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Abstract
Efficient traffic enforcement is an essential, yet
complex, component in preventing road accidents.
In this paper, we present a novel model and an
optimizing algorithm for mitigating some of the
computational challenges of real-world traffic en-
forcement allocation in large road networks. Our
approach allows for scalable, coupled and non-
Markovian optimization of multiple police units
and guarantees optimality. In an extensive empiri-
cal evaluation we show that our approach favorably
compares to several baseline solutions achieving a
significant speed-up, using both synthetic and real-
world road networks.

1 Introduction
About 1.25 million people die worldwide each year as a result
of road accidents and many more are injured [World Health
Organization, 2016]. An essential component in mitigating
serious traffic accidents (accidents that cause death or in-
jury) is efficient traffic enforcement, which is based on giving
drivers the feeling that they are likely to be caught and sanc-
tioned when breaking the law [Elvik et al., 2009]. Unfor-
tunately, traffic police cannot cover the entire road network
given its limited number of police cars and officers [DeAn-
gelo and Hansen, 2014].

Within the Security Games (SG) field, optimal police al-
location mechanisms for mitigating various types of crimes
have been developed. The generic SG framework consists
of a defender (traffic police) who has a limited number of
resources (police cars) to protect a large set of targets (road
segments) from an adversary (reckless drivers) [Paruchuri et
al., 2008; Tambe, 2011]. To the best of our knowledge,
[Brown et al., 2014] is the only work in the scope of SG
which addresses traffic enforcement. The authors model the
problem as a Stackelberg Security Game (SSG) where traf-
fic police seek to apprehend reckless drivers who in turn seek
to avoid apprehension. In a SSG, the traffic police commit
to a mixed strategy where drivers can first observe and then
respond as best as possible. In practice, traffic enforcement
seeks to reduce traffic accidents (and not necessarily to appre-
hend reckless drivers) [European Transport Safety Council,
2016]. Furthermore, due to the dynamic environment factors

which influence driving behavior (weather, traffic jams, etc.),
drivers have been shown to act in a less strategical manner,
responding to changes in their environment, including the ob-
served police presence in current and past rounds [Elliott et
al., 2005]. Therefore, SSGs seem unsuitable to the task of
preventing serious road accidents.

Non-strategical adversaries in SG settings have recently
been modeled as opportunistic criminals which choose where
and when to commit a crime in real-time based on police pres-
ence and the attractiveness of the potential targets [Zhang et
al., 2016]. Opportunistic criminals are reactive to police ac-
tions and do not consider their behaviors’ effect on future
police actions. We adopt this approach here, modeling the
drivers, and thereby accidents, as reactive to police alloca-
tions. However, unlike [Zhang et al., 2016], drivers may react
to both present and past police enforcement allocations, mak-
ing the authors’ Markovian assumption unsuitable. For exam-
ple, it has been shown that drivers continue to react to police
presence long after the enforcement operation has ceased [El-
liott et al., 2005]. Basilico et al. [2009] have investigated
non-Markovian strategies for robotic patrols. However, the
authors assume that the attacker is strategic, and therefore the
approach is inapplicable. To our knowledge, no work has ef-
ficiently addressed the non-Markovian property in SG.

Most allocation mechanisms in SG simplify the com-
putational task by assuming that planning for each police
unit separately will bring about a (near-)optimum solution
[Delle Fave et al., 2014]. However, this is not the case in traf-
fic enforcement. For example, experts from the Israeli Traf-
fic Police (ITP) claim that if police cars are stationed at the
same place and time, their effectiveness in reducing traffic ac-
cidents cannot be assumed to be greater than the effectiveness
of a single police car at the same point and time, a fact we
leverage in this work. Furthermore, significant benefits may
accrue from coordination across multiple police units, e.g., al-
locating two police cars in adjacent road segments could have
a stronger impact than allocating a single police car. This no-
tion relates to the coordinated actions notion in [Delle Fave
et al., 2015] which captures the combined effects of multi-
ple defenders guarding the same target simultaneously. As
a result, the computational task of deriving optimal traffic
enforcement allocation in order to prevent serious road ac-
cidents is both coupled and non-Markovian, which makes it
computationally intractable. Namely, the optimal allocation



of traffic enforcement at time t could depend on the trajecto-
ries of all police cars (i.e., coupled) up to time t (i.e., non-
Markovian).

In order to address these shortcomings, we first formu-
late the TRAFFIC ENFORCEMENT ALLOCATION PROBLEM
(TEAP). We prove that deriving or approximating the opti-
mal solution to a TEAP is hard, and remedy this hardness by
introducing an optimal novel algorithm called the RELAXED
OPTIMIZATION SOLVER ENHANCER, or ROSE for short.
ROSE uses a master/slave optimization approach, aimed at
reducing the computational burden of directly solving the
TEAP, and leverages common characteristics of TEAPs that
have not been investigated in previous works. In an extensive
empirical evaluation, we show that ROSE favorably com-
pares to several baseline approaches, achieving a significant
speed-up, using both synthetic and real-world road networks.

