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Abstract
Effectively modeling an agent’s cognitive model is
an important problem in many domains. In this pa-
per, we explore the agents people wrote to operate
within optimization problems. We claim that the
overwhelming majority of these agents used strate-
gies based on bounded rationality, even when op-
timal solutions could have been implemented. Par-
ticularly, we believe that many elements from Aspi-
ration Adaptation Theory (AAT) are useful in quan-
tifying these strategies. To support these claims,
we present extensive empirical results from over
a hundred agents programmed to perform in opti-
mization problems involving solving for one and
two variables.

1 Introduction
Realistic modeling of individual reasoning and decision mak-
ing is essential for economics and artificial intelligence re-
searchers[Chalamishet al., 2008; Gigerenzer and Goldstein,
1996; Maes, 1995; Manisterskiet al., 2008; Murakamiet
al., 2002; 2005; Sauermann and Selten, 1962; Selten, 1998;
Seltenet al., 1997]. In economics, validly encapsulating
human decision-making is critical, for instance in predict-
ing policy effects. Within the field of computer science,
it is critical for mixed human-computer systems such as
entertainment domains[Maes, 1995], Interactive Tutoring
Systems[Murakami et al., 2005], and mixed human-agent
trading environments[Manisterskiet al., 2008]. In these
and similar domains, creating agents that effectively under-
stand and/or simulate people’s logic is particularly impor-
tant. In both economics and computer science the perspec-
tives of unbounded rationality based on notions such as ex-
pected utility, game theory, Bayesian models, or Markov De-
cision Processes (MDP)[Neumann and Morgenstern, 1944;
Russell and Norvig, 2003], have traditionally been the foun-
dation for modeling agent’s behavior.
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While many important insights have been gained by these
perspectives, it does not necessarily provide a descriptively
correct model of human decision-making. Indeed, previous
research in experimental economics and cognitive psychol-
ogy has shown that human decision makers often do not ad-
here to fully rational behavior. For example, Kahneman and
Tversky[Kahneman and Tversky, 1979] have shown that in-
dividuals often deviate from optimal behavior as prescribed
by Expected Utility Theory. Furthermore, decision makers
often do not know the quantitative structure of the environ-
ment in which they act. But even if the quantitative struc-
ture of the environment is known to the decision maker, find-
ing the optimal sequence of actions is often a problem with
intractable computational complexity[Pynadath and Tambe,
2002]. Thus, even in the best of circumstances, modeling be-
havior based on full rationality may be impractical.

A research direction called Bounded Rationality initiated
by Simon[Simon, 1957] focuses on investigating the ratio-
nality of individuals in decision making and problem solving.
Simon presumes that people – except in the most simple sit-
uations – lack the cognitive and computational capabilities to
find optimal solutions. Instead they proceed by searching for
non-optimal alternatives to fulfill their goals. Simon proposes
that real-world decision makers satisfice rather than optimize
and seek “good enough” solutions instead of optimal ones.
In this tradition, Sauermann and Selten propose a framework
called Aspiration Adaptation Theory (AAT)[Sauermann and
Selten, 1962; Selten, 1998] as a boundedly rational model of
decision making.

Recent evidence from experimental economics provides
support that people apply boundedly rational procedures,
such as Aspiration Adaptation Theory (AAT)[Sauermann
and Selten, 1962; Selten, 1998], in real-world domains[Sel-
tenet al., 2008]. In this paper, we provide empirical evidence
that the computer agents people write to act within optimiza-
tion problems also contain several key elements from these
models. This realization allows us to effectively model the
decisions by these agents. Additionally, we present several
guidelines by which realistic agents can be built based on this
result. We begin by presenting the basics of AAT.

2 Aspiration Adaptation Theory
Aspiration Adaptation Theory was proposed by Selten as a
general economic model of nonoptimizing boundedly ratio-



nal behavior[Sauermann and Selten, 1962; Selten, 1998].
We frame this theory within the specifics of the optimization
problems presented in the next section. We refer the reader
to the full paper[Selten, 1998] for a complete and general
presentation of this theory.

AAT is an approach by which bounded agents address a
complex problem,G. The complexity withinG prevents the
problem from being directly solved, and instead an agent cre-
atesm goal variablesG1 , . . . , Gm as means for solving
G. These goals are assumed to be incomparable, and no ag-
gregate utility function, known as a substitution rate in eco-
nomics, can be constructed for combining them goals intoG.
The lack of a utility function may be because the problem is
simply too complex to quantify such a function, or because
the agent lacks the resources to properly calculate the aggre-
gate utility function forG. In attempting a solution, the agent
has a group ofs instrument variables which represent base ac-
tions that can be used to pursue the goal variables. We define
a strategyx = (x1, . . . , xs) as a combination of instrument
values for the goal variablesG1 , . . . ,Gm. These values can
and do typically change over the life of the agent. For ex-
ample, assume a company has a goalG to be optimally prof-
itable. Goal variable examples might be to create more sales,
create higher brand awareness or to invest in the company’s
production infrastructure. Here, the instrument variables may
include lowering the product’s price, investing more money in
marketing, or hiring more skilled workers. The agent might
have one strategy at the beginning of its operation (e.g. an
opening sale to entice buyers) and then use a different strategy
after the business matures. An actionA is a rule for changing
the strategy. Examples of actions in this context include:

