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Abstract
Reinforcement Learning (RL) can be extremely ef-
fective in solving complex, real-world problems.
However, injecting human knowledge into an RL
agent may require extensive effort on the human de-
signer’s part. To date, human factors are generally
not considered in the development and evaluation
of possible approaches. In this paper, we propose
and evaluate a novel method, based on human psy-
chology literature, which we show to be both ef-
fective and efficient, for both expert and non-expert
designers, in injecting human knowledge for speed-
ing up tabular RL.

1 Introduction
Reinforcement Learning [Sutton and Barto, 1998] (RL) has
had many successes solving complex, real-world problems.
However, unlike supervised machine learning, there is no
standard framework for non-experts to easily try out differ-
ent methods (e.g., Weka [Witten et al., 2016]).1 Another bar-
rier to wider adoption of RL methods is the fact that inject-
ing human knowledge, which can significantly improve the
speed of learning, can be difficult for a human designer. In
order for RL methods to move beyond requiring developers
to fully understand the “black arts” of generalization, approx-
imation, and biasing, it is critical that the community better
understand if and how non-expert humans can provide useful
information. This paper, rather than requiring RL experts to
provide such biases, focuses on human designers who have
some background in AI and coding, but little experience in
RL.

There are many approaches for leveraging human knowl-
edge in an RL learner. Perhaps the most prominent one is
function approximation [Busoniu et al., 2010] (FA), which al-
lows a designer to inject his knowledge by abstracting the do-
main appropriately and thereby allowing the agent to general-
ize its experience quickly. Many successful RL applications

1While many frameworks exist, such as RL-Glue, RLPy, Py-
Brain, AIGym, etc., they all assume some (sometimes substantial)
amount of RL knowledge and therefore substantial effort is required
to add new tasks or instantiate different techniques within these
frameworks.

have used highly engineered state features to bring about suc-
cessful learning performance (e.g., ‘the distance between the
simulated robot soccer player with the ball to its closest op-
ponent’ and ‘the minimal angle with the vertex at the sim-
ulated robot soccer player with the ball between the closest
teammate and any of the opponents’ [Stone et al., 2006]).
While different methods of leveraging human knowledge in
RL learners have been thoroughly investigated with respect to
their theoretical properties and empirical performance in var-
ious settings, their deployment often requires extensive engi-
neering and expertise on the designers’ part, which is gener-
ally not considered (e.g., methods are not evaluated in terms
of the amount of time a developer must invest to fine-tune
parameters, select appropriate state representations, etc.).

The baseline approach in this paper is to allow no gener-
alization: an agent’s interactions with its environment will
immediately affect only its current state (in a tabular repre-
sentation). We will compare this baseline with a novel ap-
proach which we name SASS (which stands for State Action
Similarity Solutions) in order to speed up temporal differ-
ence learning using state-action similarities. Our approach
is based on the well-established psychological theory of con-
structivism [Bruner, 1957], by which a technically-able de-
signer can define and refine both complex and simplistic con-
structs (or similarities) in the state-action space, according to
the designer’s abilities, knowledge and beliefs, using hand-
coded similarities to simplify the RL agent’s task. To avoid
confounding factors, we consider a simple temporal differ-
ence RL algorithm: Q-learning [Watkins, 1989] with a tabu-
lar representation.

We test our proposed approach in a human study consist-
ing of three experts (highly experienced programmers with
an RL background, but not co-authors in this paper) and 16
non-expert graduate students. To that end, three RL tasks of
varying complexities are considered, showing that SASS is
effective for both expert and non-expert designers alike.

This paper argues that in order to bring about a wider adop-
tion of RL techniques, specifically of generalization tech-
niques, it is essential to both investigate and develop tech-
niques appropriate for both expert and non-expert designers.

2 Preliminaries and Background
An RL agent generally learns how to interact with an unfamil-
iar environment [Sutton and Barto, 1998]. We define the RL



task using the standard notation of a Markov Decision Pro-
cess (MDP). An MDP is defined as 〈S,A, T ,R, γ〉 where S
is the state-space; A is the action-space; T : S × A × S →
[0, 1] defines the transition probability; R : S ×A → R is the
reward function; and γ ∈ [0, 1] is the discount factor.