The TEAP formulation is based on the prediction of the
risk of an accident at different road segments and differ-
ent times, as well as the effectiveness of varying police en-
forcement allocations. We model the former using a newly
developed state-of-the-art accident prediction model, based
on a large set of features (110) and 11 years of collected
accident reports. Our model achieves an Area Under the
Curve (AUC) of 0.87. Both models are available at http:
//www.biu-ai.com/trafficPolice in order to en-
courage other researchers to tackle the important and chal-
lenging task of preventing serious traffic accidents.

Our proposed solution, based on the ROSE algorithm and
our prediction model, is currently being implemented by the
Israeli Traffic Police (ITP) in field trials.

2 Traffic Enforcement Allocation
We model the interaction between drivers and police as a re-
peated game over T (< ∞) rounds, which takes place on
a road network, represented as a graph G = 〈V,E〉 where
V = {v} is the set of intersections and E = {e = (u, v)} is
the set of road segments. We assume no accidents occur off-
road, and therefore E is the set of enforcement targets in this
work (intersection v is considered part of the road segments
that share v, thus there is no need to consider v as a different
target). Without losing generality, we assume that the time
it takes to travel through each road segment is 1 round; this
assumption can be relaxed by including dummy vertices.

The traffic police has k(<< |E|) police cars at its disposal.
At each round t, the police places enforcement on a subset of
size k from E, which we refer to as the allocation at round t
denoted at, such that the allocation respects the graph’s con-
nectivity constraints and no more than a single police car is
assigned to any edge. Namely, at round t, each police car can
either stay in its current road segment (enforcing for a longer
period of time) or move to an adjacent edge given at−1. a1
can assume any subset of size k of E. We denote the traffic
police allocation history at round t as Ht = 〈a1, . . . , at〉. We
use the notation H[et] as an indicator of whether a police car
is assigned to road e at round t, et for short. Simultaneously,
drivers choose whether to obey the law (drive safely) or not
at each road segment e ∈ E.

We assume that drivers’ actions at round t are visible to

notation meaning
t ≤ T Game round index.
et Road segment e at round t.
at Defender’s allocation in round t.
Ht Defender’s allocation history at round t.
H[et] Indicator whether police is present at et.

risk(et) Likelihood of a car accident occurring at et
in the absence of police enforcement.

eff(et, Ht) The effectiveness of police enforcement on et.

Table 1: Summary of key notations.

the police. For example, the ITP, as with many other police
departments, uses anonymous cellular reports provided by
commercial companies to evaluate the distribution of speeds
on each road in real-time. Other technological aids such as
speed cameras are also in use. Note that while the police does
not consider the behavior of each driver individually, they do
obtain aggregated statistics on traffic behavior for the entire
road network. On the other hand, drivers are only exposed to
a noisy signal regarding the police allocation. For example,
common applications such as WAZE and other technological
instruments such as police scanners allow drivers to have an
indicator of police presence at et. However, these indicators
are not completely accurate (police presence in a road seg-
ment is not always reported in WAZE, an indicator of police
presence may not be up-to-date, a police car may be covert,
etc.). As a result, the game is conducted under one-sided
uncertainty. Due to this uncertainty, the drivers base their ac-
tions at et according to at (although not completely visible)
and the police’s past allocations (Ht−1), which together con-
stitute Ht.

Following recent advancements in predictive policing, in-
cluding the prediction model constructed in the course of this
study, and in the same spirit as done in previous works such as
[Shieh et al., 2012], we define the risk of accidents occurring
at et as risk(et). The risk function measures the likelihood
that a serious traffic accident will occur at et in the absence of
police enforcement (in the [0,1] range). We further define the
effectiveness of enforcement as eff(Ht, et). eff measures
the effect that the police allocation history has on the risk of
accidents occurring at et.

The traffic police is interested in minimizing the total ex-
pected number of accidents occurring throughout the game.
Formally, it seeks to minimize the following objective of the
optimization problem we denote as the TRAFFIC ENFORCE-
MENT ALLOCATION PROBLEM (TEAP):

minHT

∑
t=1,...,T

∑
e∈E

risk(et)(1− eff(et, Ht)) (1)

risk(et) cannot be influenced by police enforcement but
rather through modification of the road’s characteristics (e.g.,
number of lanes), traffic (e.g., reducing speed-limit), etc. On
the other hand, eff heavily depends on police enforcement,
Ht. We assume both risk(et) and eff(et, Ht) are known to
the police and can be computed in polynomial time.

