
Interleaved vs. A Priori Exploration for Repeated Navigation in aPartially-Known Graph�Shlomo Argamon-Engelson1 Sarit Kraus1;2 Sigalit Sina11 Dept. Mathematics and Computer ScienceBar-Ilan University52900 Ramat Gan, IsraelTel: +972-3-531-8407Email: fargamon,sarit,sinag@cs.biu.ac.il2Institute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742AbstractIn this paper, we address the tradeo� between exploration and exploitation for agents whichneed to learn more about the structure of their environment in order to perform more e�ectively.For example, a software agent operating on the World-Wide Web may need to learn which siteson the net are most useful to it, and the most e�cient routes to those sites. We compare explo-ration strategies for a repeated task, where the agent is given some particular task to performsome number of times. Tasks are modeled as navigation on a partially known (deterministic)graph. This paper describes a new utility-based exploration algorithm for repeated tasks whichinterleaves exploration with task performance. The method takes into account both the costsand the potential bene�ts (for future task repetitions) of di�erent exploratory actions. Explo-ration is performed in a greedy fashion, with the locally optimal exploratory action performedduring each task repetition. We experimentally evaluated our utility-based interleaved explo-ration algorithm against a heuristic search algorithm for exploration before task performance (apriori exploration) as well as a randomized interleaved exploration algorithm. We found thatfor a single repeated task, utility-based interleaved exploration consistently outperforms thealternatives, unless the number of task repetitions is very high. In addition, we extended thealgorithms for the case of multiple repeated tasks, where the agent has a di�erent, randomly-chosen (from a known subset of possible tasks), task to perform each time. Here too, we foundthat utility-based interleaved exploration is clearly in most cases.Keywords: Exploration vs. exploitation, navigation, random graphs, expected utility�This research was supported in part by the National Science Foundation grant number IRI-9311988 and IsraeliScience Ministry grant No. 6288. The �rst author was supported during part of this work by a fellowship from theFulbright Foundation. 1

1 IntroductionIntelligent agents in the real world often have to perform tasks about which they have incompleteknowledge. In particular, an agent may have only partial knowledge of the actions it can takeand their e�ects. In such a case, it is important for the agent to learn about the structure of itsenvironment, in order to better accomplish its goals. Such learning involves exploration, in whichactions are chosen for the goal of increasing the agent's knowledge, as opposed to exploitation whereactions are chosen which directly lead toward accomplishing the agent's given task. Exploringthe world and learning its structure may be performed either in a separate exploration phase apriori, before performing any tasks, or it may be interleaved with task performance. In interleavedexploration, exploration and exploitation must be traded o� in order to maximize the overalle�ciency of the agent's behavior.In this paper, we address the tradeo� between exploration and exploitation for agents whichneed to learn more about the structure of their environment in order to perform more e�ectively.The need for such learning is ubiquitous; any agent needing to operate in the real world can haveonly partial knowledge of its environment, and therefore must be able to explore and learn. Forexample, a software agent operating on the World-Wide Web may need to learn which sites on thenet are most useful to it, and the most e�cient routes to those sites. Another example is a mobilerobot which needs to learn a map of its environment so that it can navigate e�ectively from placeto place. We model such situations by viewing the world as a graph whose nodes represent states,and whose arcs represent actions which move the agent from one state to another (we describeour model more precisely in Sections 2 and 4). By modeling an environment as a state graph, anyassigned task becomes a problem of e�ectively `navigating' between states in the graph. We assumethat the world graph is fully connected and can be entirely represented by the agent.In this paper, we compare interleaved and a priori exploration for a repeated task, where theagent is given some particular task(s) to perform some number of times. We assume that the agentbegins with the ability to perform its given task(s), but not necessarily in an optimal way. Forexample, the agent may have access to a teacher which, for a price, will give a (suboptimal) plan fora given task. In the work described here, we assume that the agent begins knowing some navigationplan for every possibly task, given in the form of a spanning tree. The idea is that with interleavedexploration, performance of the task becomes more e�cient over time, as the agent learns betterways to perform it [9]. As the number of repetitions gets very large, however, it might be preferableto learn the entire structure of the state-space �rst, so that the agent can be sure to use the moste�cient plan for its task. In many realistic scenarios, this is not the case, since the number ofrepetitions of a particular task is bounded. In such cases, it is more e�ective to learn during taskperformance, and to avoid wasting e�ort in exploring areas of the world which do not contributeto task performance.We believe that deciding how to explore, like planning in general, should be performed ina decision-theoretic manner, accounting for the utility and cost of alternative courses of action[16, 14, 17]. We describe in this paper a new utility-based interleaved exploration algorithm for2

a partially known graph. In our approach, the agent estimates the expected utility of possibleexploratory actions, based on a probabilistic model of the structure of the actual world graph. Thisevaluation enables the agent to decide whether and how to explore. Utility is evaluated relative tothe agent's future tasks and the cost of exploring, taking into account the extra cost of exploringversus using the best plan currently known. For example, if the agent only has to perform a taskonce, it may not be worthwhile to explore at all, since the cost of exploration may be higher than theexpected performance gain for that single task. The utility of exploration then increases with thenumber of future task repetitions. The algorithm chooses exploratory actions in a greedy fashion,in order to avoid exponential increase in the number of future courses of action that need to beconsidered (compare Etzioni's [16] use of a greedy marginal utility heuristic).We experimentally evaluated utility-based interleaved exploration on a variety of randomlygenerated graphs, and compared the performance of our greedy utility-based interleaved algorithmagainst that of a heuristic search algorithm for a priori exploration. Our results show that utility-based interleaved exploration is nearly always preferable to a priori exploration. Furthermore, weinvestigated the contribution of the utility-based formulation, by comparing it to a randomizedapproach to interleaved exploration (similar to methods commonly used in reinforcement learn-ing [30, 22]). We found that for a single repeated task in our model, utility-based interleavedexploration consistently outperforms the alternatives, unless the number of task repetitions is veryhigh. In addition, we extended the algorithms for the case of multiple repeated tasks, where theagent has a di�erent, randomly-chosen (from a known subset of possible tasks), task to performeach time. Here too, we found that utility-based interleaved exploration performs better than eithera priori or randomized interleaved exploration.2 Graph-Based Exploration ProblemsIn this paper we evaluate a utility-based interleaved exploration strategy for a particular class ofgraph navigation problems. Our longer term research objective is to investigate a particular classof utility-based interleaved exploration strategies in a variety of graph navigation scenarios, underdi�erent assumptions as to the underlying structure of the graph, the capabilities of the navigatingagent and the agent's state of knowledge.The class of strategies we seek to investigate achieve each repetition of the assigned task via anexploratory path, a path which includes the exploration of some unknown portion of the graph. Suchutility-based strategies are variants of the following generic algorithm for interleaved exploration:1. Enumerate a set of possible exploratory paths to achieve the current task;2. Evaluate, for each such path, the expected utility for the remaining task repetitions if thepath is taken;3. If the best exploratory path has higher expected utility than the best path currently known,use it; 3