We assume T and R are initially unknown to the agent
and the agent seeks to learn a policy π : S → A that maxi-
mizes the expected total discounted reward (i.e., the expected
return) while interacting with the environment.

Temporal difference RL algorithms such as Q-learning
[Watkins, 1989] approximate an action-value function Q :
S ×A → R, mapping state-action pairs to the expected real-
valued discounted return. Q-learning updates the Q-value es-
timation according to the temporal difference update rule

Q(s, a) = Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a))

where α is the learning rate. When S and A are finite, Q
can be represented in a table. In this case, the convergence
of Q-learning has been proven in the past (under standard
assumptions [Sutton and Barto, 1998]).

RL can often suffer from slow learning speeds. To ad-
dress this problem, designers infuse domain-specific knowl-
edge into the agent’s learning process in different ways, en-
abling better generalization across small numbers of samples.
One may consider this approach as a human designer provid-
ing advice to an RL learner as opposed to the common frame-
work in which agents advise people (e.g., [Rosenfeld and
Kraus, 2016; Rosenfeld et al., 2016; Rosenfeld et al., 2015a;
Rosenfeld et al., 2015b; Azaria et al., 2015; Levy and Sarne,
2016]). The most common approach is to use FA. When us-
ing FA, the designer needs to abstract the state-action space in
a sophisticated manner such that the (presumed) similar states
or state-action pairs will be updated together and dissimi-
lar states or state-action pairs are not. With the recent suc-
cesses of DeepRL [Mnih et al., 2015], convolutional neural
networks were shown to successfully learn features directly
from pixel-level representations. However, such features are
not necessarily optimal; significant amounts of designer time
are necessary to define the deep neural network’s architec-
ture, and significant amounts of data are required to learn the
features.

Our proposed method, SASS, leverages a human de-
signer’s constructivism [Bruner, 1957]. Constructivism is
a well-established psychological theory where people make
sense of the world (situations, people, etc.) by making use
of constructs (or clusters), which are perceptual categories
used for evaluation by considering members of the same con-
struct as similar. It has been shown that people who have
many different, possibly overlapping, and abstract constructs
have greater flexibility in understanding the world, and are
usually more robust against inconsistent signals. The SASS
approach is inspired by constructivism, allowing a designer to
define both complex as well as simplistic constructs of simi-
lar state-action pairs, according to one’s knowledge, abilities
and beliefs, and refine them as more experience is gained.
This approach is in contrast to more complex types of gen-
eralization (e.g., specifying the width of a tile, the number
of tiles, and the number of tilings in a CMAC [Albus, 1981]
or specifying the number of neurons, number of layers, and

activation functions in a deep net).
The notion of generalization through similarity is also

common in other techniques that allow the learning agent to
provide predictions for unseen or infrequently visited states.
For example, Texplore [Hester and Stone, 2013] uses super-
vised learning techniques to generalize the effects of actions
across different states. The assumption is that actions are
likely to have similar effects across states. Tamassia et al.
[2016] suggest a different approach: dynamically selecting
state-space abstraction by which different states that share the
same abstraction features are considered similar. Sequeira et
al. [2013] and Girgin et al. [2007] have presented variations
of this notion by online identifying associations between dif-
ferent states in order to define a state-space metric or equiv-
alence relation. However, all of these methods assume that
an expert RL designer is able to iteratively define and test the
required similarities without explicit cost.

Another related line of research investigates providing
direct biasing from non-expert humans, such as incorpo-
rating human-provided feedback [Knox and Stone, 2010;
Peng et al., 2016] or demonstrations [Brys et al., 2015]. In
this paper, we focus on a complementary approach, leverag-
ing human knowledge about similarity, rather than requiring a
user to teleoperate the agent or provide on-line feedback. We
leave the examination of non-technical users to future work.

Lastly, alternative updating approaches such as eligibility
traces [Sutton and Barto, 1998], where multiple states can
be updated based on time since visitation, and Dyna [Sutton,
1991], where the agent learns from both direct environmen-
tal interaction and by planning over an approximate model
learned from experience, are popular as well. For ease of
analysis, this paper does not incorporate such methods, but
we note that our SASS approach is compatible with these and
other additional speed-up techniques.