A summary of the notations used in this paper is available
in Table 1.

http://www.biu-ai.com/trafficPolice
http://www.biu-ai.com/trafficPolice


The solution to Eq. (1) prescribes a pure strategy for the
traffic police. The police could optimize over all rounds si-
multaneously, however this approach is computationally ex-
pensive; it needs to solve a possibly non-convex optimization
problem as the police must consider drivers’ responses (mod-
eled within eff). Unfortunately, approximating the optimal
solution to a TEAP, within any constant factor, is hard even
for a single driver and a single police car.
Theorem 1. TEAP cannot be approximated within any fac-
tor of c ≥ 1 in polynomial time, unless P = NP .

A proof is available in the appendix.
Two key computational challenges arise from the TEAP

formulation. First, the arbitrary risk and eff, which can
take any polynomial time computable form and depend on an
unbounded history of police actions (eff), pose a significant
optimization challenge. Second, the space of possible police
strategies (joint schedules for all police cars) grows exponen-
tially in the number of resources and the number of time steps
which make the computation even more challenging.

3 Optimizing Police Strategy
In this work we derive an optimal pure strategy for traf-
fic enforcement for T steps. Our goal is to find the pure
strategy that would minimize the total expected number of
serious accidents. In our framing, any randomized mixed-
strategy, which is the combination of pure strategies, results
in a greater number of accidents than the optimal pure strat-
egy, as in [Zhang et al., 2016].

Given Theorem 1, we resort to remedying the hardness of
solving the TEAP by introducing an optimal novel algorithm
called the RELAXED OPTIMIZATION SOLVER ENHANCER,
or ROSE for short. ROSE uses a master/slave optimization
approach, aimed at reducing the computational burden of di-
rectly solving the TEAP. It exploits the fact that no two po-
lice cars are allowed to enforce the same road segment at the
same time. ROSE is guaranteed to return an optimal solu-
tion, hence, in the worst case, ROSE will run in exponen-
tial time. Nevertheless, experimental results (see Section 4)
on road networks of varying characteristics show that ROSE
is able to derive an optimal solution significantly faster than
competing approaches.

Before introducing ROSE, we first cast the TEAP as a bi-
nary graph flow problem and present an exponential sized Bi-
nary Integer Program (BIP) for solving it.

3.1 TEAP as Graph Flow
We model the TEAP using a transition graph [Yin et al.,
2012]. The transition graph is a compact representation
which captures the spatio-temporal structure of the road net-
work and allows us to handle the exponential strategy space
by avoiding the enumeration of all pure strategies. Techni-
cally, given a road network G, we transform it into a T time-
expanded graph GT such that each vertex v (edge e) is repli-
cated T times, one for each round, denoted vt (et).

Each vt in the transition graph is associated with the num-
ber of police cars that start their trajectories in it minus the
number of police cars that end their trajectory in it, denoted
bvt . bvt is assumed to be known in advance and cannot be

changed by the police.1 The resulting flow problem can be
formulated as the following mathematical program:

min
HT

∑
t

∑
et

risk(et) · (1− eff(et, Ht)) (2)

s.t
∑
v′t−1

Ht[(v
′
t−1, vt)t−1]−

∑
v′t+1

Ht+1[(vt, v
′
t+1)t+1] = bvt ∀vt ∈ GT

(3)

HT [et] ∈ {0, 1} ∀e, t (4)

Constraints (3) and (4) are standard binary flow constraints.
Let Sol = {et|HT [et] = 1} denote the set of ets that were
assigned a unit of flow (a police car) in the optimal assign-
ment.

We transform the above mathematical program into a 0-
1 integer linear program (or Binary Integer Problem, BIP
for short) of exponential size, using the following proce-
dure: risk(et) and eff(et, Ht) are enumerable; for every
et and possible HT (which is bounded in size by 2|V ||E||T |)
one can conceptually calculate the value of risk(et) · (1 −
eff(et, Ht)) offline and store it in a table. For every entry i in
the table, which assumes a possible allocation history Hi

t , we
denote V isitedi = {et|Hi

t [et] = 1} as the set of ets that as-
sumed the value of 1 under Hi

t . Let V aluei denote the value
of risk(et) · (1 − eff(et, Ht)) for entry i. For every entry
i we create a new binary variable pi which takes the value of
1 if Sol ∩ V isitedi = V isitedi. To that end, we add the
constraint:

pi =
∏

et∈{V isitedi}

HT [et] (5)

Equation (5) might seem non-linear at first. However,
it is rather easy to linearize it using a fix-sized set of lin-
ear constraints that will force the indicator pi to assume
the correct value (a short explanation of the procedure
is available at http://www.leandro-coelho.com/
linearization-product-variables/).

Let Pow(i) be the set of all strict (proper) subsets of
V isitedi. We then modify the optimization objective (2) us-
ing the inclusion-exclusion principle:

minHT

∑
t

∑
et

∑
i

pi(V aluei+∑
V isitedj∈Pow(i)

(−1)|V isitedj∩V isitedi|+1V aluej) (6)

Intuitively, for a given et and i, we shall refer to the
summed term as penalty if the summed term is positive, and
reward otherwise.

