
Solving the Missing Node Problem
using Structure and Attribute Information

Sigal Sina
Bar-Ilan University

Ramat-Gan, Israel 92500
Email: sinasi@macs.biu.ac.il

Avi Rosenfeld
Jerusalem College of Technology,

Jerusalem 91160, Israel
Email: rosenfa@jct.ac.il

Sarit Kraus
Bar-Ilan University

Ramat-Gan, Israel 92500
Email: sarit@cs.biu.ac.il

Abstract—An important area of social networks research is
identifying missing information which is not explicitly represented
in the network, or is not visible to all. Recently, the Missing Node
Identification problem was introduced where missing members in
the social network structure must be identified. However, previous
works did not consider the possibility that information about
specific users (nodes) within the network could be useful in solving
this problem. In this paper, we present two algorithms: SAMI-A
and SAMI-N. Both of these algorithms use the known nodes’
specific information, such as demographic information and the
nodes’ historical behavior in the network. We found that both
SAMI-A and SAMI-N perform significantly better than other
missing node algorithms. However, as each of these algorithms
and the parameters within these algorithms often perform better
in specific problem instances, a mechanism is needed to select
the best algorithm and the best variation within that algorithm.
Towards this challenge, we also present OASCA, a novel online
selection algorithm. We present results that detail the success of
the algorithms presented within this paper.

I. INTRODUCTION

Social networks, which enable people to share information
and interact with each other, have become a key Internet
application in recent years. These networks are typically rep-
resented as graphs where nodes represent people and edges
represent some type of connection between these people [1],
such as friendship or common interests. Scientists in both
academia and industry have recognized the importance of
these networks and have focused on various aspects of social
networks. One aspect that is often studied is the structure
of these networks [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. Previously, a missing link problem [1], [2]
was defined as attempting to locate which connections (edges)
will soon exist between nodes. In this problem setting, the
nodes of the network are known, and unknown links are
derived from existing network information, including node
information. Most recently a new missing node identification
problem [13] was introduced, which locates and identifies
missing nodes within the network. Previous studies have shown
that combining the nodes’ attributes can be effective when
inferring missing links or attributes [7], [14]. We show how
specific node attributes, such as demographic or historical
information about specific nodes, can also be used to better
solve the missing node problem, something that previous
work did not consider. To better understand the missing node
problem and the contribution of this paper, please consider
the following example: A hypothetical company, Social News
Inc., is running an online news service within LinkedIn. Many

LinkedIn members are subscribers of this company’s services,
yet it would like to expand its customer base. Social News
maintains a network of users, which is a subset of the group
of LinkedIn users, and the links between these users. The
users of LinkedIn who are not members of the service are
not visible to their system. Social News Inc. would like to
discover these LinkedIn nodes and try to lure them into joining
their service. The company thus faces the missing nodes
identification problem. By solving this problem, Social News
Inc. could improve its advertising techniques and aim at the
specific users which haven’t yet subscribed to their service.

Recent algorithms, MISC [13] and KronEM [10], which
were developed to solve similar problems, used the structure
of the network, but did not consider information about specific
nodes. Our work extends Eyal et al.’s MISC algorithm [13].
The MISC algorithm focused on a specific variation of the
missing nodes problem where the missing nodes requiring
identification are “friends” of known nodes. An unidentified
friend is associated with a “placeholder” node to indicate the
existence of this missing friend. Thus, a given missing node
may be associated with several “placeholder” nodes, one for
each friend of this missing node. Following this approach,
the missing node challenge is to try to determine which of
the “placeholder” nodes are associated with same unidentified
friend. In other words, what is the correct clustering of the
“placeholder” nodes? As was true in Eyal et al.’s work, we
also assume that tools such as automated text analysis or
image recognition software can be used to aid in generating
placeholder nodes. For example, a known user makes reference
to a coworker who is currently not a member of the network,
or has friends which are not subscribers of Social News Inc.
and thus only visible as anonymous “users”. Such mining tools
can be employed on all of the nodes in the social network in
order to obtain indications of the existence of a set of missing
nodes.

The key contribution of this paper is how to integrate
information about known nodes in order to help better solve
the missing node problem. Towards this goal, we present two
algorithms suitable for solving this missing node problem:
SAMI-A (Structure and Attributes Missing node Identification
using Attributes’ similarity) and SAMI-N (Structure and
Attributes Missing node Identification using social-attribute
Network). The first algorithm, SAMI-A, calculates a weighted
sum between two affinity components, one based on the
network graph structure, as was the case in previous work [13],
and a new measure based on common attributes within known

nodes. The second algorithm, SAMI-N, combines the known
nodes’ attributes data into a Social-Attribute Network (SAN) –
a data structure that was previously developed [7], [15], [16].
We then once again use a weighted sum between different
components within the SAN to create the affinity measure.

However, we found that all clustering-based algorithms –
both of the algorithms we introduced, SAMI-A and SAMI-N,
as well as the MISC algorithm on which they were based –
were each best suited for specific problem instances. Further-
more, we found that parameters within each of these algo-
rithms might need tuning for different problem instances with
different missing nodes or network sizes. Thus, an important
question is to discover which of these algorithms, and which
tuned parameter value within each algorithm, is best suited for
a specific problem instance. Towards solving this problem, we
present OASCA, an Online Algorithm Selection for Clustering
Algorithms. While the idea of tuning an algorithm for a
specific problem instance is not new, the application of these
approaches to clustering algorithms is not trivial. During online
execution, OASCA solves this challenge by using a novel
relative metric to predict which clustering algorithm is best
suited for a given problem instance. This facilitates effective
selection of the best clustering algorithm.