• Raising the product’s price by 5%.
• Lowering product’s price by 10% in conjunction with

raising the marketing expenditure by 15%
• Making no change to the strategy

A finite number ofn actions,A1 . . .An are considered.
The agent can only choose one action per time frame.

Despite its lack of utility to quantify rational behavior, the
model provides several guidelines for how bounded agents
will behave. Agents decide about goal variables as follows:
The m goal variables are sorted in order of priority, or the
variables’urgency. Each of the goal variables has a desired
value, or theaspiration level, that the agent sets for the cur-
rent period. The agent’s search starts with an initial aspiration
level and is governed by itslocal procedural preferences. The
local procedural preferences prescribe which aspiration level
is most urgently adapted upward if possible, second most ur-
gently adapted upward if possible, etc. and which partial as-
piration level isretreated fromor adapted downward if the
current aspiration level is not feasible. Here, all variables ex-
cept for the goal variable being addressed are assigned values
based on ceteris paribus, or all other goals being equal, a bet-
ter value is preferred to a worse one. Borrowing from Simon’s
terminology[Simon, 1957] there is only an attempt to “satis-
fice” the goal values, or achieve “good enough” values instead
of trying to optimize them. Note that this search approach is
in contrast to traditional A.I. methods such as Hill-climbing
or Gradient Descent learning techniques which can search for

optimal values of all variables simultaneously[Russell and
Norvig, 2003].

While this theory has existed since the early 1960’s[Sauer-
mann and Selten, 1962], there are few empirical studies of
how well it explains observed behavior[Seltenet al., 2008].
As Selten’s paper states, “AAT was meant as a useful point of
departure for theory construction. The theory as it stands can-
not claim to be a definite answer to the problem of modelling
bounded rationality. Probably, one would need extensive ex-
perimental research in order to modify it in a way which fits
observed behavior.”[Selten, 1998]

In this paper, we study how AAT provides such a point of
departure for studying optimizing search agents. To the best
of our knowledge, this paper represents the first study that
bridges between the fields of experimental economics and
computer science to demonstrate the applicability of bounded
rationality theory in modeling these agents. While several
differences do exist between AAT and the cognitive model of
the search agents we study, we overall find many key sim-
ilarities between these agents and elements of this bounded
rationality theory. Additionally, we compare these agents to
other bounded rationality models and optimal methods, and
demonstrate that AAT is descriptively more correct than the
other possibilities. The next section details the exact method-
ology used in this study.

3 Research Methodology
Central to our methodology is the strategy-method[Selten
et al., 1997] from experimental economics. The assumption
behind this method is that people can effectively implement
their own strategies within a certain period of time, without
additional aids such as handbooks or other sources of infor-
mation. Underlying this assumption is that people will exe-
cute a task to the best of their abilities if they are properly
motivated, monetarily or otherwise. In our study, all peo-
ple writing agents were upper level undergraduates (seniors),
masters and PhD computer science students and were given a
firm deadline of 2 weeks to complete their agents. As motiva-
tion, we told the students that their grade was based on their
agent’s performance. Once these programs were written, the
mental model of the person’s agent can be directly evaluated
from its decisions. This approach is well accepted in exper-
imental economics and it has also begun to be used within
artificial intelligence research[Chalamishet al., 2008].

In order to ensure that people were able to effectively en-
capsulate their own strategies, several steps were taken. First,
we took care to provide students a well designed Java frame-
work in which methods were included for most computations
(e.g. finding the average of the agent’s past performance).
Thus, full knowledge of Java was not necessary, as the pro-
vided framework enabled people to encode their strategies in
only a few lines of code. This approach mimics the strategy-
method variant previously used in economics[Seltenet al.,
1997] where people program their own strategies. The Java
language was chosen as all students had experience using this
programming language in multiple previous courses and thus
were fluent in this language. Finally, after the first two week
deadline, we required all students to submit a “draft” agent
after which we reported back to all students with the rela-



tive performance of their agents to others in the group. The
students were then allowed an additional week to fix bugs in
their agents, or to improve their implementation without any
penalty.

We used two tools to study the agents’ design. First, we
ran the agents and studied the agents’ decisions. By analyz-
ing the agents’ logic and comments, one can often understand
the search process used. Additionally, after an assignment
had been completed, we distributed questionnaires to the stu-
dents themselves asking them directed questions about the
strategy their agent used, confirming particulars of their ap-
proach. This allowed us to confirm what search mechanisms
were used by each of the agents.