Clearly, the result is a BIP. Furthermore, the resulting BIP
is not sensitive to the number of police cars. The correctness
of the above procedure follows that of the inclusion-exclusion
principle. In order to understand the procedure better, con-
sider the following example:

1This formulation allows police cars to start and finish their paths
at different times and locations.

http://www.leandro-coelho.com/linearization-product-variables/
http://www.leandro-coelho.com/linearization-product-variables/


Example 1. Assume a time-expanded graph with 2 vertices
(v, u) expanded over 3 time steps (v1, u1, v2, u2, v3, u3) such
that v1 and u1 are connected to v2 and u2, and v2 and
u2 are connected to v3 and u3. There are 2 guards, start-
ing at nodes v1 and u1, and they finish their trajectories at
v3 and u3. Overall, the problem induces 8 binary decision
variables, written for short as Iv1,v2 , Iv1,u2

, Iu1,v2 , Iu1,u2
,

etc. risk is set to 1 for all edges. eff is set to 1 for all
edges and strategies except for (v1, v2) which is set to 0.6 if
Iv1,v2 = 1, 0.8 if Iu1,v2 = 1 and to 0.5 if both Iv1,v2 = 1
and Iu1,v2 = 1. We introduce three new variables p1, p2 and
p3, and three new constraints: p1 = Iu1,v2

, p2 = Iu1,v2

and p3 = Iu1,v2 · Iu1,v2 . Thus, the optimization objective is:
minI 8+(0.6−1)p1+(0.8−1)p2+(0.5−(0.6+0.8)+1)p3.
Note that the terms associated with p1 and p2 are rewards
(they intuitively help the optimizer lower the objective) and
the term associated with p3 is a penalty (it obstructs the opti-
mizer from lowering the objective).

3.2 Linear Optimization Using ROSE
The resulting BIP of the procedure above cannot scale up due
to the exponential number of variables and constraints (see
evaluation in Section 4). To overcome this limitation we in-
troduce a novel master/slave-based optimization algorithm,
ROSE. The Master program consists of two levels: At the
high level the Master program maintains a subset of penalty
terms, denoted P . At the low level a BIP solver is used to
solve a relaxed BIP in which only a subset of penalty terms
are introduced along with their associated binary variables,
pi. At the beginning of the execution, P contains all penalty
terms of Eq. (6) and the low level solver generates a solution,
Sol, while contemplating only pi variables associated with
reward terms. Given Sol, the Slave program is executed to
examine whether any penalty term p ∈ P is triggered, that
is, the Slave program checks whether any binary variable pi
associated with a penalty term in P should assume the value
of 1 given Sol. If no penalty terms from P are triggered, the
Slave returns an empty set, indicating that an optimal solu-
tion has been found and ROSE terminates; otherwise, a set of
penalty terms P ′ ⊆ P is returned. The returned P ′ is injected
into the relaxed BIP and removed from P by the Master.

The Slave program can return any subset P ′ ⊆ P as long
as it obeys the following two rules: 1) P ′ = ∅ if no penalty
terms from P are triggered under Sol; and 2) P ′ contains at
least one penalty term (if such exists). We use an elementary
implementation of the Slave program, returning all triggered
penalty terms from P . The investigation of more elaborate
Slave programs which predict which penalty terms are most
beneficial to introduce, in terms of minimizing ROSE ’s run-
time, is left for future work.
Proposition 2. ROSE always terminates and returns an op-
timal solution.

A proof is available in the appendix.

Algorithm 1 ROSE

Require: Time-expanded graph GT , BIP Solver Solver.
1: function MASTER
2: BIP ← Initialize BIP with reward terms
3: P ← Penalty terms
4: Sol← ∅
5: repeat
6: Sol← Solver(BIP )
7: P ′ ← Slave(Sol, P )
8: if P ′ = ∅ then
9: return Sol

10: P = P \ P ′
11: Introduce P ′ into BIP
12: function SLAVE(Sol,P)
13: P ′ = {p|p ∈ P ∧ p is triggered by Sol}
14: return P ′

BIP solvers are sensitive to the number of constraints.
Therefore, ROSE’s computational performance depends on
the number of penalty terms in P which can be avoided in the
iterative penalty generation process. Namely, the choice of
Slave function has a significant effect on computation time.
Similar to other iterative methods such as cutting plane and
column generation [Chen et al., 2011], it is hard to guaran-
tee the computational benefit of the approach in the general
case. While ROSE may be inefficient in some cases (e.g.,
no penalty term can be avoided regardless of Slave imple-
mentation), in several settings, including realistic and real-
world traffic enforcement settings, it can bring about a signif-
icant improvement in runtime. For example, as discussed in
[Delle Fave et al., 2015], eff is submodular in many security
settings. Namely,
Definition 3. eff is submodular if for every et, e′t and Ht ⊆
H ′t, eff(et, Ht∪{e′t})−eff(et, Ht) ≥ eff(et, H

′
t∪{e′t})−

eff(et, H
′
t)

A submodular eff means that performing an additional en-
forcement activity (allocating a police car at e′t) has diminish-
ing gains in effectiveness. In Section 4 we show the signif-
icant runtime benefits that can be generated by ROSE when
this property holds.