4. Else, use the best path currently known.The use of such a strategy requires the ability to enumerate a set of exploratory paths as well asa method for evaluating the expected utility of such paths. This utility must take into accountboth the cost of exploration on the current task run and the potential e�ciency improvements forfuture task runs. In the remainder of this section, we discuss several di�erent graph navigationmodels, including the one addressed speci�cally in this paper, as well as describing briey how ourframework for utility-based interleaved exploration can be applied in each model.The graph exploration scenario examined in this paper is inspired by the problem of an agent�nding e�cient routes in a communications network, eg, the Internet. In this scenario, the agentknows about all of the nodes in the graph, all of which can be uniquely identi�ed. The agent's taskis to repeatedly move back and forth some given number of times between two particular nodesin the graph, traversing as few edges in the process as possible. The possible actions that can betaken at a node consist of attempting to move directly to another node; if the corresponding edgeexists, the action succeeds and the agent moves to the speci�ed destination, otherwise the agentfails and remains where it is. As an abstract approximation to the situation where the agent canask a teacher for a default path to its goal, we also assume that the agent begins knowing somepath between every pair of nodes. In our greedy interleaved exploration algorithm for this scenario,the set of exploratory paths are those potential paths including one unknown `edge'. The expectedutility of each such path is evaluated based on combining the cost and (known) probability of afailure to traverse the edge with the probability and magnitude of the reduction in total travel costfor future repetitions if the edge exists.A more complex model, which we are currently investigating in other work [2, 31], is given byrelaxing some of the assumptions from the last scenario. First, the agent does not know about allof the nodes in the environment in advance (and so must discover them during exploration). Thepossible actions the agent can take from a particular node, therefore, are de�ned be the set of edgesincident on the node. That is, the agent does not attempt to go directly to some known node,but rather traverses an actual edge whose destination is unknown. In order to evaluate the utilityof potential exploratory actions, some more information about the structure of the environment isneeded, so we assume that the agent knows the geometric positions of nodes that it has visited, aswell as the directions of the arcs incident on its current node. Exploration in this model involvesthe attempt to search for a new path between two known nodes, so that an exploration path maybe de�ned as a path which includes traversal of an unknown area between two known nodes. Forexample, this scenario may be used to model robotic navigation, particularly repetitive deliverytasks. An approximate evaluation of exploration utility may be performed in this model based onthe relative positions of source and goal nodes and the directions of the possible arcs to traverse.Both of the aforementioned scenarios can be generalized further in a number of ways. Actionsmay be non-deterministic, traversing di�erent arcs from a node with di�erent probabilities. Nodesmay not have unique identi�ers, such that the agent must somehow infer from other informationwhich node it is currently located at. A related issue is geometric noise in our second model above,4

where the agent does not know its precise geometric location. The question of prior knowledge isimportant; in di�erent real-life situations, many kinds of `taught' information may be available, forsome cost. Also, long-range sensing may also improve exploration e�cacy, by giving the agent anapproximate idea of the structure of the graph in its vicinity. Finally, the properties of the agent'sactions/sensing may change regularly over time, for example where the cost of edges changes, orwhere certain paths become blocked or unblocked with some regularity. It would be useful todiscover and make use of such regularities in navigation and exploration.3 Related WorkGraph-based world models have long been used in theoretical work on a priori map-learning, such as[27, 15, 25, 1]. These models have also been extended to include sensor and e�ector noise [4, 13]. Themain problem that is addressed in such work is that of �guring out how to distinguish di�erent nodesthat look the same to the agent. This is typically done by discovering `distinguishing sequences'which allow the robot to �gure out its location based on the results of sequences of actions.A task situated between a priori and interleaved exploration (not necessarily in a graph-basedframework), is piecemeal exploration [8], in which the robot must return to its `home' every sooften. The techniques used are similar to those in a priori exploration, constrained by the necessityof returning home when needed.State-space learning during task performance has been addressed by so-called `real-time' searchalgorithms [23, 11, 18]. These algorithms typically achieve a single task (possibly moving) whilelearning the structure of the environment. In the worst case, these algorithms will explore the entirestate-space, depending on the quality of the heuristic function. Improved e�ciency in real-timesearch has been obtained by restricting the use of heuristic exploitation [28] and by not requiring thealgorithm to �nd an optimal policy [19]. In more speci�c problem settings, more informed heuristicsmay be applied, for example Cucka et al. [12] use information about the geometric direction of thegoal to heuristically improve a depth-�rst search exploration process.Methods for solving Markov decision processes (MDPs) also involve an interleaved tradeo�between exploration and exploitation [26]. In these problems, the environment is modeled as aprobabilistic �nite-state machine where the agent receives rewards for being in particular states,and the transition to a new state occurs with some probability depending on what action the agenttakes. The agent's task is to maximize its total reward, learning something about the reward andtransition probability distributions in the process (based on known priors over those distributions).Optimal solutions are known for this problem [5, 7], as well as its simpler variant the k-armed banditproblem [6], but these solutions are of exponential complexity [21]. Various faster approximatestrategies have also been proposed for this problem [20, 24, 29] and have been shown to be useful.The speci�c graph navigation problem examined in this paper may be cast as a MDP problemwith a changing reward function. As such, it is probably not di�cult to adapt the iterative updateor randomized exploration methods for MDPs to the graph exploration problem addressed in this5

paper. In particular, variations on randomized strategies [21] are applicable to our problem, andwe compare such a strategy against our utility-based method below. We did not examine variationson iterative update techniques, however, since we wish to investigate a class of methods that aregenerally applicable to a variety of graph navigation problems (as discussed in the previous section),some of which do not �t easily into the MDP framework.Our approach of incremental utility-based exploration may also be compared to the anytimealgorithm of Dean et al. [14] for decision-theoretic planning in (completely known) stochastic en-vironments. Their method creates an optimal policy for a small part of the environment (theenvelope), and incrementally extends the envelope in order to increase the usefulness of the gener-ated policy. Exploration methods such as that described in this paper could extend the usefulnessof such planning techniques to incompletely known environments.4 Problem De�nitionWe consider the following problem of repeated navigation in a partially known graph. The worldis de�ned to be an undirected graph G = (V;E) where V is a set of N nodes and E is the set ofedges of the graph. The agent knows all the nodes of the graph, but is not familiar with all theedges of the graph. However, the agent is given a spanning tree T = (V;ET) of the graph and,for any v1; v2 2 V , if (v1; v2) 62 ET the probability that (v1; v2) 2 E is some probability p, where0 < p < 1. We assume in this work that the agent knows this probability1.In order to test if the edge (v1; v2) 2 E, the agent must be located at one of the nodes v1 orv2, and attempt to move to the other node. If (v1; v2) 2 E then the agent succeeds in reaching theother node and pays a �xed2 cost of 1. However, if (v1; v2) 62 E than the action fails and the agentpays a (known) failure cost, denoted by c. There is no other way for the agent to �nd out whetheran edge not in T exists.The agent is given the following task to perform. There are two distinguished nodes in V , Aand B, and the agent is to go from A to B and back some given number of times, denoted by R.We would like the agent to act so as to minimize the overall cost of performing this single repeatedtask3. Note that we talk only about the cost of action; computation cost is not explicitly considered(though we rule out impractically expensive methods).1In our experiments (Section 6 below), we also tested the sensitivity of our results to errors in the agent's knowledgeof p. It appears that knowing the precise value of p is not crucial.2This simple model can be extended by allowing di�erent costs for di�erent actions, or by making the costprobabilistic. Our methods can easily be extended, provided we assume that the agent knows the expected cost of acontemplated action.3In Section 7 we consider the case of multiple repeated goals, where the goal on each repetition is chosen randomlyfrom a known set of possible goals.
6