Our long-term research methodology is as follows. We first
study a relatively simple optimization problem, to understand
the model used by agents to solve this problem. Next, we
study progressively more difficult problems. Eventually, we
hope to reach real-world types of optimization problems. By
studying progressively less difficult problems first, we believe
it will be easier to understand the general behavior of these
agents and the applicability of our results. In this paper, we
report on the first stages of this research.

Specifically, in this paper we report on the results from
two optimization problems – a commodity search problem
where the optimal solution could be found based on solving
for one cost instrument variable, and a more complicated do-
main where the optimal solution requires solving for price
and quality instrument variables. In both domains an opti-
mal solution can be constructed, and thus bounded rational-
ity theories such as AAT are potentially unnecessary. How-
ever, the optimal solution is far from trivial in these domains.
Thus, these problems allow us to explore issues surrounding
the strategies and heuristics implemented by people’s agents
and questions of performance and optimality of these agents.

3.1 Commodity Price Optimization
In the first optimization problem, we consider a problem
where a person must minimize the price in buying a com-
modity (a television) given the following constraints. In this
problem, a person must personally visit stores in order to ob-
serve the posted price of the commodity. However, some cost
exists from visiting additional stores. We assume this cost
is due to factors such as an opportunity cost with continuing
the search instead of working at a job with a known hourly
wage. For any given discrete time period, the person must
decide if she wishes to terminate the search. At this point, we
assume she can buy the commodity from any of the visited
stores without incurring an additional cost. The goal of the
agent is to minimize the overall cost of the process which is
the sum of the product cost and the aggregated search cost.

From a strategic point of view, the game is played under a
time constraint rather than against an opponent. An optimal
solution to this optimization problem can be found as an in-
stance of Pandora’s problem[Weitzman, 1979] resulting in a
stationary threshold below which the search should be termi-
nated. Formally, we can describe this problem as follows:

We assume that there is a finite timelineT = {1, 2, ..., k}.
In each time stept, t ≤ k the agent observes a cost and needs
to decide whether to end the search. All of the observed costs,

regardless of the time step, are drawn from the same distribu-
tion. We denotect as the lowest price the agent observed up
to and including the time periodt (i.e., ct ≤ ct−1). At the
end of the game the agent’s cost iscost(t, ct) = ct + λ ∗ t,
λ > 0. The agent’s goal is to minimize this cost. As has been
previously proven, the optimal strategy in such domains is as
follows: existsc̄ such that ifct ≤ c̄ the agent should stop the
search[Weitzman, 1979].

Intuitively, it seems strange that the decision as to whether
the agent should stop the search does not depend on how
much time is left, i.e.,̄c does not depend onk − t. However,
the reason for this is as follows. If the agent’s overall ex-
pected benefit from continuing the search (i.e., the reduction
in price that it will obtain) is lower than the overall cost due to
the added search time, the agent clearly should not continue
the search. Furthermore, it was proven that it is enough for
the agent to consider only the next time period, i.e., it should
stop the search if and only if the expected reduction in the
price in the next time period is less than the cost of contin-
uing one time period (λ) [Weitzman, 1979]. To understand
why, consider the following sketch of the proof: Suppose, to
the contrary, that the agent is in time stept, the expected ben-
efit from continuing tot + 1 is less thanλ, but it will still be
beneficial for the agent to continue until timet′ > t + 1. The
agent should then continue the search to timet′−1. However,
it is given thatct′−1 ≤ ct. Thus, given that the price in each
time period is drawn from the same probability, the relative
expected reduction of the price when moving fromt′ − 1 to
t′ is smaller than the expected reduction when moving from
t to t + 1. Nonetheless, the cost per time step,λ is the same.
Thus, we demonstrate that if it is not beneficial for the agent
to continue fromt to t + 1, it is also not beneficial to con-
tinue fromt′ − 1 to t′; contradicting our assumption that it is
beneficial to the agent to continue until time periodt′.

In our implementation, the prices are distributed normally
with a meanµ and a standard deviationσ. We denote byx
the price for which the expected reduction in the price for
one time period is equal toλ. For a given pricep the benefit
is x− p and the probability1 for p is

1
σ
√

2π
e−

1
2 ( p−µ

σ )2

Given these definitions we must generally solve:
∫ x

0

(x− p)
1

σ
√

2π
e−

1
2 ( p−µ

σ )2dp = λ

In our specific implementation,µ = 1000, σ = 200 and
λ = 15. Thus we specifically solve,

∫ x

0

(x− p)
1

200
√

2π
e−

1
2 ( p−1000

200 )2dp = 15

Solving this equations yields a solution ofx = 789.
Note that as an optimal solution exists, ostensibly there is

no need for bounded rationality theories such as AAT. How-
ever, we believe that not only people, but even the agents

1In the domain, when a negative price was drawn, we drew a new
price. Since the probability of such an event is extremely small, we
did not take it into consideration in our analysis.



they write on their behalf, do not necessarily effectively har-
ness a computer’s computational power to find optimal strate-
gies. Thus, we predict that agents will use non-optimal search
strategies involving instrument variables such as the current
price of the commodity (x1) and the elapsed time (x2) as mea-
sured by the number of visited stores.