QS-learning
In order to integrate our generalization approach within the
Q-learning framework, we adopt a previously introduced
technique [Ribeiro, 1995] whereQ-learning is combined with
a spreading function that “spreads” the estimates of the Q-
function in a given state to neighboring states, exploiting an
assumed spatial smoothness of the state-space. Formally,
given an experience 〈s, a, r, s′〉 and a spreading function σ :
S × S → [0, 1] that captures how “close” states s and s′ are
in the environment, a new update rule is used:

Q(s̃, a) = Q(s̃, a) + ασ(s, s̃)δ (1)

where δ is the temporal difference error term (r +
γmaxa′Q(s′, a′) − Q(s, a)). The update rule in Eq. 1 is ap-
plied to all states in the environment after each experience.
The resulting variation is denoted as QS-learning (S stands
for spreading). This method was only tested with author-
defined spreading functions in simple grid worlds.

Note that standard Q-learning is a special case of QS-
learning by setting the function σ to the Kronecker delta
(δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0).

Proposition 1. QS-learning converges to the optimal policy
given the standard condition for convergence of Q-learning



and either: 1) σ which is fixed in time; or 2) σ that converges
to the Kronecker delta over the state-action space at least as
quickly as the learning rate α converges to zero.

Proof. The proposition is a combination of two proofs avail-
able in [Szepesvári and Littman, 1999] and [Ribeiro and
Szepesvári, 1996]. Both were proven for the update rule of
Eq. 1 without loss of generality, and therefore apply to the
QS-learning update rule of Eq. 2 as well.

3 The SASS Approach
According to constructivism literature, and specifically per-
sonal construct psychology [Kelly, 1955], while designing
and testing an RL agent, the human designer himself learns
the traits of the domain at hand by identifying patterns and
domain-specific characteristics. To accommodate both prior
knowledge and learned insights (which may change over
time), it is necessary to allow the designer to easily explore
and refine different similarity hypotheses. For example, a de-
signer may have an initial belief that the state-action pair s, a
has the same expected return as s̃, ã. Using FA, this can easily
be captured by mapping both pairs into a single meta state-
action pair. However, after gaining some experience in the
domain, the designer refines his belief and presumes that the
two pairs are merely similar (they would have close expected
returns if they were to be modeled separately). This differ-
ence can have a significant effect on both the learning effi-
ciency and the resulting policy (which may be suboptimal).

In this study we assume that the similarity function is de-
fined and refined by a human designer during the develop-
ment of the RL agent as follows.

Definition 1. Let S, A be a state-space and an action-space,
respectively. A similarity function σ : S × A × S × A →
[0, 1] maps every two state-action pairs in S × A to the de-
gree to which we expect the two state-action pairs to have
a similar expected return. σ is considered valid if ∀〈s, a〉,
σ(s, a, s, a) > 0.

Similarity functions can be defined in multiple ways to cap-
ture various assumptions and insights about the state-action
space. As shown in constructivism literature [Bruner, 1957],
some people may use simplistic, crude similarities that al-
low quick generalizing of knowledge across different set-
tings. Others may use complex and sophisticated similarity
functions that will allow a more fine-grained generalization.
Although people can easily identify similarities in real-life,
they are often incapable of articulating sophisticated rules for
defining such similarities. Therefore, in the following, we
identify and discuss three notable similarity notions that were
encountered repeatedly in our human study (Section 4), cov-
ering the majority of human-designed similarity functions in
our tested domains.
1) Representational Similarity from the tasks’ state-action
space. FA is perhaps the most popular example of the use of
this technique. The function approximator (e.g., tile coding,
neural networks, abstraction, etc.) approximates the Q-value
and therefore implicitly forces a generalization over the fea-
ture space. A common method is using a factored state-space
representation, where each state is represented by a vector

Figure 1: (a) Players in the simple robotic soccer task are A
and B; one cell down (A* and B*) are considered similar. (b)
Two similar state-action pairs in the Pursuit domain. (c) A
state in the Mario AI task where walking or running right are
similar (i.e., falling into the gap).