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

v1

v2

P1

P2

P3

B

e

A
PFigure 1: A possible exploratory path, testing the edge (v1; v2).5 The Exploration Algorithms5.1 LWP: Learning While Performing tasksThe �rst algorithm we describe is our utility-based learning while performing (LWP) algorithm.The algorithm tries to incrementally �nd shorter paths from A to B in the graph while travelingrepeatedly between them. At each stage of the exploration, the agent knows about a set of existingedges and a set of non-existent edges (i.e, that there is no edge between certain pairs of nodes).During each trip, the agent obtains information about one unknown edge that could reduce thetravel distance from A to B. Consider the situation depicted in Figure 1, in which the currently-known shortest path between A and B is P . The agent now considers the set of possible pathsbetween A and B that are (i) shorter than P , and (ii) include just one unknown edge e = (v1; v2).In the �gure, such a path is depicted as the path P1 � e � P2. We term such paths exploratorypaths. The robot then attempts to travel along the exploratory path with the lowest expected cost(described below). If the agent reaches the destination by following this path, then it has founda shorter path between A and B which it can use in the future. If the agent fails to traverse thepath because the unknown edge e does not exist, the agent takes the shortest path from the failurepoint to its destination (P3 in the �gure), and records that the edge does not exist. The search forshorter paths terminates when the expected cost for checking a new path is higher than using thebest known path.In order to compare the value of di�erent exploratory paths, we wish to evaluate the overallutility of taking each such path, including its e�ect on future tasks. That is, we wish to measurethe expected cost of completing the assigned R repetitions of the task, given that a particularexploratory path is used to navigate for the current repetition. This expectation is measured overthe probability p that the path's unknown edge actually exists.Consider an exploratory path including the unknown edge e = (v1; v2). Let P , P1, P2, P3respectively be the shortest paths in the graph, including only known edges, between A and B,between A and v1, between v2 and B, and between v1 and B respectively (as in Figure 1). Thecurrent default cost of a task repetition is Lo = jP j, the length of the currently known best path.The cost of exploring e is Ln = jP1j+ jP2j+1 if e exists, and Lf = jP1j+ jP3j+ c otherwise (where7

c is the cost of failing to traverse e). Hence, we wish to compute the expected cost:p [Ln + (Cost of the remaining R� 1 repetitions if e exists)]+(1� p) [Lf + (Cost of the remaining R� 1 repetitions if e does not exist)]In order to accurately evaluate the cost of the remaining repetitions, however, we would have toconsider all possible exploratory paths in the future, which leads to exponential complexity. In ourearly tests, we tried using a lookahead of 2, taking into account the possibility of an explorationstep on the next trial, and we found that exploration e�ciency was only slightly improved whilecomputation time increased signi�cantly. In the work reported here, we used a greedy approxima-tion, in which we assume that after the current repetition the agent just uses the best known pathfor future repetitions. This leads to the following formula for the cost Ce of an exploratory pathincluding unknown edge e: Ce = pLnR+ (1� p)(Lf + (R� 1)Lo)Note that this formula accounts for the possibility of wasting extra time by exploring, since Lfincludes the cost of recovering from a failed exploratory action.The exploration strategy as described above is greedy, in that only one unknown edge is examinedon each trip. We improve this greedy method by applying it recursively. After the agent attemptsto traverse an unknown edge and adds its new knowledge to the known graph, LWP is appliedagain to �nd the best exploratory path between the new current node and B4.The full LWP algorithm is given in Figure 2. The agent evaluates the utility of all outstandingexploratory paths (Step 4), and chooses the best such path to traverse (Step 6), if a good oneexists. If the agent thus arrives at its current target (B), it exchanges A for B and continues withits remaining R � 1 traversals. Otherwise, it attempts to explore again from its current position,until it is no longer useful to do so. At that point, the agent uses the best known path to get to itscurrent target (Step 7a).5.2 LBP: Learning Before Performing tasksAs we mentioned above, our main goal is to compare between exploration while performing tasksand exploration before performing tasks. We compared our LWP algorithm with a learning beforeperforming (LBP) algorithm, where the agent attempts to study all the edges in the environment,and only then moves so as to carry out its tasks. The exploration is performed using a heuristicbacktracking traversal of the graph, starting with the spanning tree given to the agent at the outset.The heuristic used prefers attempting to directly move to a target node or to a node known to beadjacent to a target node. The agent �rst explores any unknown edges incident on its current4We also experimented with the greedy version of the algorithm, which explores only one unknown edge per taskrepetition. While the greedy version was more costly, it still dominated other algorithms in most cases. This indicatesthat the utility-based focus is the main factor in LWP's e�ciency.8

Algorithm 1 LWP(A;B;R)1. If R = 0, terminate;2. Let v0 be the current node of the agent, and Cknown be the cost of completing the remainingR tasks using only paths in the known environment;3. Enumerate the set of unknown edges fei = (vi1; vi2)g;4. Evaluate the expected cost Ce of each unknown edge e;5. Let e� = (v�1; v�2) be the unknown edge with lowest expected cost Ce�;6. If Ce� � Cknown, then:(a) Follow the best known path to get to v�1;(b) Attempt to move to v�2;(c) If the traversal succeeded, add e� to the known graph;(d) Otherwise, note that e� doesn't exist;(e) If the current node is B, A$ B, R R� 1;7. Else:(a) Follow the best known path to get to B;(b) A$ B, R R� 1;8. Goto 1. Figure 2: The LWP interleaved exploration algorithm.
9