3.2 Price and Quality Optimization
In the second problem, we consider an environment of a com-
pany with a monopoly for a certain product. The owners of
the company must set several important variables that will
impact how much money the company will make. In this en-
vironment, there are no external factors to these decisions.
Thus, the outcome of these decisions is not influenced by fac-
tors such as how other companies perform, what are other
people’s decisions, or random effects.

We formally present this problem as follows: We assume
that there is a finite timelineT = {1, 2, ..., k}. The agent
needs to set two instrument variables, the price and quality of
the product for anyt ∈ T , denotedpt andqt, respectively.
The values ofpt andqt can be set to any positive integer. The
profit of the agent at a given timet depends on its choice for
the price and quality until the current time. We denote by
p̄t = (p1, ..., pt) andq̄t = (q1, ..., qt), the price and qualities
determined by the agent until timet. The profit of the agent
at a given time,PT (p̄t, q̄t) consists of the gross profit and the
expenses due to the quality.

The portion of the profit that is influenced by the price is:

PG(p̄t) = p̄t
te
−(p̄t

t−µ)2/λ1
p

The portion of the profit that is influenced by the quality is:

QG(q̄t) = λ1
qQG(t− 1) + λ2

qQG(t− 2) + λ3
q

√
q̄t
t

The profit at timet is

PT (c̄t, q̄t) = PG(p̄t) ∗QG(q̄t)− γq̄t
t

The profit of the entire time period is:
∑

t∈T PT (p̄t, q̄t)
All of the constants butµ andγ are known to the agent. In

our experiments we set the constantsλ1
p = 1000, λ1

q = 0.7,
λ2

q = 0.3, andλ3
q = 0.4. For initialization purposes,q−1

andq0 are set to 0. The value forµ is a randomly selected
integer from a uniform distribution between 25 and 75, and
γ is a randomly selected integer from a uniform distribution
between 40 and 60. Finally, we set k=50 indicating that the
company will only exist for 50 time periods.

The goal of the agent is to maximize the company’s profit
over the course of one trial. The agent operates within a one-
shot environment which resets the values ofµ and γ after
every trial. Thus, no learning could be performed between
these trials to learn the values ofµ andγ. However, through-
out one trial, for every time period the agent was given the
values ofPT (c̄t, q̄t), PG(c̄t), QG(q̄t)

Note that in this environment as well, an optimal solution
can be found. Here, the only problem parameters with un-
known values areµ andγ. It is possible to construct a table
offline with the optimal values of price and quality given all
possible permutations forµ andγ. The size of this table will

be 50 (as perk) times 50 (as per as possible values forµ)
times 20 (as per as possible values forγ). Once this table has
been constructed, the online agent only needs to identify what
the values forµ andγ are so it may use the optimal prelearned
values. As such, an optimal solution is as follows: In the first
time period, the agent uses a predetermined value forγ that
will yield the highest average profit. Once the agent observes
the company’s profit after the first iteration, it is able to solve
for the unknown value ofµ. In the second iteration it can
similarly solve forγ as it is known to be the only remaining
variable. After this point, the agent sets the price and quality
for every remaining time step as per the prelearned optimal
values for these values ofµ andγ. Alternatively, another op-
timal solution involves first solving for the unknown value for
γ in the first iteration, forµ in the second iteration, and using
the prelearned optimal values after this point.

As an optimal solution is again possible in this domain,
bounded rationality theories such as AAT seem irrelevant.
However, we generally believe that two significant factors
contributed to the student’s inability to optimally solve these
problems. First, both problems were verbally presented and
thus students needed to properly model the problems before
solving them. Second, even after these problems were prop-
erly modeled, correctly solving for these problem parameters
was far from trivial and required significant algebraic knowl-
edge. As a result, we again hypothesize that people will use
non-optimal strategies, here involving search within instru-
ment variables of the company’s price (x1) and quality (x2).