of features that capture different characteristics of the state-
space. Using such abstraction, one can define similarities us-
ing a metric over the factored state-action (e.g., [Sequeira et
al., 2013; Brys et al., 2015]). Defining representational sim-
ilarities introduces the major engineering concern of choos-
ing the right abstraction method or FA that would work well
across the entire state-action space, while minimizing gen-
eralizing between dissimilar state-actions. Representational
similarity has repeatedly shown its benefit in real world appli-
cations, but no one-size-fits-all method exists for efficiently
representing the state-action space. See Figure 1 (a) for an
illustration.
2) Symmetry Similarity seeks to consolidate state-action
pairs that are identical or completely symmetrical in order
to avoid redundancies. Zinkevich and Balch [2001] formal-
ized the concept of symmetry in MDPs and proved that if
such consolidation of symmetrical state-actions is performed
accurately, then the optimal Q function and the optimal pol-
icy are not altered. However, automatically identifying sym-
metries is computationally complex [Narayanamurthy and
Ravindran, 2008], especially when the symmetry is only as-
sumed. For example, in the Pursuit domain, one may consider
the 90◦, 180◦ and 270◦ transpositions of the state around its
center (along with the direction of the action) as being similar
(see Figure 1 (b)). However, as the predators do not know the
prey’s (potentially biased) policy, they can only assume such
symmetry exists.
3) Transition Similarity can be defined based on the idea of
relative effects of actions in different states. A relative effect
is the change in the state’s features caused by the execution of
an action. Exploiting relative effects to speed up learning was
proposed [Jong and Stone, 2007; Leffler et al., 2007] in the
context of model learning. For example, in the Mario domain,
if Mario walks right or runs right, outcomes are assumed to
be similar as both actions induce similar relative changes to
the state (see Figure 1 (c)). In environments with complex or
non-obvious transition models, it can be difficult to intuit this
type of similarity.

SASS in the Q-learning Framework
We use the designer-provided similarity function σ(s, a, s̃, ã).
In words, for each experience 〈s, a, r, s′〉 that the agent en-
counters, depending on the similarity function σ, we poten-
tially update more than a single 〈s, a〉 entry in the Q ta-
ble. Multiple updates, one for each entry 〈s̃, ã〉 for which



σ(s, a, s̃, ã) > 0, are performed using the following update:

Q(s̃, ã) = Q(s̃, ã) + ασ(s, a, s̃, ã)δ (2)

which, as discussed in Section 2, does not compromise the
theoretical guarantees of the unadorned Q-learning.

The update rule states that as a consequence of experienc-
ing 〈s, a, r, s′〉, an update is made to other pairs 〈s̃, ã〉 as if
the real experience was actually 〈s̃, ã, r, s′〉 (discounted by
the similarity function).

In order to avoid a time complexity of O(|S||A|) per step,
QS-learning should be restricted to update state-action pairs
for which the similarity is larger than 0. In our experiments
(see Section 4) we found only a minor increase in time-
complexity for most human designers.

In the interest of clarity, from this point forward we will
use the term QS-learning using the above Q-learning-with-
SASS interpretation. Namely, using a designer-defined sim-
ilarity function σ and the update rule of Eq. 2, we will modify
the classic QS-learning algorithm yet keep its original name
due to their inherent resemblance.

4 Evaluation
We consider two subject groups: experts and non-experts.

4.1 Expert Study
We recruited 3 highly experienced, expert programmers with
Masters degrees in Computer Science and proven experience
in RL (two of whom are 26 years old and the third is 27
years old). None of the experts co-author this paper. Each ex-
pert was asked to implement 4 RL agents: a basic Q-learning
agent (denoted Q), a QS-learning agent (denoted QS), a Q-
learning agent that uses state-space abstraction (denoted QA)
and a Dyna agent (denoted Dyna). Each was given a differ-
ent RL task: a “toy” task named Simple Robotic Soccer, a
grid-world task named Pursuit, and the Mario AI game.

In the Pursuit and Mario AI tasks, we use Q(λ)-learning
and QS(λ)-learning, which are slight variations of the Q-
learning and QS-learning algorithms that use eligibility
traces [Sutton and Barto, 1998]. The addition of eligibility
traces to the evaluation was carried out as done by the authors
of the recent papers from which the implementations have
been taken. This allows us to compare SASS with recently
provided solutions without altering their implementation.