location (in heuristic order), and backtracks when no such unexplored edges exist. We did not usea potentially more e�cient search strategy such as Real-Time A* [23], since such strategies requirethat the agent be able in one step to know all the children of its current node, which our modeldisallows.In early experiments, we found that if LBP is allowed to explore until the entire environmentis known, LWP is always considerably more e�cient. We therefore introduce a parameter, �, suchthat the agent stops exploring the environment when the shortest known path between A and B isno longer than �. Once such a path is found, the agent proceeds with its remaining task repetitionsusing that path. This avoids the problem of diminishing returns of further exploration. Note thatalthough the algorithm's purpose is mainly to explore the environment before performing any tasks,any (incidental) visits to A and B during exploration count as task accomplishments.E�ciency of LBPThe worst case performance of this algorithm can be roughly bounded by noting that no existingedge is ever traversed more than twice during exploration, once when it is �rst traversed, and thenpossibly once during backtracking. However, no non-existent edge is ever attempted more thanonce. Hence, for random graphs with edge probability p, the average worst-case performance ofLBP is WLBP = (1 + p)n(n� 1)2We can now bound the average worst-case performance of LBP per task, given the number of taskrepetitions R, assuming that a path of length � exists. Note that in the worst case, just one taskwill be accomplished during exploration. Hence, the per task cost for R repetitions is bounded by:TLBP = WLBP + (R� 1)�RFor parameters � = 3, n = 100, R = 100, and p = 0:1, we have that TLBP = 57:42, while the actualper task cost for this scenario incurred by LBP in our experiments (described in Section 6 below)was 4.32. Thus in practice, the algorithm performs far better than these worst case bounds, andhence is a worthy opponent for our LWP algorithm.5.3 RLWP: Randomized Learning While Performing tasksWe also compared our original algorithm with a simpler algorithm that explores randomly whileperforming its tasks. This randomized learning while performing (RLWP) algorithm is modeledon probabilistic exploration methods used in reinforcement learning (see, eg, [30]). The algorithmgenerally follows the shortest known path towards its current goal, but if the current node has anyunknown neighboring edges, with exploration probability pe RLWP attempts to traverse the bestsuch unknown edge according to the heuristic function used by LBP (see above). In our experimentsbelow, pe was set to 0.3, which overall gave the best results. Also, in order that the algorithm not10

waste too much time exploring fruitlessly, we also introduced here a parameter �, such that RLWPstops exploring when the best known path between A and B is shorter than �.6 Experiments6.1 The simulationIn order to compare the above di�erent algorithms we performed simulations on randomly generatedgraph navigation tasks. The basic parameters for the simulations were the number of nodes n in thegraphs to be considered, the edge probability p, the number of task repetitions R, and the stoppingcriterion � (for LBP and RLWP). For each experimental trial, we report the average results overan ensemble of 100 randomly generated graphs. All of the algorithms were tested on the sameensemble of graphs for each trial.We considered two types of randomly generated graphs. The �rst type we call random graphs,where edges are generated between pairs of nodes according to the probability p. These graphs aretypically very non-planar, and a small amount of exploration can help a lot, if a good shortcut isfound. In fact, for su�ciently large random graphs, the longest minimal path in the graph betweenany two nodes (its diameter) is almost always of length 2 (see [10] and Appendix A). We foundempirically that for graphs with 100 nodes, the average diameter depended on the edge probabilityp: � p = 0:01 Average diameter = 4.4� p = 0:05 Average diameter = 2.5� p = 0:10 Average diameter = 2.1The other type of graph we considered are triangle graphs, in which edges are randomly gen-erated based on the Delaunay triangulation of a random point-set in the plane5. In these graphsthe potential bene�t of exploration may be somewhat less, since the likelihood of �nding a goodshortcut is lower. Indeed, for triangle graphs, the average graph diameter for graphs of 100 nodeswas 4.2 for p � 0:05.6.2 Random graph resultsIn these experiments, we compared the algorithms' performance on random graphs (with initially-known spanning trees), which were generated as follows, given graph size (number of nodes) n andedge probability p:1. Begin with the complete graph (V;E) on n nodes, assigning a random weight to each edge.5We experimented on triangle graphs as well as random graphs since triangle graphs give a model similar to thatfound in real-world navigation tasks. 11

R p =0.01 p =0.05 p =0.110 0.94 0.52 0.4250 0.71 0.38 0.27100 0.62 0.35 0.26200 0.56 0.32 0.25Table 1: Ratio of task performance time of learning while performing (LWP) over the defaultpath cost, in random graphs with n = 100 nodes. We compare performance for di�erent edgeprobabilities p and di�erent numbers of task repetition R.� = 3 � = 4R p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.110 0.03 0.04 0.19 0.03 0.15 0.4850 0.09 0.13 0.44 0.11 0.42 0.90100 0.15 0.22 0.61 0.18 0.59 0.78200 0.24 0.35 0.75 0.29 0.72 0.82Table 2: Ratio of overall task performance cost for LWP over LBP, for random graphs of sizen = 100, for di�erent edge probabilities p, number of task repetitions R, and LBP stopping criterion�. 2. Find a minimal spanning tree T = (V;ET) for this weighted graph.3. Let E 0 = ET .4. For each v1; v2 2 V such that (v1; v2) 62 ET , add (v1; v2) to E 0 with probability p.5. Choose, with probability 1n and 1n�1 , two nodes in the graph as goals, A and B.6. Output the graph G = (V;E 0) with initial spanning tree ET , and goals A and B.In Table 1, we compare the overall e�ciency of LWP for repeated tasks versus the default ofusing the path given in the initial spanning tree. We see that in all cases, e�ciency is improvedby using interleaved exploration. Furthermore, we note that as the number of task repetitionsincreases, the usefulness of exploration increases. This is because the cost of an exploratory actioncan be amortized over a larger number of future tasks. The e�ectiveness of exploration also increasesas we consider `denser' worlds, with a higher edge probability, since (i) the likelihood of �nding ashortcut is higher, and (ii) action failure is less likely, lowering the expected cost of exploring.We further evaluated the di�erences between the average (amortized) cost of each task repetitionfor the three exploration algorithms; detailed results are given below. The di�erences between thealgorithms were tested using �2, two-sample t-test, and analysis of paired data. The di�erencesbetween LWP and the other two algorithms tested signi�cant to a 0.05 con�dence level, showingLWP to be more e�ective than the other two algorithms.We �rst compare the results of utility-based interleaved exploration (LWP) versus a prioriexploration (LBP), summarized in Tables 2 and 3. In all cases, LWP achieves lower total cost thanLBP (ratio < 1). 12