While the commodity search and the monopoly optimiza-
tion problems are relatively simple, the similarities and dif-
ferences between them allows us to generalize our findings.
First, the commodity search problem is a basic problem all
people encounter – we all purchase items in stores with dif-
ferent price distributions. In contrast, the monopoly prob-
lem is one that business managers, and not computer sci-
ence students, may have experience solving. Other techni-
cal differences exist as well. The commodity search problem
is characterized by complete information, but a certain level
of randomness (non-deterministic behavior) exists in what
the price of the commodity is in a given store. Also note
that the optimal solution involves making a decision based
on the current price alone. In the first domain, other instru-
ment variables, such as the number of visited stores or the
length of the time horizon, are not part of the optimal so-
lution. In contrast, the monopoly game is characterized by
deterministic functions with two unknown parameters (µ and
γ). While this problem is more straightforward, the intro-
duction of a second variable makes the problem seemingly
more complex. Furthermore, the optimal value for quality
changes over time, and can only be found by solving forγ.
Despite these differences, both domains are generalized rep-
resentations of real-world problems[Chalamishet al., 2008;
Seltenet al., 2008] and thus serve as good domains for study-
ing the models of search agents.

4 Results and Analysis
We studied how people’s agents performed in the above com-
modity search and monopoly domains. Within the commod-
ity search domain, we studied the agents from 41 senior un-



dergraduate and graduate students. Within the monopoly do-
main, we studied the agents from a different group of 57 se-
nior undergraduate and graduate computer science students.

4.1 Non-Optimal Performance
In both domains, a minority of the agents did in fact exhibit
performance near or close to that of the optimal agent. How-
ever, the vast majority of these the agents deviated signifi-
cantly from optimal behavior.

As per previous work by Chalamish et al.[Chalamishet
al., 2008], the 41 agents from the commodity search domain
were divided into 14 “maximizing” agents and 27 “cloning”
agents. The “maximizing” agents were written by students
who were asked to create agents with as high performance
as possible (optimal). The “cloning” agents were written
by people who were instructed to mimic their own personal
strategies. As one focus of the experiment was how effec-
tively people could clone their own strategies, the maximize
group served as the control group with a ratio of 1:2. As ran-
dom effects do exist in this environment, we ran each of these
agents 50 times, and averaged the agent’s performance. We
then compared the average performance from the “cloning”
and “maximizing” groups, the best performing agent from
each of these groups, and the worst performing agent from
each of these groups. Finally, we compared the performance
of the optimal agent to the agents the students wrote.

Average Worst Best Optimal
Maximizing 828.03 875.36 790.92 789.20

Cloning 834.98 895.21 790.13 789.20

Table 1: Comparing the Average, Worst, and Best Utility
Value of “Maximizing” and “Cloning” Commodity Search
Agents to Optimal Values. Lower Costs are Better.

Table 1 shows the performance of these agents. Note that
the goal of this domain was to minimize the search price. As
such, the low search cost of the best agent (column 3) closely
approximated the performance of the optimal agent (column
4). It is important to also note that the average cost of both
the “cloning” and “maximizing” agents (approximately 830
units) were quite far from the optimal agent (approximately
790) with p-values testing for significance being much less
than 0.0001. However, the differences between the “cloning”
and “maximizing” agents were not significant (p-value 0.48).
These results imply that most people asked to write optimal
agents fall well short of this amount, and do in fact, closely
replicate their own non-optimal strategies. This result vali-
dates the use of the strategy method[Seltenet al., 1997] from
experimental economics as people were typically successful
in implementing their own strategies.

Once we verified that the strategy method could be applied
to agents written to act within optimizing problems, we stud-
ied a second group of 57 maximizing agents written for the
monopoly domain. We again studied the average, highest,
and lowest performance across the agents, and compared this
performance to that of the optimal agent. In this domain,
many different values were possible for the previously de-
scribed price and quality functions. As such, we applied two

different evaluation approaches. Within theFull evaluation,
we studied the average performance of the agent across all
possible permutations of price and quality. In theSampling
evaluation, we studied the average performance of the agents
across six randomly selected value pairs of these values. Re-
alistically, the second type of evaluation seems more appro-
priate as people typically build small numbers of companies.
However, the fuller evaluation in theFull group is useful for
statistical testing.

Table 2 displays the performance of the agents from the
monopoly domain. Note that in this domain as well, the
performance of the best agents (third column) in both the
Full andSamplingevaluation methods reached near optimal
levels. However, the agents’ average performance (first col-
umn) again fell well short of the optimal (p-values between
the optimal performance and the Full and Sampling eval-
uation groups were both well below 0.0001). This again
strongly supports the claim that people’s agents typically fall
far short of optimal values. Note that in the more complex
monopoly domain, the average agent’s performance was over
30% less than the optimal value, while in the simpler com-
modity search problem, this difference was closer to only 5%.
This seems to imply that as problems become progressively
harder, the performance of bounded agents deviates further
from the optimal values.

Average Worst Best Optimal
Full 41878.48 10145.13 58736.37 61597.87

Sampling 35961.03 -5578.89 55485.08 58150.61

Table 2: Comparing the Average, Worst, and Best Utility
Value of People’s Two-Parameter Monopoly Agents to Op-
timal Values. Higher Utilities are Better.