Actual running times were evaluated on a personal Linux
computer with 16 GB RAM and a CPU with 4 cores, each
operating at 4 GHz. All technical parameters used in the three
tasks in this study (learning rates, exploration type, eligibility
trace parameter, etc.) are fully specified in the code and are
available at http://www.biu-ai.com/RL.

Simple Robotic Soccer
Proposed in [Littman, 1994], the task is performed on an 8×8
grid world, defining the state-space S. Two simulated robotic
players occupy distinct cells on the grid and can either move
in the four cardinal directions or stay in place (5 actions each).
The simulated robots are designed to play a simplified ver-
sion of soccer: At the beginning of each game, players are
positioned according to Figure 1 and possession of the ball is
assigned to one of the players (either the learning agent or the

fixed, handcoded-policy opponent2). During each turn, both
players select their actions simultaneously and the actions are
executed in random order. When the attacking player (the
player with the ball) executes an action that would take it
to a square occupied by the other player, possession of the
ball goes to the defender player (the player without the ball)
and the move does not take place. A goal is scored when
the player with the ball enters the other player’s goal region.
Once a goal is scored the game is won; the agent who scored
receives 1 point and the other agent receives -1 point and the
game is reset. The discount factor was set to 0.9 as in the
original paper.

We used a basic state-space representation as done in [Mar-
tins and Bianchi, 2013], which is, to our knowledge, the most
recent investigation of the game. A state s is represented as a
5-tuple 〈xA, yA, xB , yB , b〉 where xi and yi indicate player
i’s position on the grid and b ∈ {A,B} indicates which player
has the ball. The action-space is defined as a set of 5 actions
as specified above. Overall, the state-action space consists of
approximately 41,000 state-action pairs.
QA used a simple distance-based approach, which repre-
sented each state according to the learning agent’s distance
to its opponent and goal.
QS used two major similarity notions: First, representational
similarities – the agent artificially moves both players to-
gether across the grid, keeping their original relative distance
(see Figure 1). As the players are moved further and fur-
ther away from their original positions, the similarity estima-
tion gets exponentially lower. Second, symmetry similarities
– experiences in the upper half of the field are mirrored in
the bottom part by mirroring states and actions with respect
to the Y -axis and vice-versa. Transition similarities were not
defined by the expert for this task.
Results: Each agent was trained for 1,000 games. After each
batch of 50 games, the learning was halted and 10,000 test
games were played during which no learning occurred. The
process was repeated 10,000 times. The results show that un-
der theQS condition, the agent learns significantly faster and
outperforms the QA, Q and Dyna conditions from the first
batch onwards. See Figure 2a for a graphical representation
of the learning process.

On average, QS updated 66 entries per iteration. The run-
time for QS was only slightly elevated compared to Q and
QA conditions. With over 1,000 games each, Q and QA av-
eraged 0.03 and 0.04 seconds (not statistically significant),
while QS and Dyna took 0.06 and 0.08 seconds, respec-
tively.

Pursuit
The Pursuit task (also known as Chase or Predator/Prey task)
was proposed by Benda et al. [Benda, 1985]. For our eval-
uation we use the recently evaluated instantiation of Pursuit
implemented in [Brys et al., 2014]. According to the authors’
implementation, there are two predators and one prey, each
of which can move in the four cardinal directions as well as

2The opponent was given a handcoded policy, similar to that used
in the original paper, which instructs it to avoid colliding with the
other player while it has the ball and attempts to score a goal. While
defending, the agent chases its opponent and tries to steal the ball.

http://www.biu-ai.com/RL


(a) Simple Robotic Soccer (b) Pursuit (c) Mario AI

Figure 2: The QS-learning agent outperforms QA-learning, Q-learning and Dyna agents in all three domains. The x-axis
marks the number of training games. The Y-axis marks the average game score; in Simple Robotic Soccer and Mario AI, the
higher the better, and in Pursuit, the lower the better.