� = 3 � = 4n p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.110 0.98 0.96 0.95 0.98 0.94 0.9120 0.83 0.80 0.85 0.89 0.88 0.8230 0.67 0.71 0.82 0.75 0.84 0.8540 0.55 0.58 0.72 0.61 0.75 0.7950 0.39 0.46 0.72 0.49 0.72 0.8260 0.30 0.39 0.63 0.38 0.67 0.7970 0.25 0.32 0.58 0.29 0.72 0.8680 0.21 0.28 0.59 0.27 0.61 0.8790 0.16 0.26 0.50 0.21 0.70 0.86100 0.14 0.22 0.60 0.18 0.59 0.78Table 3: Ratio of overall task performance cost for LWP over LBP, for random graphs with numberof repeats R = 100, for di�erent edge probabilities p, graph sizes n, and LBP stopping criterion �.� = 3 � = 4R p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.110 0.45 0.52 0.72 0.47 0.59 0.8250 0.47 0.62 0.85 0.52 0.79 0.86100 0.59 0.75 0.92 0.64 0.87 0.87200 0.75 0.90 0.97 0.79 0.93 0.88Table 4: Ratio of overall task performance cost for LWP over RLWP, for random graphs of sizen = 100, for di�erent edge probabilities p, number of task repetitions R, and RLWP stoppingcriterion �.Overall, better results are achieved for LBP with a more conservative stopping criterion (� =4 rather than 3). We also note that a priori exploration is relatively less e�ective in sparserenvironments (lower p), since its search strategy will fail attempted traversals many times duringexploration, whereas the utility-based interleaved algorithm stops exploring when the chance of�nding a useful edge is too low.Table 2 shows the dependence of the algorithms' performance on the number of task repetitions.As we expect, the advantage of interleaved exploration over a priori exploration is reduced asthe number of repetitions grows, since the cost of learning before doing is amortized over morerepetitions.In Table 3 we see the dependence of the algorithms' performance on the size of the environment.Here we see a clear di�erence between sparse and dense environments. In sparse environments(p = 0:01), interleaved exploration becomes more e�ective relative to a priori exploration as theenvironment grows larger. In dense environments (p = 0:1), however, a priori exploration (� = 4)remains relatively e�ective as the environment grows larger, since it can �nd a good path betweenthe start and the goal relatively quickly.In order to understand better the contribution of the utility-based focus of LWP, we also com-pared its performance against that of RLWP, an interleaved algorithm that explores randomly. We13

� = 3 � = 4n p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.110 0.99 0.98 0.95 0.98 0.95 0.9020 0.93 0.91 0.90 0.95 0.92 0.8130 0.89 0.91 0.94 0.92 0.93 0.8740 0.83 0.85 0.90 0.86 0.88 0.8650 0.78 0.83 0.93 0.82 0.89 0.8860 0.68 0.79 0.92 0.72 0.86 0.8370 0.67 0.78 0.93 0.71 0.87 0.8780 0.66 0.78 0.96 0.71 0.87 0.8590 0.59 0.78 0.92 0.66 0.90 0.89100 0.58 0.75 0.92 0.63 0.87 0.87Table 5: Ratio of overall task performance cost for LWP over RLWP, for random graphs withnumber of repeats R = 100, for di�erent edge probabilities p, graph sizes n, and RLWP stoppingcriterion �. m p =0.01 p =0.05 p =0.10.5 1.002 0.965 0.9941.0 1.000 1.000 1.0001.5 1.016 1.011 1.0002.0 1.030 1.014 1.0002.5 1.043 1.016 1.0003.0 1.053 1.018 1.000Table 6: Robustness of utility-based interleaved exploration to estimation of p. The table gives theaverage cost of task completion for greedy LWP using mistaken estimates of p, in random graphsof n = 100 nodes with R = 100 task repetitions, where the scale is set so the cost using an accurateestimate is 1.0. The estimate of p used by the algorithm was m� p in each case.chose an exploration probability for RLWP of 0.3, which overall worked best in our experiments.The results of the comparison of LWP with RLWP are summarized in Tables 4 and 5. Here wesee a de�nite advantage of the utility-based approach over the randomized approach in virtuallyall cases. As the number of task repetitions increases, however, the advantage of LWP decreases.With more repetitions over which to amortize the cost of exploration, the focus provided by utilityevaluation is less crucial. On the other hand, as the size of the environment increases, this focusbecomes more and more important, and so LWP's advantage over RLWP becomes more and morepronounced. In dense environments (p = 0:1), RLWP performs considerably better, although LWPstill dominates in the cases we considered.6.2.1 Robustness of LWPTable 6 shows results of experiments we performed to test our method's sensitivity to errors in itsestimate of the edge probability p. We generated 100 random graphs of 100 nodes each, for each ofthe true edge probabilities p = 0:01; 0:05; and 0:1. We then ran the simpler, greedy version of LWP14

(checking just one exploratory path per repetition) on each of the graphs, where the algorithm'sestimate of p was m � p, for values of m between 0:5 and 3. As the table shows, the di�erence inexecution time for even a 200% error in p is no more than 5%. The algorithm thus appears to berobust to error in estimating p.6.3 Triangle graph resultsWe also compared the algorithms' performance on triangle graphs (with initially-known spanningtrees). As noted above, we examined performance on triangle graphs as well as random graphs,since triangle graphs more closely approximate the situation for robotic navigation problems. Fur-thermore, we expect exploration in general to be less e�ective for triangle graphs, due to the lackof shortcuts; therefore we tested if our positive results for learning while performing hold for thetriangle case as well. Triangle graphs were generated as follows, given graph size (number of nodes)n and edge probability p.Triangle graphs with an overall edge probability of p were generated as subsets of Delaunaytriangulations via the following procedure:1. Generate n points randomly in a unit square (with a uniform distribution).2. Compute the Delaunay triangulation G = (V;E) of the points (using the qhull softwarepackage [3]).3. Assign each edge a random weight.4. Find a minimal spanning tree T = (V;ET) for this weighted graph.5. Let E 0 = ET .6. For each edge e 2 E � ET , add e to E 0 with probabilityq = p n(n� 2)2(jEj � n+ 1) ;where p is the input edge probability, n is the number of nodes in the graph and jEj is thenumber of edges in the triangulation graph.7. Choose, with probability 1n and 1n�1 , two nodes in the graph as goals, A and B.8. Output the graph G = (V;E 0) with initial spanning tree ET , and goals A and B.The probability q for adding an edge in the Delaunay triangulation to G is computed so that theexpected fraction of all possible edges that are edges in G is p.Data comparing the various exploration algorithms for triangle graphs is presented in Tables 7and 8. The �rst important result is that exploration (using any method) does not improve muchover default performance (using the initial spanning tree). Finding improved paths in triangle15