4.2 Elements of AAT to Quantify Behavior
Our goal was not just to verify the non-optimality of people’s
agents, but to generalize what non-optimal strategies are in
fact being used. To the best of our knowledge, this paper rep-
resents the first of its kind to demonstrate that many agents
designed to solve optimizing problems in fact implemented
strategies consistent with bounded rationality, and specifi-
cally key elements of AAT.

Other than AAT, several different types of strategies were
possible in these domains. First, the optimal methods de-
scribed in Section 3 could have been used. Within the fam-
ily of bounded methods, several possibilities other than AAT
were possible. Psychological models of bounded rational-
ity have suggested that people use domain specific biases or
heuristics to solve problems sub-optimally[Gigerenzer and
Goldstein, 1996; Kahneman and Tversky, 1979]. These meth-
ods are different from bounded economic approaches such as
AAT which present a general, non-domain specific method
for searching for a satisficing solution. Following the psycho-
logical approaches, simple predefined heuristics could have
been used to set values for the unknown parameters. This ap-
proach is consistent with a basic implementation of Gigeren-
zer and Goldstein’s fast and frugal heuristics[Gigerenzer and
Goldstein, 1996] and involves using simplistic preset values
that are seen as “good enough”. Other non-AAT search ap-



proaches may involve simultaneously searching for all un-
known values. More traditional A.I. methods search as Hill-
climbing or Gradient Descent[Russell and Norvig, 2003]
can simultaneous search for multiple variables, something not
consistent for AAT’s concept of urgency.

To study this point we constructed a short list of several
questions by which we determined the model of the agents.
These questions included: How many variables did the agents
attempt to solve for? What were they? Was a search process
used to set these instrument variables, or was a predefined
strategy (independent of actual performance) used instead?
If search was used, were the variables searched for simulta-
neously, or sequentially? If sequential search was used, did
the agent revisit variables after it had originally set a value
for it (such as to retreat, or revise downward the previously
set threshold value). We recognize that despite the wealth of
log files and strategy descriptions provided by the agents’ au-
thors, at times some ambiguity may exist in an agent’s model
as how to answer these questions. To overcome this issue,
we had a total of three people judge each of the agents in our
results. Of these three people, two were not authors on this
paper, and thus had no bias.

Overall, we found that search agents not only didn’t use op-
timal methods, but additionally exhibited three key elements
specific to AAT. First, we found that agents prioritized certain
instrument variables to be solved first. This concept paral-
lel’s AAT’s concept of urgency between itsm goal variables.
Second, we found that agents generally stopped their search
within a given instrument variable once it had satisficed this
value. Finally, we found that agents often changed its satisfic-
ing threshold during the search process. This parallels AAT’s
concept of retreat and should be expected if the agent deemed
its original goal was no longer realistic. For example, within
the commodity search domain an agent may begin by first at-
tempting to find a commodity below a certain threshold price.
However, assuming a certain time elapses (or a number of
stores have been visited), it may revise downward this thresh-
old as being a “good enough” solution. In the monopoly do-
main, the agent might set a priority as to which variable, price
or quality, will be searched for first. After this variable was
satisficed, the agent then proceeded to the other variable.

It is important to note that two key differences exist be-
tween classic AAT, and the behavior exhibited by the search
agents in the domains we studied. First, AAT assumes that
them goal variables used to solveG are incomparable as no
utility function was possible to connect goal variables. Here,
we consider optimization problems where a concrete function
betweenG and them goal variables clearly exists. Nonethe-
less, we hypothesize that the agent will not attempt to calcu-
lateG due to its bounded nature. This represents a significant
generalization to AAT’s theory and its relevance even within
domains that contain concrete, albeit difficult to quantify, util-
ity functions. Second, AAT is based on the premise that the
agent’s search will be based on anaspiration scalewhich
sorts them goal variables and attempts to satisfice values
for these goals. As we consider concrete optimization prob-
lems, it is more natural for agents to consider optimizing the
instrument variables that constitute the basis of these goals
rather than the more abstract general goal variables. For ex-

ample, we would expect an agent in the monopoly domain to
focus on variables such as price and quality instead of higher
level abstract goals such as “brand awareness” or “company
infrastructure”. Again, we believe that this difference is due
to the fact that we consider optimization problems with clear
utility functions, and represent a generalization of AAT.