stay in place (5 actions each) on a 20 × 20 grid world. The
prey is caught when a predator moves onto the same grid cell
as the prey. In that case, a reward of 1 is given to the preda-
tors, 0 otherwise. We refer the reader to the original paper
for the complete description of the underlining MDP and pa-
rameters. The authors useQ(λ)-learning, a slight variation of
Q-learning and, therefore, so do we.
QA was already defined by Brys et al. [2014] who imple-
mented tile-code approximation.
QS was defined based on linear differences and angular ro-
tations. Each state is represented as 〈∆x1

,∆y1
,∆x2

,∆y2
〉

where ∆xi
(∆yi

) is the difference between predator i’s x-
index (y-index) and the prey’s x-index (y-index), thereby a
similarity of 1 was set for all states in which the relative posi-
tioning of the prey and predators is the same. Symmetry sim-
ilarities were defined using 90◦, 180◦ and 270◦ transpositions
of the state around its center (along with the direction of the
action). Furthermore, experiences in the upper (left) half of
the field are mirrored in the bottom (right) part by mirroring
states and actions. Transition similarities were defined for all
state-action pairs that are expected to result in the same state.
Results: Each agent was trained for 10,000 games. After each
batch of 500 games, the learning was halted and 10,000 test
games were played during which no learning occurred. The
process was repeated 10,000 times. The results show that the
QS condition learns significantly faster and outperforms the
Q condition from the first batch onwards and the QA and
Dyna conditions from the third batch onwards. See Figure
2b for a graphical representation of the learning process.

On average, QS updated 12 entries per iteration. How-
ever, whileQ andQA-learning agents complete their training
(10,000 games each) in 8.5 seconds on average (with no sig-
nificant difference between the two), QS completes the same
training in 17.5 seconds on average. Dyna performed signif-
icantly worse, averaging 87 seconds for its training. Unlike
other conditions, Dyna also introduced extreme memory re-
quirements due to its model-based approach.

Mario AI
We use the popular Mario AI game, often used for the eval-
uation of RL techniques [Karakovskiy and Togelius, 2012].
We use the recently evaluated formulation of the Mario AI
task proposed by Suay et al. [2016]. The authors use a
27-dimensional discrete state-variables representation of the

state-space and model 12 actions that Mario can take. We
refer the reader to the original paper for the complete de-
scription of the underlining MDP and parameters. Given the
authors’ abstraction of the state-space, the size of the state-
action space is over 100 billion, though some of the states are
never encountered in reality. For example, it is impossible
to have Mario trapped by enemies from all directions at the
same time. Due to the huge state-action space, and unlike the
Simple Robotic Soccer and Pursuit, Q-learning without the
authors’ abstraction will not be evaluated. Due to extreme
memory requirements in run-time, the authors were unable to
evaluate the Dyna condition properly. Note that the authors
use Q(λ)-learning and, therefore, so do we.

QA was implicitly defined by the original authors as they al-
ready abstracted the state space.

QS was defined on top of the authors’ abstraction. It turns
out that each state representation indicates whether Mario can
jump or shoot using 2 Boolean variables. Given a state-action
pair in which Mario does not jump or shoot, all respective
states (with the four variations of these two Boolean vari-
ables) were defined as similar to the original pair. Namely,
if Mario walks right, then regardless of Mario’s ability to
shoot or jump, the state-action pair is considered similar to
the original one. Symmetry similarities are defined using the
mirroring of the state-actions across an imaginary horizontal
line that divides the environment in half, with Mario in the
middle. As illustrated in Figure 1, regardless of specific state,
performing action a (e.g., move right) is assumed similar to
using action a+“run” (e.g., run right).

Results: Each agent was trained for 20,000 games. After each
batch of 1,000 games, the learning was halted and 1,000 test
games were played during which no learning occurred. The
process was repeated 100 times. The two agents are also com-
pared to human performance level as evaluated in [Suay et
al., 2016]. The results show that the QS-learning agent sur-
passes the human performance level significantly faster than
the QA-learning agent. See Figure 2c for a graphical repre-
sentation of the learning process.

On average, the QS updated 33 entries per iteration. How-
ever, the QA requires 63.4% of QS’s runtime to complete its
training (20,000 games each, 33 vs. 55 seconds).