4 Evaluation
For reproducibility purposes and to allow future research on
traffic enforcement, we establish a realistic simulation envi-
ronment which we name SECURE. SECURE consists of 3
components: 1) Several real-world road networks; 2) A state-
of-the-art prediction model for modeling risk; and 3) A sub-
modular eff function. risk and eff, which are described
below, are derived from 11 years of accident data, extensive
literature review on accident prevention and analysis and hu-
man expert knowledge from the ITP. Further details are pro-
vided in the appendix and complete source code is available
at http://www.biu-ai.com/trafficPolice.

We evaluate ROSE on synthetic road networks and the Is-
raeli road network, which are available on SECURE.

ROSE is compared with 4 baseline solutions: First, a
Naı̈ve solver which solves the entire BIP (Eq. (6)) in its

http://www.biu-ai.com/trafficPolice


general form. Second, a Random solver which for each
police unit selects an action at random at each time step,
resolving conflicts locally. Third, a Greedy solver, which
computes a greedy path for each individual police car it-
eratively, capturing a (wrongly) assumed additivity in in-
dividual police car gains. Greedy considers a simplified
version of eff which only accounts for the marginal gains
that an enforcement in a road segment will generate given
the current allocation of other police cars. Given the cal-
culated path, Greedy updates the simplified eff given the
visited road segments and continues to the next police car.
Finally, we compare ROSE with Domain Expert alloca-
tions from the ITP. We could not evaluate Cartesian prod-
uct solutions, which capture the joint effects of all police
units, such as the ones presented in [Yang et al., 2013;
Zhang et al., 2016], due to their lack of scalability in the num-
ber of road segments (we were unable to solve road networks
larger than 5 road segments, which are unrealistic).

The resulting allocations are evaluated on the basis of two
criteria: 1) Quality, the reduction in the objective value (Eq.
(6)) between the no-police enforcement condition and the
provided solution; 2) Runtime and Scalability of the de-
ployed algorithm with respect to the number of police cars,
road segments and the density of the road network [Black,
2005].

The evaluation was done on a personal computer with 16
GB RAM and a CPU with 4 cores each operating at 4 GHz.
The BIP solver was GUROBI [Gurobi Optimization, 2016].

4.1 Synthetic Road Networks

We evaluate ROSE, Naı̈ve, Random and Greedy on a series
of synthetic road networks. We used 2 sets of synthetic road
networks: Small networks (each consists of between 40 and
100 road segments in intervals of 10) and realistic networks
(each consists of between 200 and 400 road segments in in-
tervals of 100). Connectivity between road segments (i.e.,
the network density) is randomized such that each two road
segments are connected by an intersection with a probability
ranging between 0.05 and 0.15 (in intervals of 0.05), allowing
for different topologies. risk uniformly samples a value in
the [0, 1] interval for each road segment and round and eff is
defined as in the SECURE simulation. The number of police
cars is set to either 5, 10 or 15 and T is set for either 8, 16
or 24. Overall, 270 networks were evaluated. A 30 minute
timeout was set for all conditions and networks.

Quality
As expected, ROSE and Naı̈ve return optimal allocations. On
average, they reduce 22.7% and 5.3% of the no-enforcement
objective value in small and realistic networks, respectively.
On the other hand, on average, Random and Greedy reduce
1% of the no-enforcement objective value in both small and
realistic networks. In realistic networks Greedy exceeded the
timeout for all networks of size 300 and 400 and thus its qual-
ity cannot be evaluated properly. In our trials, Random and
Greedy did not come up with an optimal allocation in any of
the cases. Figures 1a and 1e present the results.

Runtime and Scalability
We begin by analyzing the non-optimal algorithms, aimed at
reducing runtime. Random takes negligible time under all
settings (< 3 seconds). Greedy is linear in the number of
police cars (it iteratively solves the problem for each police
car separately) but exponential in the size of the network. For
example, for a network of size 100 with density of 0.1, 10
police cars and T = 16, ROSE takes exactly 1 second to de-
rive an optimal solution while Greedy takes 289 seconds, and
produces a suboptimal solution. Greedy reached the timeout
for all realistic networks.

Analyzing the Naı̈ve and ROSE conditions head-to-head
provides interesting insights. First, in all tested networks,
ROSE performed faster than Naı̈ve. On average, for small
networks, ROSE requires only 19% of the runtime needed by
Naı̈ve. We were able to manually engineer circumstances in
which Naı̈ve outperforms ROSE, mainly in very small net-
works (size < 40) or in networks with a high number of
police cars (> 25). The runtime difference increases sig-
nificantly depending on the network’s size and density but
slightly decreases in the number of police cars and network’s
density. Similar to Greedy, Naı̈ve was unable to solve most
networks of size 200 and all networks of size 300 (and above)
in 30 minutes time. See Figures 1b,1c, 1d, 1f, 1g and 1h.