LWP/LBP LWP/RLWP LWP/Defaultn p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.110 1.02 0.94 0.91 1.01 0.94 0.90 0.99 0.85 0.7920 0.88 0.91 0.88 0.97 0.94 0.89 0.94 0.73 0.6140 0.65 0.65 0.71 0.88 0.86 0.86 0.97 0.62 0.5250 0.49 0.54 0.63 0.75 0.81 0.84 0.84 0.52 0.4760 0.44 0.46 0.48 0.75 0.75 0.76 0.89 0.54 0.5170 0.34 0.39 0.39 0.71 0.74 0.75 0.86 0.51 0.5080 0.30 0.34 0.34 0.68 0.78 0.77 0.85 0.59 0.5890 0.28 0.27 0.28 0.70 0.73 0.74 0.86 0.59 0.60100 0.24 0.22 0.22 0.70 0.67 0.67 0.88 0.63 0.63Table 7: E�ciency ratios for LWP over LBP, RLWP, and the default path, for triangle graphs withdi�erent numbers of nodes (R = 100, � = 4).LWP/LBP LWP/RLWP LWP/DefaultR p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.1 p =0.01 p =0.05 p =0.110 0.03 0.04 0.05 0.46 0.83 0.93 1.19 1.65 1.8550 0.13 0.12 0.13 0.59 0.60 0.62 1.09 0.80 0.84100 0.21 0.18 0.19 0.70 0.67 0.67 0.88 0.63 0.63200 0.31 0.27 0.27 0.80 0.78 0.78 0.72 0.51 0.51Table 8: E�ciency ratios for LWP over LBP, RLWP, and the default path, for triangle graphs withdi�erent numbers of task repetitions (n = 100, � = 4).graphs is more di�cult, because true shortcuts (ones that bypass large portions of the graph) donot exist. This means that the interleaved algorithms' essentially local nature may preclude themfrom �nding some good paths, while LBP must search much longer to �nd a short path in its initialexploration phase.Since � = 4 gave the best performance for LBP and RLWP, we present results for that value,and thus conservatively estimate the relative usefulness of LWP. It appears that LWP is never muchworse than LBP and RLWP for triangle graphs, and is sometimes much better. The di�erence ismost pronounced in comparison with LBP, where we �nd a considerable gain in e�ciency in usingLWP over LBP as the size of the environment increases (see Table 7). We also saw such a trendfor random graphs, though the e�ect was much less. The di�erence between the two interleavedalgorithms, LWP and RLWP, is less pronounced, however; using a utility-based formulation insteadof random local exploration may not help much in some planar environments.7 Multiple Repeated TasksIn the previous sections, we described and evaluated algorithms for combining exploration andtask achievement in a partially-known environment, where the agent is to perform a single taskrepeatedly. In this section, we report on some results for the more common case where the agent mayhave to perform a number of di�erent tasks in sequence. If we model the environment as a graph16

LWP/LBP LWP/RLWP LWP/DefaultR R R# goals 100 500 1000 2000 100 500 1000 2000 100 500 1000 20002 0.62 0.89 0.95 0.98 0.88 0.97 1.01 1.01 0.34 0.31 0.30 0.304 0.32 0.56 0.64 0.71 0.71 0.80 0.80 0.82 0.53 0.36 0.34 0.336 0.37 0.58 0.65 0.69 0.79 0.82 0.81 0.78 0.69 0.41 0.37 0.348 0.40 0.58 0.66 0.69 0.82 0.83 0.81 0.79 0.84 0.44 0.38 0.3410 0.43 0.61 0.68 0.71 0.79 0.83 0.82 0.80 0.93 0.47 0.40 0.3620 0.47 0.74 0.78 0.79 0.71 0.94 0.91 0.86 1.15 0.61 0.49 0.4130 0.49 0.89 0.88 0.86 0.70 1.07 0.99 0.92 1.17 0.73 0.55 0.4550 0.50 0.96 1.02 0.96 0.67 1.12 1.12 1.02 1.24 0.81 0.64 0.51Table 9: Results for multiple repeated goals in random graphs. Number of nodes n = 100, andedge probability p = 0:05.G = (V;E), instead of the agent repeatedly moving back and forth between two designated nodes(as above), each time the agent reaches its current goal node, its next goal node is selected randomlyaccording to some probability distribution over V . We assume this probability distribution is staticand is known by the agent, though the agent does not know what its speci�c future goals will be.In this work, we assumed a uniform probability distribution over a subset S of V .We generalized the exploration algorithms described above to the case of multiple goals in astraightforward manner. For the learning before performing (LBP) and the randomized learningwhile performing (RLWP) algorithms, the only change necessary is in the termination criterion,where exploration is terminated if the average shortest path length between pairs of possible goals isless than the threshold �. The utility-based learning while performing (LWP) algorithm is adjustedby computing the expectation of future utility of possibly discovering a new edge over all possiblesequences of goals. This is done by computing the average improvement in shortest known pathlength over all pairs of possible goals, for each unknown edge.In general, we expect the e�ciency of interleaved exploration versus a priori exploration todecrease as the number of di�erent goals increases, since the focusing that interleaved explorationprovides will be less useful. Our results are presented in Tables 10 and 9.Surprisingly, we �nd that, at least in dense environments (p = 0:1, Table 10), LWP performsconsiderably better than LBP, even for large numbers of goals. The di�erence decreases somewhat asthe number of tasks increases, but remains signi�cant. In sparser environments (p = 0:05, Table 9),however, this improvement is reduced, and nearly disappears for large numbers of repetitions. Weconjecture that in dense environments, there is a great deal of overlap between good paths fordi�erent goals, and so the focus of interleaved exploration can still be used to advantage. Theutility-based focus, however, seems less critical, at least over the long run, since the di�erencebetween LWP and RLWP is quite small for larger numbers of repetitions. Interestingly, the ratioof LWP/RLWP seems to increase with the number of repetitions up to a point (between 500 and1000 iterations) and then begins to decrease. It is not yet clear to us why this should occur.Finally, we note that in all cases, LWP performs better than the default of using an initial17

LWP/LBP LWP/RLWP LWP/DefaultR R R# goals 100 500 1000 2000 100 500 1000 2000 100 500 1000 20002 0.94 0.91 0.90 0.90 0.96 0.92 0.89 0.91 0.28 0.26 0.25 0.254 0.25 0.45 0.53 0.58 0.82 0.75 0.73 0.72 0.40 0.29 0.28 0.276 0.29 0.47 0.53 0.57 0.86 0.74 0.69 0.69 0.50 0.32 0.29 0.278 0.30 0.48 0.53 0.56 0.91 0.77 0.71 0.67 0.57 0.34 0.30 0.2710 0.34 0.51 0.56 0.58 0.90 0.78 0.71 0.68 0.65 0.36 0.31 0.2820 0.43 0.61 0.65 0.65 0.97 0.89 0.81 0.73 0.92 0.47 0.39 0.3330 0.45 0.69 0.73 0.70 0.93 0.99 0.90 0.79 0.97 0.54 0.43 0.3650 0.46 0.82 0.84 0.81 0.90 1.12 1.02 0.90 1.04 0.64 0.51 0.42Table 10: Results for multiple repeated goals in random graphs. Number of nodes n = 100, andedge probability p = 0:1.spanning tree. As expected, the improvement increases with the number of repetitions.8 Future WorkThe work described in this paper makes several strong modeling assumptions. One is that theagent begins knowing a spanning tree of the graph to be explored. While this assumption is notunreasonable, it might be relaxed either by allowing the agent to ask someone how to proceed (forsome known cost), or by having the agent know nothing and proceed randomly until a path is found.Both of these can be addressed in our utility-based formulation|asking for help becomes anotheraction whose expected utility can be estimated, and the expected cost of random exploration canbe estimated from experience. Similarly, if the costs of di�erent edges may vary, a number ofdi�erent modeling options are available. If the geometric distance between two nodes is known,this information can be used to estimate the actual path distance between them in the graph.More generally, if some probability distribution can be established for the path distance betweenany pair of nodes, the agent can use the expected path distance in calculating the expected utilityof an exploratory action. Such distributions may be learned through experience, and in practicemay depend on features of the nodes considered. For example, an agent on the Internet wouldlearn to estimate the `distance' between two .edu sites as lower than that between a .edu siteand a .il site. The �nal assumption used by all the algorithms described in this paper is thatthe agent knows all the nodes in the environment at the start. This assumption is reasonablefor some environments (such as the Internet), but less reasonable for others (such as a mobilerobot). Relaxing this assumption involves changing the problem model to one in which the agentis only aware of its current node and its outgoing arcs. We are currently applying our utility-basedexploration algorithm to models of this type. 18