Criteria QS QA Q
Avg. Winning Ratio (during training) 68.2% 42.7% 60.8%
Avg. Winning Ratio (asymptotically) 74.5% 47.7% 72.5%
Better agent than benchmark (during training) 75% 19% -
Better agent than benchmark (asymptotically) 81% 0% -
Best Agent (during training) 75% 0% 25%
Best Agent (asymptotically) 81% 0% 19%

Table 1: Summary of main results from the non-expert study.

4.2 Non-Expert Study
We recruited 16 Computer Science grad-students (4 PhD stu-
dents and 12 Masters students, ranging in age from 23 to 43,
10 male and 6 female) majoring in AI to participate in the
experiment and act as designers for two RL agents. Recall
that in this study, we focus on technically-able non-experts
with some background in programming and RL. Therefore,
all of the students have knowledge of RL from advanced AI
courses. The students are majoring in Machine Learning (7),
Robotics (4) and other computational AI sub-fields (5).

Prior to the experiment, all participants participated in an
hour-long tutorial reminding them of the basics ofQ-learning
and explaining the Simple Robotic Soccer task’s specifica-
tion. Participants were given two python codes: First, an
implemented QA agent in which participants had to design
and implement a state-space abstraction. Specifically, the par-
ticipants were requested to implement a single function that
translates the naı̈ve representation to their own state-space
representation. Second, participants were given a QS agent
in which they had to implement a similarity function. Both
codes already implemented all the needed mechanisms of
the game and the learning agents, and they are available at
http://www.biu-ai.com/RL.

We used a within-subjects experimental design where each
participant was asked to participate in the task twice, a week
apart. In both sessions, the participants’ task was to design
a learning agent that would outperform a basic Q-learning
agent in terms of asymptotic performance and/or average per-
formance (one would suffice to consider the task successful)
by using either abstraction or similarities, in no more than
45 minutes of work. Ideally, we want participants to take
as much time as they need, as the experts did. However,
given that each participant had to dedicate about 3 hours for
the experiment (1 hour tutorial + 1.5 hours of programming
and half an hour of logistics) we could not ask participants
for more than 45 minutes per condition.3Participants were
counter-balanced as to which function they had to implement
first. We then tested the participant’s submitted agents against
the same handcoded opponent against whom they trained.
After each session, subjects were asked to answer a NASA
Task Load Index (TLX) questionnaire [Hart and Staveland,
1988]. During each session, participants could test the qual-

3Following the expert study (Section 4.1), we found that the ex-
pert who implemented the Simple Robotic Soccer agents required
less than 30 minutes to come up with his implementation for QS and
QA agents. Therefore, 45 minutes seemed like a reasonable amount
of time for a non-expert.

ity of their designed agent at any time by using the same
procedure as used in Section 4.1. Namely, by running the
testing procedure, the designed agent was trained for 1,000
games. After each batch of 50 games, the learning was halted
and 10,000 test games were played during which no learn-
ing occurred. The winning ratio for these 10,000 test games
was presented to the designer after each batch. Given a ‘rea-
sonable’ number of updates per step, the procedure does not
take more than a few seconds on a standard PC. In order to
allow designers to compare their agents’ success to a basic
Q-learning agent (the benchmark agent they were requested
to outperform), each designer was given a report on a basic
Q-learning agent that was trained and tested prior to the ex-
periment using the same procedure described above.

After all agents were submitted, each agent was tested and
received two scores: one for its average performance during
its learning period and one for the asymptotic performance of
the agent, i.e., its performance after the training is completed.
Results: Under the QS condition, participants defined simi-
larity functions. A similarity function is beneficial if it helps
the QS outperform Q-learning. Otherwise, we say that the
similarity function is “flawed” in that it hinders learning.

When analyzing the average performance of the submitted
agents, we see that out of the 16 submitted QS agents, 12
(75%) successfully utilized a beneficial similarity function.
On the other hand, only 3 (19%) of the 16 QA agents outper-
formed Q-learning. The average winning ratio recorded for
the QS agents along their training was 68.2% compared to
the 42.7% averaged by the QA agent and 60.8% averaged by
the benchmark Q agent.