4.2 Real-World Road Network
We evaluate ROSE using the Israeli road network. Unlike for
synthetic networks, for the Israeli road network we used the
risk prediction model available at SECURE. T was set to
8, 16 and 24 and the number of police cars varied between 5
and 30 (in intervals of 5) per the Israeli police’s abilities (18
settings in total). We also evaluate a Domain Expert condition
in which we asked an experienced ITP superintendent who
specialized in traffic enforcement to provide an allocation.

The Israeli road network is much larger than the synthetic
networks analyzed previously, consisting of 715 road seg-
ments, but with a very low density (on average, each inter-
section connects between 3 and 4 road segments). There-
fore, the results display slightly different patterns. The re-
sults show that both in terms of quality and runtime ROSE
outperforms the Naı̈ve, Greedy and Domain Expert condi-
tions by a large margin. Naı̈ve achieves the same solution
quality as ROSE (5.5%) but requires up to 6 times longer
for runtime. For example, under T = 16 and 10 police cars,
ROSE requires only 45 seconds compared to almost 4 min-
utes required by Naı̈ve. Greedy and Random produced ex-
tremely poor solutions across the conditions, averaging less
then 0.5%. Greedy required a significantly longer runtime
than ROSE and reached our timeout of 30 minutes in most
cases. As expected, Random required negligible runtime un-
der all settings (< 2 seconds). See Table 2 for the results.

The Domain Expert produced allocations where police cars
were allocated permanently at the most risky road segments.
The quality of the proposed allocation was about 0.5%.

5 Discussion
When presenting a new formulation, such as the TEAP, and
new solutions such as ROSE, it is worth discussing limi-
tations. ROSE allows us to optimally solve large TEAPs



(a) Quality/Police cars (T = 8) (b) Runtime/Police cars (T = 24) (c) Runtime/Size (T = 24) (d) Runtime/Density (T = 24)

(e) Quality/Police cars (T = 8) (f) Runtime/Police cars (T = 24) (g) Runtime/Size (T = 24) (h) Runtime/Density (T = 24)

Figure 1: Synthetic road networks: results for the small networks set are depicted in Figures (a) to (d), and results for the realistic networks
are depicted in Figures (e)-(h). Note that for the realistic networks, Naı̈ve and Greedy exceeded the timeout and thus do not appear in Figures
(e)-(h).

T = 8 T = 16 T = 24
Police Cars ROSE Naı̈ve ROSE Naı̈ve ROSE Naı̈ve

5 5 33 31 153 58 352
10 7 36 45 191 212 402
15 11 36 219 301 384 875
20 12 40 119 263 471 695
25 21 53 394 487 1432 1520
30 36 40 479 520 N/A N/A

Table 2: Runtime of ROSE and Naı̈ve for the Israeli road network
with varying numbers of police cars and T . Runtime is measured in
seconds. N/A means that a timeout of 30 minutes was reached.

with significant runtime improvement compared to baseline
approaches. This improvement is most significant for large,
dense networks. However, ROSE’s runtime is slightly im-
paired with the increase in the number of police units. The
reason is simple: with the increase in the number of police
cars, penalty terms are more likely to be triggered by feasi-
ble solutions. Therefore, in a “congested” TEAP (i.e., small
network with many police cars), ROSE could be counterpro-
ductive. In our experiments, such road networks are solved
very quickly by both ROSE and Naı̈ve. According to ITP
experts, traffic police worldwide use a network size – police
car ratio similar to the one deployed in Israel. Therefore, in
real-world deployment in other countries, one is most likely
to encounter large networks with a relatively low number of
police resources, like the settings investigated in this paper.

The TEAP solution is a pure strategy for the police, which
makes predictability an issue. Unlike various other security
models such as adversarial robotic patrolling (e.g., [Agmon
et al., 2011; Sless et al., 2014; Agmon et al., 2009]), in this
paper, TEAP assumes that the drivers are reactive to police
presence and essentially do not learn the police’s actual pol-
icy. This assumption may lead to repetitive police allocations
which drivers may (eventually) understand and anticipate. A
practical solution to this concern is to (periodically) define
additional allocation constraints that impose or restrict the en-
forcement of a specific road segment, similar to the entropy-
based approach suggested in [Brown et al., 2014]. Today,

police forces occasionally define road segments that must or
must not be visited during a shift due to special enforcement
needs (e.g., road work). The injection of these constraints in
the TEAP formulation is straightforward. An automatic pro-
cess may randomly select which road segments must/must-
not be enforced in a given allocation such that every road
segment has at least a user-defined ε probability of being en-
forced at every time step.

