. A manipulation rm is a d-safe lower bound im-
provement for a manipulator m if for all possible networks
Gd of Gd it holds that

min
P∈Oobj(Gd

m
)
(u(m,P )) ≥ min

P∈Oobj(Gd)
(u(m,P )).

and for at least one possible network Gd, rm is a LB-
improvement.

An objective is subject to d-safe LB-improvement by ma-
nipulator m over (un)directed networks if there exists a
(un)directed partial network Gd and a manipulation rm such
that rm is a d-safe LB-improvement for m. Otherwise we say
that obj is d-safe LB-proof against m.
The definitions for the other manipulation types are similar.
Note that susceptibility to d-safe manipulation implies sus-
ceptibility to d’-safe manipulation for any d′ > d, as well
as to the full information case. Similarly, resistance to ma-
nipulation in the full information setting implies resistance to
manipulation in the limited information setting.

5.1 Distance 1
We analyze the three objectives and their susceptibility to safe
manipulations in the setting of distance 1. Remarkably, even
in this setting there are situations where a safe manipulation
exists (Proposition 2). However, Theorem 5 shows that for
most situations safe manipulation is impossible. The proof is
based on extensive enumeration of networks, where we show
that either no manipulation exists or there exists only an un-
safe manipulation.
Proposition 2. Max-Egal against manipulator m− over di-
rected networks and At-Least-1 against m+ over undirected
networks are subject to 1-safe UB-improvement.

Proof. Figure 4e provides proof for Max-Egal. Clearly, At-
Least-1 is subject to UB-improvement by simply adding any
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edge, as it can turn an infeasible instance into a feasible in-
stance.

Theorem 5. All three objectives are 1-safe strategyproof ex-
cept for the cases in Proposition 2.

Proof (partial). Max-Util. We show that Max-Util is 1-safe
strategyproof against manipulators m− and m+ over undi-
rected networks. We start with m−; If 0 < |N(m)| < n− 1,
Figures 4a and 4b show that removing any edge is UB-unsafe
and LB-unsafe, respectively. Clearly, the graphs in these Fig-
ures can be extended to any number of agents and any number
of neighbours of the manipulator. For example, to extend fig-
ure 4b to arbitrary numbers of agents and neighbours do as
following: Connect all of the manipulator’s neighbours but
one to form a clique (a, b, c in the example). Let the other
agents form a clique of their own (e, f, g, h in the example).
Lastly connect the manipulator’s neighbour which is not in
the clique (d in the example) to the other clique with only one
edge. This way removing an edge is UB-unsafe.

If |N(m)| = n − 1, we first show that Max-Util is 1-safe
UB-proof. If the manipulator removes only 1 edge then he
cannot improve his upper bound at all. If the possible network
was a complete graph with n nodes, then removing two edges
or more is UB-unsafe. To see that Max-Util is 1-safe LB-
proof, look at a complete graph where one edge is missing

Objective Manipulator Network Type F ig

Max-Util Add Both Strict 3a
Max-Util Remove Directed Strict 2b
Max-Util Remove Undirected LB 2c
Max-Util Remove Undirected UB 2d
Max-Egal Add Undirected LB 3b
Max-Egal Add Undirected UB 3c
Max-Egal Remove Directed Strict 2e
Max-Egal Remove Unirected Strict 2f
At-Least-1 Add Undirected Strict 3d
At-Least-1 Remove Both LB 2g

Table 2: Summary of susceptibility results for distance 2.
Key: LB/UB/Strict = the objective is subject to LB/UB/Strict-
improvement.

(an edge not connected to m). Removing any edge in that
case can only lower the manipulator’s LB.

Continuing with m+, if 0 < |N(m)| < n− 1 then Figures
4c,4d show that adding any edge is LB- and UB-unsafe re-
spectively. Again, these examples can be extended to fit any
number of agents and any number of neighbours the manip-
ulator has. If |N(m)| = n − 1, the manipulator cannot add
edges.

At-Least-1. For At-Least-1, we prove that the objective is
1-safe LB-proof against manipulator m−. Clearly, At-Least-1
is 1-safe LB-proof over undirected networks, since removing
any edge might lead to an infeasible instance. For example, if
the manipulator removes an edge from a neighbour that has
a degree of one, this neighbour will have a degree of zero in
every coalition structure, resulting in an infeasible instance.