Asymptotically, 13 out of the 16 QS agents (81%) outper-
formed or matched the basic Q-learning performance. None
of the QA agents asymptotically outperformed Q-learning.
On average, under the QS-learning condition, participants
designed agents that asymptotically achieved an average win-
ning ratio of 74.5%. The QA-learning condition achieved
only 47.7% and the Q agent recorded 72.5%.

Interestingly, all 16 participants submitted QS-learning
agents which perform better than their submitted QA-
learning agents both in terms of average learning performance
and asymptotic performance. Namely, theQS agents’ advan-
tage over the QA agents is most apparent when examining
each designer separately. Furthermore, for all participants,
theQS agent outperforms theQA agent from the 3rd test (the
150th game) onwards. For 9 of the 16 participants (56%), the
QS-learning agent outperformed theQA-learning agent from
the first test onwards.

We further analyzed the types of similarities that partici-
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pants defined under the QS-learning condition. This phase
was done manually by the authors, examining the partici-
pants’ codes and trying to reverse-engineer their intentions.
Fortunately, due to the task’s simple representation and dy-
namics, distinguishing between the different similarity no-
tions was possible. It turns out that representational and sym-
metry similarity notions were the most prevalent among the
submitted agents. In 8 out of the 16 QS agents, represen-
tational similarities were instantiated, mainly using different
variants of the idea presented by the expert in Section 4.1
— moving one or both of the virtual players across the grid.
Symmetry similarities were used by 7 out of the 16 partici-
pants. All 7 of these agents used the idea of mirroring, where
the state and action were mirrored across an imaginary hori-
zontal line dividing the grid in half. Some of them also de-
fined mirroring across an imaginary vertical line dividing the
grid in half, with an additional change of switching ball po-
sition between the players. While we were able to show that
each of these ideas is empirically beneficial on its own, we did
not find evidence that combining them brings about a signif-
icant change. Transitional similarities were only defined by
2 designers. Both designers tried to consider a more strate-
gical approach. For example, moving towards the opponent
while on defense is considered similar regardless of the initial
position. It turns out that neither of the provided transitional
similarities were beneficial on their own as they were defined.

Only 4 out of the 16 participants (25%) used more than a
single similarity notion while defining the similarity function.
Interestingly, the two best performing QS agents combined 2
notions in their similarity function. Therefore, we speculate
that combining more than a single similarity notion can be
useful for some designers, yet in the interest of keeping with
the task’s tight time frame, participants refrained from explor-
ing “too many different directions” and focused on the ones
they initially believed to be the most promising.

Recall that 4 participants (25%) submitted flawed similar-
ity functions. Although these participants were unable to find
a beneficial similarity function, the submitted agents were
not considerably worse than the basic Q-learning. The av-
erage performance for these 4 agents was 56.9% compared to
60.8% for the basic Q-learning and their average asymptotic
score was 61.5% compared to 72.5% for the basicQ-learning.

Unlike the significant difference between the QA and QS
conditions in terms of agents’ performance, a much larger
number of participants is needed to achieve significant results
in terms of TLX scores. TLX scores are available at http:
//www.biu-ai.com/RL.

The results are summarized in Table 1.

5 Conclusions
We conducted a first-of-its-kind human study that explores
human aspects in speeding up RL agents. We focused on the
task of injecting human knowledge into an RL learner us-
ing the notion of similarity and generalization. We present a
new approach, SASS, which calls for the integration of sim-
ple handcoded state-action similarities into RL algorithms in
order to bring about a more natural, incremental and simple
means for a designer to leverage his prior knowledge. SASS

is shown to be both effective and efficient, for expert and non-
expert technically-able designers. Namely, we show that by
using SASS, human designers were better at leveraging their
knowledge for speeding up tabular RL compared to a clas-
sic FA approach. We hope this work will inspire other re-
searchers to investigate their approach in human studies with
actual programmers.

In future work, we will tackle the challenge of on-line iden-
tification and refinement of similarities with and without a
designer’s input. Moreover, we plan to extend the proposed
approach to other RL algorithms (e.g., linear function ap-
proximation and DeepRL) and techniques (e.g., learning from
demonstrations, reward shaping, etc.). We further plan to in-
clude non-technical users.
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