9 DiscussionThe LWP algorithm presented above uses a greedy estimate of exploration utility in order toexplore a partially-known graph during performance of repeated tasks. Our results for a severaldi�erent types of graphs show interleaved exploration to be generally superior to a good a prioriexploration algorithm (LBP). We further have shown that LWP usually gives better performancethan a randomized interleaved exploration algorithm (RLWP), demonstrating the importance ofexplicitly considering the expected utility of exploration. Utility-based interleaved exploration onlyexplores parts of the environment that are expected to help the agent with its given tasks, avoidingexploring portions of the environment that are irrelevant to the agent. One surprising result is thatLWP can give signi�cant e�ciency improvements also for the case of more than two repeated goals,because even in such cases most of the environment need not be explored in order to perform therequired tasks e�ciently.We conclude that a simple utility-based interleaved exploration strategy can sometimes achievea signi�cant improvement in agent performance over other exploration strategies.References[1] S. Albers and M. R. Henzinger. Exploring unknown environments. In Proc. 29th Annual ACMSymposium on Theory of Computing, pages 416{425, 1997.[2] S. Argamon-Engelson, S. Kraus, and S. Sina. Utility-based on-line exploration for repeatednavigation in an embedded graph. Arti�cial Intelligence, 102(1{2):267{284, 1998.[3] C. B. Barber and H. Huhdanpaa. Qhull software package, 1995. Available athttp://www.geom.umn.edu/software/qhull.[4] K. Basye, T. Dean, and J. S. Vitter. Coping with uncertainty in map learning. TechnicalReport CS-89-27, Brown University Department of Computer Science, June 1989.[5] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.[6] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments. Chapmanand Hall, London, UK, 1985.[7] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall,Englewood Cli�s, NJ, 1987.[8] M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning of an unknown environment. MachineLearning, 18(2/3):231{254, 1995.[9] A. Blum and P. Chalasani. An on-line algorithm for improving performance in navigation. InProc. Symp. Foundations of Computer Science, pages 2{11, 1993.[10] B. Bollobas. Random Graphs. Academic Press, London, 1985.19

[11] F. Chimura and M. Tokoro. The trailblazer search: A new method for searching and capturingmoving targets. In Proc. National Conference on Arti�cial Intelligence, pages 1347{1352, 1994.[12] P. Cucka, N. S. Netanyahu, and A. Rosenfeld. Learning in navigation: Goal �nding in graphs.International Journal of Pattern Recognition and Arti�cial Intelligence, 10(5), 1996.[13] T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O. Maron. In-ferring �nite automata with stochastic output functions and an application to map learning.Machine Learning, 18(1):81{108, 1995.[14] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning under time constraints instochastic domains. Arti�cial Intelligence, 76(1{2):35{74, 1995.[15] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In IEEE, editor, Proceedingsof the 31st Annual Symposium on Foundations of Computer Science, pages 355{361. IEEEComputer Society Press, Oct. 1990.[16] O. Etzioni. Embedding decision-analytic control in a learning architecture. Arti�cial Intelli-gence, 49:129{159, 1991.[17] P. Haddawy, A. Doan, and R. Goodwin. E�cient decision-theoretic planning: Techniquesand empirical analysis. In Proc. Conference on Uncertainty in Arti�cial Intelligence, pages229{236, 1995.[18] T. Ishida and R. Korf. A moving target search: A real-time search for changing goals. IEEETransactions on Pattern Analysis and Machine Intelligence, 17(6):609{619, 1995.[19] T. Ishida and M. Shimbo. Improving the learning e�ciencies of realtime search. In Proc.National Conference on Arti�cial Intelligence, pages 305{310, Portland, OR, 1996.[20] L. P. Kaelbling. Learning in Embedded Systems. The MIT Press, Cambridge, MA, 1993.[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journalof Arti�cial Intelligence Research, 4:237{285, 1996.[22] G. I. Karakoulas. Probabilistic exploration in planning while learning. In P. Besnard andS. Hanks, editors, Eleventh Annual Conference on Uncertainty in Arti�cial Intelligence, pages352{361, 1995.[23] R. Korf. Real-time heuristic search. Arti�cial Intelligence, 42(2{3):189{211, 1990.[24] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less dataand less real time. Machine Learning, 13, 1993.[25] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical ComputerScience, 84(1):127{150, 1991.[26] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.John Wiley & Sons, Inc., New York, NY, 1994.[27] R. L. Rivest and R. E. Schapire. Inference of �nite automata using homing sequences (ex-tended abstract). In Proceedings of the Twenty-First Annual ACM Symposium on Theory ofComputing, pages 411{420, Seattle, Washington, 1989.20

[28] Y. Smirnov, S. Koenig, M. M. Veloso, and R. G. Simmons. E�cient goal-directed exploration.In Proc. National Conference on Arti�cial Intelligence, pages 292{297, Portland, OR, 1996.[29] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approx-imating dynamic programming. In Proc. Seventh Int'l Conf. on Machine Learning, pages216{224, Austin, TX, 1990. Morgan Kaufmann.[30] S. Thrun. The role of exploration in learning control. In Handbook for Intelligent Control:Neural, Fuzzy and Adaptive Approaches, Florence, Kentucky 41022, 1992. Van Nostrand Rein-hold.[31] R. Vaknin. Robotic mapping during task execution. Master's thesis, Bar-Ilan University, 1999.In Hebrew.A Occurrence of short paths in random graphsIn this appendix we investigate the probability of short paths between target nodes A and Boccurring in random graphs. Random graphs are parameterized by number of nodes n and edgeprobability p. (For simplicity, we ignore here the existence of a spanning tree.) We derive theprobability Q(n; p;� k) that at least one path of length less than or equal to k (for k = 3; 4)between nodes A and B occurs in a random graph with n nodes and edge probability p as follows.First, consider the probability of a path of length 1 occurring between A and B. Either theedge AB exists or it doesn't, thus: Q(n; p; = 1) = pNow, consider the probability of a path of length less than or equal to 2. If a path of length 1occurs, then such a path exists. If not, we consider all n � 2 possible paths of length 2 from A toB. The probability of each such path occurring is p2, since each of its edges occurs independentlywith probability p. Hence:Q(n; p;� 2) = Q(n; p; = 1) + [1�Q(n; p; = 1)]Q(n; p; = 2j 6= 1)= p+ (1� p)[1� (1� p2)n�2]where Q(n; p; = 2j 6= 1) denotes the probability (in random graphs of n nodes with edge probabilityp) of a path of length 2 occurring, given that no paths of length 1 occur. We generalize this notationbelow in the obvious way.It is clear from Q(n; p;� 2) that the probability of a path of length � 2 goes to 1 as n goes toin�nity (also see [10]).Next, consider the probability of a path of length less than or equal to 3. As above, we formulate:Q(n; p;� 3) = Q(n; p; = 1)+ [1�Q(n; p; = 1)][Q(n; p; = 2j 6= 1) + [1�Q(n; p; = 2j 6= 1)]Q(n; p; = 3j 6= 1^ 6= 2)]The di�culty here is determining the probability of a path of length three occurring given that21