Over directed networks, there are two possible cases. If
there is an agent a such that (a,m), (m, a) ∈ E, then it is
possible that the only feasible coalition structure P is where
there is a coalition C ∈ P , C = {m, a}. Therefore, removing
the edge (m, a) results in an infeasible instance. If there is an
agent a such that (m, a) ∈ E but (a,m) /∈ E, then it is pos-
sible that there is an agent a′ such that (a, a′), (a′,m) ∈ E
and the only feasible coalition structure p is where there is a
coalition C ∈ P , C = {m, a, a′}. Therefore, removing the
edge (m, a) results in an infeasible instance.
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Due to space constraints, the complete proof, including the
setting of Max-Egal, is provided in the full version of this
paper [Waxman et al., 2021].

Distance 2
Unlike in the distance 1 setting, the results for the distance
2 setting are almost the same as the results in the full in-
formation setting. Indeed, all of the resistance results are de-
rived by the resistance results in the full information setting.
Therefore, in this section we provide only susceptibility re-
sults summarized in Table 2 where each entry represents a
situation, what type of manipulation it is subject to, and a
reference to a figure providing a proof. Note that the figures
showcase a possible network. The partial network known to
the manipulator can easily be derived from them. Overall, we
show that, surprisingly, all of the results for the full infor-
mation setting hold for the distance 2 setting, except for one
case: when maximizing the utilitarian SW, with a m− manip-
ulator over undirected networks. In this case, Proposition 1
shows that the objective is subject to strict-improvement with
full information while Figures 2c and 2d only show that it is
subject to 2-safe LB- and UB-improvement in the distance 2
setting. Indeed, we believe that the objective is 2-safe weak-
proof.

6 Discussion
In this section we discuss our results. We explain the dif-
ferent phenomena that we observe when comparing the re-
sults for the different settings. Our results indicate that ma-
nipulations over undirected networks are easier than manip-
ulations over directed networks. This is due to the fact that
in directed networks the manipulator can only influence his
own utility. In undirected networks the manipulator can actu-
ally influence the utility of his neighbours, and this additional
power enables the manipulation in additional situations. We
can also observe that Max-Util is the easiest objective to ma-
nipulate when compared with Max-Egal and At-least-1. In-
deed, Max-Util is inherently different from the other two ob-
jectives: when maximizing the utilitarian SW, the organizer
is interested in the average utility, thus the organizer always
takes into account the utility of the manipulator. In contrast,
in the other two objectives the organizer is interested in the
utility of the weakest agents, thus the organizer may not take

into account the utility of the manipulator (e.g., if the manip-
ulator already has a utility of 5 in the At-least-1 objective).
This characteristic of Max-Egal and At-least-1 objectives can
also explain why it is easier to manipulate these objectives
by removing edges rather than by adding edges: by removing
edges the manipulator can pretend to be the weakest agent,
affecting the organizer’s choice of the coalition structure. Fol-
lowing this observation, we would expect that manipulating
the At-least-1 objective will be harder than manipulating the
Max-Egal objective: in At-least-1 the organizer is interested
only in ensuring a minimum utility of 1 while in Max-Egal the
organizer is also interested in maximizing the minimal utility.
However, it turns out that At-least-1 can be manipulated by
turning an infeasible instance into a feasible instance, thus
there are situations in which At-least-1 is subject to strict-
improvement while Max-Egal is weak-proof. Finally, we note
that there is a significant difference between results for the
settings of distance 1 and distance 2. In the setting of dis-
tance 1, the manipulator has very limited knowledge of the
network. Therefore, it is hard for the manipulator to estimate
the full effect of adding or removing edges, thus finding that a
safe manipulation is impossible in most of the situations. Sur-
prisingly, even though the manipulator is not familiar with the
full structure of the network in the setting of distance 2, the
additional information in this setting is sufficient for finding
safe manipulations in many situations.

7 Conclusions and Future Work
We have studied manipulation in the setting of a central or-
ganizer that would like to partition a social network into k
coalitions. The organizer has a certain objective she would
like to satisfy or maximize, whereas there is a manipulator
that would like to maximize his utility, i.e., the number of
friends within his coalition. We have distinguished between a
manipulator who has full information regarding the structure
of the social network, and a manipulator that is only famil-
iar with the edges in close proximity to him. An important
future research direction to explore is the complexity of find-
ing a manipulation, given a specific objective. We would also
like to extend our analysis to the setting with weighted social
networks, or social networks with negative edges.
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