Goal Variable Judge 1 Judge 2 Judge 3 Average
Price 6 6 7 6.33

Stores Visited 5 5 5 5
Both w/ Retreat 30 30 29 29.67

Table 3: Goal Variables in the Commodity Search Domain

Table 3 presents the number of agents categorized by each
of these judges in the commodity search problem. This table
depicts how the 3 judges categorized the number and search
variables of the agents. The optimal solution within this prob-
lem involves search within only one variable, the current price
of the commodity. Nonetheless, the judges found that on
average 6.33 of the 41 agents made decisions based on this
variable alone (see row 1, column 4). While none of these
students actually used the optimal strategy (buy if the price
in the current store is less than 789 – as generally dictated by
[Weitzman, 1979] within our implementation), several of the
students did have similar strategies such as buy if the price
is less than 800. Another 5 students actually used another
search variable, the number of stores visited, to make deci-
sions (see row 2). For these students, the strategy was to visit
a predetermined number ofY stores and to buy the commod-
ity in the cheapest store from the group ofY . Both of these
strategies only contained one instrument variable. As such,
they can be viewed as basic search strategies involving only
one variable (e.g. search until price< X, or visit Y stores
and buy in the cheapest store).

Surprisingly, approximately 73% of the agents (see row 3
column 4, average 29.67 of 41) use combination strategies.
For these students, the strategy was to immediately buy the
commodity if the price was less thanX, otherwise, they visit
a maximum ofY stores and buy in the store with the cheap-
est found price. While non-optimal, this strategy has key ele-
ments of AAT. Originally, agents search based on price alone.
However, if the desired price is not found, the agent down-
ward revises its aspiration. This can be seen as being similar
to the retreat process within AAT’s goal variables. Note that
the use ofurgencyhere is not even justified based on optimal
behavior as the second goal variable (Stores Visited) is not
even part of the optimal solution! Furthermore, the combina-
tion strategy of settling on a price after visitingY stores if the
no commodity is found with a price less thanX is a good ex-
ample ofretreatvalues. Here, the price less thanX is aspired
for. However, assuming this cannot be found after visitingY
stores, the satisficing threshold within this variable is revised
and a lower value is accepted.

Similarly, the results in Table 4 present the analysis of the
three judges of the monopoly agents’ cognitive models. None
of the students used the optimal strategy to solve for both
price and quality variables (line 1). A number of agents did
simultaneously search for both the price and quality variables



Case Parameter 1 Parameter 2 Judge 1 Judge 2 Judge 3 Average AAT?
1 Optimal Optimal 0 0 0 0 No
2 Simultaneous Search Simultaneous Search 9 13 8 10 No
3 Predetermined Predetermined 3 3 4 3.33 No
4 Search Price Search Quality 9 14 23 15.33 Yes
5 Search Quality Search Price 4 0 1 1.67 Yes
6 Search Price Predetermined Quality 27 22 15 21.33 Yes (Trivial)
7 Search Quality Predetermined Price 0 1 0 0.33 Yes (Trivial)
8 Alternating Alternating 5 4 6 5 Yes

Table 4: Comparing the Agent Strategies within the Monopoly (Price and Quality) Domain

(line 2), and a smaller number of students did use predeter-
mined heuristics for setting both variables (e.g. price always
equals 10 and quality equals time elapsed). Both of these
strategies do not contain elements of AAT as no urgency ex-
ists between variables (in line 2), or no search for goal vari-
ables is performed (in the predefined case) and instead can
be consistent for other methods – such as more classic si-
multaneous search approaches[Russell and Norvig, 2003] (in
line 2) or fast and frugal heuristics[Gigerenzer and Goldstein,
1996] (in line 3).

In the vast majority of the agents (approximately 77%)
search was conducted with elements of AAT. For most agents
(lines 4 & 6) the price variable was searched for first (e.g. had
the highest urgency), after which quality was either searched
for (in line 4) or set by a predetermined function (in line 6).
A very small number of agents had the oppositeaspiration
scalewith quality being searched for first (in lines 5 & 7).
Similarly, only a relative small number of agents (line 8) con-
sistently alternated between searching for price and quality.
In this approach, an agent would set one value (say price), in
the next time frame search for the optimal value of the sec-
ond goal (quality), only to return back to the first goal vari-
able (price) and adjust downward (retreat from) its original
value. The reason why fewer agents made use of retreat in this
domain seems as follows. According to AAT, retreat occurs
once an agent realizes it must change its aspiration based on
the infeasibility of satisfying multiple goals. In the monopoly
game students typically did not see any infeasibility element
and therefore did not retreat between variables. However,
in the commodity search problem, students (albeit wrongly)
saw infeasibility and therefore retreated back on their values.
Thus they made use ofretreatvariables to refine their aspira-
tions.