A common challenge to many human-centered problems,
such as the TEAP, is the efficient adaption to human-driven
changes in the environment. For example, adapting to a hu-
man’s changing preferences or abilities (e.g., [Rosenfeld and
Kraus, 2016; Rosenfeld et al., 2016; Rosenfeld et al., 2015]).
In traffic enforcement, this challenge may manifest itself as a
police car being delayed, which might make the calculated al-
location undesirable or infeasible. An efficient way to resolve
this issue is for central command to allocate the police cars,
assuming perfect execution. Only after a non-default transi-
tion occurs does the central command resolve the TEAP start-
ing from the current state [Delle Fave et al., 2014]. Given the
positive runtime results of ROSE, such reallocation should
not pose a significant computational concern.

6 Related Notions in Traffic Enforcement
It has been established that a significant reduction in the oc-
currence of serious traffic accidents can be achieved by ef-
ficient traffic police allocation [Elvik et al., 2009]. Specifi-
cally, efficient traffic enforcement has been shown to reduce
a wide range of high-risk, illegal driving behaviors, including
driving while under the influence of drugs/alcohol, speeding,
lack of seat belt use and red-light running, and thus reduces
traffic accidents (e.g., [Bates et al., 2012; Simandl et al.,
2016]). Therefore, recently, traffic police forces have begun
implementing the predictive policing paradigm [Perry, 2013]
through which police officers can identify people and loca-
tions at increased risk. From a methodological standpoint, the
effort of predicting traffic accidents has mainly focused on ag-
gregative analysis, specifically on the prediction of the annual



number of serious accidents per road segment using statisti-
cal methods such as Poisson or negative binomial regression
models [Chang, 2005]. Such aggregation is limited in its use
to police forces as the allocation of traffic police enforcement
requires a prediction on a much more finely-grained level.
To the best of our knowledge, the state-of-the-art prediction
models provide prediction for three hour time-frames. Over-
all, despite its promise and successful implementation, pre-
dictive policing does not provide police officers with a means
to derive optimal enforcement allocations. In this study, we
were able to construct a prediction model that provides bene-
ficial predictions for one hour time-frames by using a unique
set of features and 11 years of collected data.

The Gambler’s Fallacy is the phenomenon where people
tend to put ample weight on previous events, believing that
they influence future outcomes. This phenomenon manifests
itself in the context of traffic patrol in the form of halo effects.
For over 4 decades traffic halo effects have been validated re-
peatedly, showing that enforcement effects are not restricted
to the specific time and space in which the enforcement is per-
formed. Two such effects are called time-halo and distance-
halo [Elliott et al., 2005]. To our knowledge, this is the first
work to formulate and integrate halo effects in enforcement
optimization. Existing works on modeling human behavior
in SG settings such as [Lin et al., 2011; Kar et al., 2015;
Fang et al., 2015] consider the adaptive nature of human be-
havior to successes and failures in past rounds. However, the
integration of halo effects in such models is not straightfor-
ward.

7 Conclusions
This paper introduces a novel framework for designing traf-
fic police allocation in realistic settings. First, we model
the interaction between drivers and traffic police as a Traf-
fic Allocation Enforcement Problem (TEAP) and prove that
accurately solving or approximating the optimal solution of
a TEAP is hard. Next, we cast the TEAP as a binary graph
flow problem, which in turn is translated into a unique binary
optimization problem, and we show how to solve it efficiently
and optimally by a new algorithm called the RELAXED OPTI-
MIZATION SOLVER ENHANCER, ROSE. Extensive empiri-
cal evaluation, with real and synthetic road networks, demon-
strates the benefits of our approach.

We hope that this study will encourage other researchers
to tackle the important and challenging task of preventing se-
rious traffic accidents. To assist others with this challenge,
we also provide a realistic simulation environment, which we
name SECURE, that includes a state-of-the-art accident pre-
diction model along with useful road networks and data.
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Appendix
Theorem 1. TEAP cannot be approximated within any con-
stant factor of c ≥ 1 in polynomial time, unless P = NP .

Proof. To prove the theorem, we give a reduction from
SAT to TEAP with one driver and one police car: On
input Φ(x1, . . . , xn), construct n + 1 nodes V = {vi},
i = 1, . . . , n + 1. Then connect node i with node i + 1
(i = 1, . . . , n) using 2 directed edges, one for xi = True
and one for xi = False, and a single directed edge from
vn+1 to v1 representing Satisfiable (S). Consider the result-
ing graph G = (V,E) as the road network for a TEAP with
T = n + 1. A single police car starts at v0. Let risk as-
sume 0 for all edges in all rounds except for edge S at round
t+ 1, which assumes the value of 1. Let eff assume 0 for all
edges, rounds and allocation histories except for eff(S,Ht),
which assumes the value of 1 if the police trajectory (Ht) cor-
responds to a satisfying assignment for Φ(x1, . . . , xn) and 0
otherwise. Clearly, the driver’s action (causing an accident at
edge S or not) can be decided in polynomial time.