no paths of length 1 or 2 occur, Q(n; p; = 3j 6= 1^ 6= 2). The conditioning event destroys theindependence of the edge probabilities for edges incident on A or B. Consider a potential such edgeAC. The probability of this edge, given that no path of length 2 from A to B exists, is:P (AC) = P (AC;:CB)1�P (AC;CB)= p(1�p)1�p2= p1+pBy symmetry, the edges incident on A and B have equal probability, q = P (AC) = P (AD) =P (CB) = P (DB) = p1+p . Considering a potential path ACDB of length 3, the probability of themiddle edge CD is independent of the occurrence of paths of length 1 or 2, so we have that theprobability of such a path is q2p. Hence, quantifying over the (n� 2)(n� 3) potential paths:Q(n; p; = 3j 6= 1^ 6= 2) = 1� (1� q2p)(n�2)(n�3)and thusQ(n; p;� 3) = Q(n; p; = 1)+[1�Q(n; p; = 1)][Q(n; p; = 2j 6= 1) + [1�Q(n; p; = 2j 6= 1)](1� (1� q2p)(n�2)(n�3))]= p+ (1� p)[(1� (1� p2)n�2) + ((1� p2)n�2)(1� (1� q2p)(n�2)(n�3))]For paths of lengths less than or equal to 4, we again proceed similarly, with:Q(n; p;� 4) = Q(n; p; = 1)+(1�Q(n; p; = 1))[Q(n; p; = 2j 6= 1)+(1�Q(n; p; = 2j 6= 1)) [Q(n; p; = 3j 6= 1^ 6= 2)+((1�Q(n; p; = 3j 6= 1^ 6= 2))�Q(n; p; = 4j 6= 1^ 6= 2^ 6= 3))]]In order to calculate Q(n; p; = 4j 6= 1^ 6= 2^ 6= 3), we must, as above, calculate the probabilityq1 of an edge from A or B to another node C, given that no paths � 3 exist between A and B, aswell as the probability q2 of an edge between two nodes C and D other than A and B, under thesame condition. We do so as follows: q1 = Pr(ACj 6� 3)= Pr(AC^6�3)Pr(6�3)= Pr(AC^6�3)1�Pr(�3)= Pr(AC^6�3)1�Q(n;p;�3)Now, let r = Q(n � 1; p; 6� 3) be the probability of no paths of length less than 3 between Aand B in GnC. These are independent of the occurrence of AC. Further, consider all n� 3 nodes22

Di 62 fA;C;Bg|we require that no path of length 2 from C to B via any Di exist. Hence:q1 = Pr(AC^:CB^Vi :(CDi^DiB))r1�Q(n;p;�3)= Pr(AC)Pr(:CB)Pr(Vi :(CDi^DiB))rr11�Q(n;p;�3)= p(1�p)(1�p2)n�3(1�Q(n�1;p;�3))1�Q(n;p;�3)Similarly: q2 = Pr(CDj 6� 3)= Pr(CD^6�3)Pr(6�3)= Pr(CD^6�3)1�Pr(�3)= Pr(CD^6�3)1�Q(n;p;�3)Now, let s = Q(n � 2; p; 6� 3) = 1 � Q(n � 2; p;� 3) be the probability of no paths of length 3between A and B in GnfC;Dg. Then:q2 = Pr(CD^:(AC^DB)^:(BC^DA))s1�Q(n;p;�3)= Pr(CD)Pr(:(AC^DB)Pr(:(BC^DA))s1�Q(n;p;�3)= p(1�p2)2(1�Q(n�2;p;�3))1�Q(n;p;�3)Hence, the probability of a particular path of length 4, given no paths of lengths � 3, is q21q22, thus,since there are (n� 2)(n� 3)(n� 4) possible paths of length 4:Q(n; p;� 4) = Q(n; p; = 1)+(1�Q(n; p; = 1))�[Q(n; p; = 2j 6= 1) + (1�Q(n; p; = 2j 6= 1))[Q(n; p; = 3j 6= 1^ 6= 2)+(1�Q(n; p; = 3j 6= 1^ 6= 2))�(1� (1� q21q22)(n�2)(n�3)(n�4))]]In Figures 3 and 4, we plot the functions Q(n; p;� k), for k = 2; 3; 4. It is clear that the numberof nodes n has a great e�ect. For n = 200, the probability of a path length � 4 is nearly 1, even forp = 0:025. In particular, note that Q(n; p;� 4) is often much larger than Q(n; p;� 3), i.e, there aremany graphs with paths of length 4, but not of length 3. This explains why a stopping criterion of� = 4 for LBP often performs better than � = 3, since the lower � criterion will often fruitlesslyexplore the entire graph, even after �nding a path of length four.
23

Q(n,p; <= 3)

0 0.025 0.05 0.075 0.1
50

100
150

200
0

0.25
0.5

0.75
1

p
n

Q

(a)
Q(n,p; <= 4)

0 0.025 0.05 0.075 0.1
50

100
150

200
0

0.25
0.5

0.75
1

p
n

Q

(b)Figure 3: The functions (a) Q(n; p;� 3) and (b) Q(n; p;� 4), plotted as functions of p and n.

0

0.25

0.5

0.75

1

0 0.025 0.05 0.075 0.1

Q

p

Q(50,p; <= 2)
Q(50,p; <= 3)
Q(50,p; <= 4)

(a) 0

0.25

0.5

0.75

1

0 0.025 0.05 0.075 0.1

Q

p

Q(100,p; <= 2)
Q(100,p; <= 3)
Q(100,p; <= 4)

(b) 0

0.25

0.5

0.75

1

0 0.025 0.05 0.075 0.1

Q

p

Q(200,p; <= 2)
Q(200,p; <= 3)
Q(200,p; <= 4)

(c)Figure 4: The functions Q(n; p;� 2), Q(n; p;� 3), Q(n; p;� 4), plotted as functions of p, for (a)n = 50, (b) n = 100, (c) n = 200. 24