We hope to further study what specific mechanisms were
used by agents to determine when it had satisficed a given
goal variable. This direction is motivated by several points
in Tables 3 & 4. For example, note that in the simpler cost
search domain agents revisited previous values (and revised
the other goal variable downwards through retreat), but in the
more complicated domain they typically did not (except for
the agents in line 8 of Table 4). Instead, most agents in the
monopoly domain first satisficed the price value (albeit typi-
cally with a non-optimal value), and then tried to satisfice the
quality goal, never to return to the price goal. Second, note
that most differences between the judges in Table 4 revolved
around differences in classifying an agent’s model as one that
is predefined or based on search (see differences in lines 4 &
6). We instructed the judges to assume an agent used search

if it changed or retreated from its goal because of previous
performance, but did not use search if it changed its goal be-
cause of some predefined value. For example, if an agent
perceived that its performance dropped because it raised its
quality value, and then decided to lower its quality value,
search was used. However, if the agent decided to lower its
quality value, even by the same amount but by using a prede-
fined constant function, they were instructed to categorize the
agent as having a predefined strategy without search. This de-
finition is based on Learning Directional Theory (LDT)[Sel-
ten and Stoecker, 1986] whereby agents change the search
process for goals based on previous performance. However,
questions arose in cases where goal variables seemed to be
intertwined (e.g. an agent set its quality as a function of the
price value it was searching for). Additionally, this defin-
ition required the judge to read the agent’s code and strat-
egy files, and not just observe its performance. Furthermore,
many monopoly agents that simultaneously searched for both
goal variables (line 2 of Table 4) and thus were not classi-
fied as using AAT often instead used the boundedly rational
model of LDT to search for these values. Consequently, we
are currently studying if LDT can be extended to better de-
scribe why and how goal variables are satisficed, and when
an agent will reorder itsaspiration scaleto revisit previous
goal variables during search.

Overall, several conclusions can be drawn from the results
in both of these domains. First, nearly all agents written to
“maximize” performance fell far short of doing so. Within the
commodity search domain 30 of 41 agents of all agents used
strategies consistent with elements of AAT’surgencyandre-
treatconcepts, while the remaining agents considered a trivial
search instance where only one goal variable was searched
for. Within the monopoly domain, the vast majority of the
agents, or specifically an average of approximately 44 of the
57 agents, used AAT based strategies. Only a minority of
the agents, or the remaining 13 agents, used models consis-
tent with classic simultaneous search approaches[Russell and
Norvig, 2003] or fast and frugal heuristics[Gigerenzer and
Goldstein, 1996]. Thus, we conclude that optimal approaches
cannot properly model most people’s agents, and that AAT is
the best alternative to be used instead.

5 Conclusions and Future Work

In this paper we report our findings about the model used by
people’s agents to operate in two general optimization prob-
lems. These problems can be generalized to many real-world
domains[Chalamishet al., 2008; Seltenet al., 2008] and thus
our findings contribute two significant findings for Artificial



Intelligence researchers. First, we empirically demonstrate
that people, or even the agents they write on their behalf,
are poor optimizers. Even when we explicitly asked two dif-
ferent groups of over 70 people to write agents to optimally
solve a problem, and an optimal solution existed, they instead
chose to use approaches that fell well short of optimal be-
havior. Thus, one must conclude that encapsulating human
behavior based on optimal strategies is not effective for cer-
tain domains. Second, we find that key elements of Aspi-
ration Adaptation Theory (AAT) do effectively encapsulate
many people’s search strategies above other bounded ratio-
nality theories[Gigerenzer and Goldstein, 1996]. However,
AAT was original formulated for domains where utility can-
not be measured and thus did not make any guarantees about
performance, or how close to optimal this behavior is[Selten,
1998]. Thus, the results in this paper is particularly impor-
tant, and indicates the importance and greater generality of
AAT, even in problems where optimal solutions exist.

While the focus of this paper is quantifying the cognitive
model of agents, our results lead us to the following conclu-
sions about how to write agents that better interact with peo-
ple or simulate human performance. First, optimal methods
should not be used as they do not realistically encapsulate
most human’s behavior. Instead, bounded methods should
be created such as those based on AAT. In understanding
the strategies used by people, we propose that a small pilot
be used based on the strategy method[Seltenet al., 1997].
This should identify the ordering (urgency) for search vari-
ables and a range of aspiration values within these variables.
For example, in the domains we studied, such a pilot would
clearly identify price as the variable first searched for in both
domains. Finally, any pilot should be focused on the range of
aspired for values in each goal variables such that some dis-
tribution can be constructed to realistically model the range
of problem solving approaches.

For future work, several directions are possible. First,
while we found that people’s strategies fell short of optimal
behavior in both optimization problems we studied, we as-
sume that people will write rational and optimal agents in
simpler problems. We hope to study the level of problem
complexity that motivates people to abandon optimal solu-
tions for those based on bounded rationality. Second, we hope
to study how effective the above general conclusions are in
simulating human behavior in these and other domains. Fi-
nally, we also hope to study how people interact with agents
based on AAT versus those based on optimal or other pre-
defined heuristic strategies. Specifically, we hope to study
agent-human interactions in an emergency response domain.
We are hopeful that AAT and other theories of bounded ratio-
nality can be applied to these and other agent-based domain
problems.
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