The above construction takes polynomial time. Assume
to the contrary that such an approximation polynomial time
algorithm App(G) exists. If there is no satisfying assign-
ment to Φ, then every trajectory the police car may take
will bring about an objective value of 1, thus App(G) ≥ c.
If there is a satisfying assignment, then the defender can
take the respective trajectory and receive a value of 0, hence
App(G) = 0.

Proposition 1 ROSE always terminates and returns an opti-
mal solution.

Proof. The Slave program introduces at least one penalty
term to the relaxed BIP at each non-terminal iteration. Due
to the finite number of penalty terms, ROSE terminates after
a finite number of steps. At each iteration, the value of each
feasible solution cannot decrease as ROSE only introduces
penalty terms to the objective function. When ROSE termi-
nates, all penalty terms triggered by Sol have been injected
into the relaxed BIP, therefore the relaxed BIP’s objective
value under Sol is the optimal value under both the relaxed
BIP and the original BIP, and its objective value would not
change if any additional penalties from P were to be added
to the objective function.

SECURE
SECURE consists of 3 components: 1) Several real-world
road networks; 2) A state-of-the-art prediction model for
modeling risk; and 3) A submodular eff function. risk
and eff are derived from 11 years of accident data, ex-
tensive literature review on accident prevention and analy-
sis and human expert knowledge from the ITP. We will de-
scribe the main components of SECURE. For complete de-
tails, source code and data see http://www.biu-ai.
com/trafficPolice.

risk

We obtained a record of 11 years of accident reports from
the Israeli Central Bureau of Statistics (2005-2015). By
cross-referencing these reports with additional sources such

http://www.biu-ai.com/trafficPolice
http://www.biu-ai.com/trafficPolice


as the Israeli GIS database and weather reports, we were
able to characterize each accident using 110 features, includ-
ing infrastructure characteristics (e.g., number of lanes), date
and time characteristics (e.g., weekend/weekday), weather
(e.g., precipitation), traffic (e.g., average speed), etc. To
the best of our knowledge, this is the largest set of fea-
tures ever to be used to predict serious car accidents. For
comparison, the Indiana traffic police use an intelligent
accident prediction tool https://www.in.gov/isp/
ispCrashApp/main.html which is based on approxi-
mately 90 features which we also use here. Experts in traffic
enforcement claim that only the Indiana and Tennessee State
traffic police use accident prediction tools but we were only
able to obtain the latter’s features. Using more than 30,000
accident records and under sampling the “non-accident” class
(see [Chawla, 2005]), we trained a deep neural network
model that, given 110 features representing et, returns a value
in the [0,1] range, acting as a proxy to the likelihood of an ac-
cident occurring at et.2 We compared our prediction model
to several baseline prediction models such as logistic regres-
sion, SVM and XGBoost (which is currently in use by the
Indiana traffic police). Our model achieves an AUC of 0.87,
outperforming logistic regression, SVM and XGBoost which
recorded 0.78, 0.77 and 0.82, respectively.

eff

We base eff on [Weisburd, 2016], which used a unique
database to track the exact location of the Dallas Police De-
partment’s patrol cars throughout 2009 and cross-referenced
it with the car accidents of that year. To the best of our knowl-
edge, this is the most recent investigation of the topic. The au-
thor found that if et is enforced, eff should assume a value
of 36%. However, enforcement effects are not restricted to
the specific time and space in which the enforcement is per-
formed. For example, Time halo is the time and the intensity
to which the effects of enforcement on drivers’ behavior con-
tinue after the enforcement operations have been concluded.
It has been recorded that longer enforcement efforts cause
more intense time halo effects that can last for hours and in-
fluence the next day(s) or even week(s) during the same time
of day as the enforcement. Distance halo is defined as the dis-
tance over which the effects of an enforcement operation last
after a driver passes the enforcement site. The most frequent
distance halo effects are in the range of 1.5 - 3.5 kilometers
from the enforcement site (see [Elliott et al., 2005] for a re-
view). In accordance with the ITP’s estimations, we define
time halo effects in the exponential diminishing form 36

2k
%

where k ≥ 0 is the time-steps that have passed from the en-
forcement effort. To avoid negligible effects, we prune the
effect at k = 3. The Distance halo effect is defined to be 5%,
given that the two road segments are adjutant. Given the po-
lice allocation, eff assumes a simple submodular form where
eff takes the largest applicable effect and adds half of each
of the smaller appropriate effects to it. For example, if both
et are et+1 are enforced (and no other time or distance halo
effects are appropriate), eff assumes 45% (= 36% + 18

2 %).

2Note that serious accidents are sporadic events in both time and
space. Therefore, directly estimating the probability of accidents
occurring at et is extremely challenging.

We are currently investigating a more data-driven approach
for modeling eff in Israel.
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