II. RELATED WORK

In solving the Missing Node Identification problem, we use
variations of two existing research areas: spectral clustering
algorithms and metrics built for the missing link problem. The
spectral clustering algorithm of Jordan, Ng and Weiss [17] is
a well documented and accepted algorithm, with applications
in many fields including statistics, computer science, biology,
social sciences and psychology [18]. Eyal et al. [13] presented
the MISC algorithm, which was the first to develop how
to use spectral clustering in the missing node identification
problem. The main idea behind their work was to embed
a set of data points, which should be clustered, in a graph
structure representing the affinity between each pair of points
based on the structure of the network. One contribution of
this paper is to consider how specific node attributes’ data,
such as demographic or historical information about specific
nodes, can be used to better solve the missing node problem,
something that Eyal et al. [13] did not consider.

Kim and Leskovec [10] tackled a similar problem, what
they termed the network completion problem, which deals with
situations where only a part of the network is observed and
the unobserved part must be inferred. The proposed algorithm,
called KronEM, uses an Expectation Maximization approach,
where the observed part is used to fit a Kronecker graph model
of the network structure. The model is used to estimate the
missing part of the network, and the model parameters are
then re-estimated using the updated network. This process is
repeated in an iterative manner until convergence is reached.
The result is a graph which serves as a prediction of the full
network. Their research differs from ours in several key ways.
First, and most technically, the KronEM prediction is based on
link probabilities provided by the EM framework, while our
algorithm is based on a clustering method and graph partition-
ing. Second, our approach is based on the existence of missing
node indications obtained from data mining modules such as
image recognition. When these indications exist, our algorithm

can be directly used to predict the original graph. As a result,
while KronEM is well suited for networks with many missing
nodes, our algorithm may be effective in local regions of the
network with a small number of missing nodes where data
mining can be employed. More importantly, and as our results
detail, our proposed algorithms, SAMI-A and SAMI-N, can
achieve significantly better prediction quality than KronEM
or even the more closely related MISC algorithm. Similarly,
our proposed algorithm offers a much lower time complexity,
especially in comparison to the KronEM algorithm. While
KronEM requires a running time of about 100-200 minutes
in order to analyze a network of a few thousand nodes in
our experiments, we were able to analyze such networks in
less than 20 seconds on the same hardware. This low time
complexity is achieved mainly by using a dimension reduction
technique, which effectively causes the algorithm to focus on
the local vicinity of the missing nodes. Such a technique cannot
be easily combined into the KronEM method since it relies on
the entire graph to calculate the Kronecker model [19].

The idea of using attributes of specific nodes was previ-
ously considered within different problems. Several previous
works [7], [15], [16] propose a model to jointly infer missing
links and missing node attributes by representing the social
network as an augmented graph where the nodes’ attributes
are represented as special nodes in the network. They show
that link prediction accuracy can be improved when including
the node attributes. In our work, we apply a similar approach in
the SAMI-N algorithm, but instead infer the identity of missing
nodes instead of missing links or missing node attributes. Other
approaches studied different ways of leveraging information
about known nodes within the network in order to better solve
the missing link or missing attribute problems. For example,
Freno et al. [5] proposed a supervised learning method which
uses both the graph structure and node attributes to recommend
missing links. A preference score which measures the affinity
between pairs of nodes is defined based on the feature vectors
of each pair of nodes. The proposed algorithm learns the
similarity function over feature vectors using the visible graph
structure. Kim and Leskovec [14] developed a Latent Multi-
group Membership Graph (LMMG) model with a rich node
feature structure. In this model, each node belongs to multiple
groups and each latent group models the occurrence of links
as well as the node feature structure. They showed how the
LMMG can be used to summarize the network structure, to
predict links between the nodes and to predict missing features
of a node. Another work, Brand [20] proposed a model for
collaborative recommendation. He studied various quantities
derived from the commute time and showed that angular-based
quantity outperforms the commute time which is quite sensible
to the node degree. In our case, in order to avoid biases towards
nodes with high degree, we also use normilized measures.

A second key contribution of this paper is how to select,
both online and during task execution, the best clustering algo-
rithm. We found that the previously developed MISC algorithm
[13], as well as the SAMI-A and SAMI-N extensions that we
propose in this paper, are best suited for specific clustering
instances, thus a mechanism is needed to select the best
algorithm for a given problem. Previously, Rice [21] generally
defined the algorithm selection problem as the process of
choosing the best algorithm for any given instance of a problem
from a given set of potential algorithms. However, the key

challenge is how to predict which algorithm will perform the
best. Several previous works perform no prediction and instead
run all algorithms for a short period in order to learn which
one will be best for a given problem. For example, Minton et
al. [22] suggested running all algorithms for a short period of
time on the specific problem instance. Secondary performance
characteristics are then compiled from this preliminary trial in
order to select the best algorithm. However, in our problem
the true structure of the network is not known, making it
impossible to predict which algorithm will definitively be
best. Using algorithm selection in conjunction with clustering
algorithms has also recently begun to be considered. Halkidi
and Vazirgiannis [23] considered how to determine the number
of optimal clusters within a given clustering algorithm, such
as K-means. Kadioglu et al. [24] considered how optimization
problems could be solved through created clusters of optimal
parameters. However, to the best of our knowledge, we are
the first to consider how to select online between different
clustering algorithms and between the parameters within each
of these algorithms. This is the key contribution within the
OASCA algorithm presented in this paper.

III. OVERVIEW AND DEFINITIONS

In this section we define the missing node problem which
we address. We also provide general formalizations about
social networks and evaluation metrics used throughout the
paper.

Problem Definition: We assume that there is a
social network represented as an undirected graph G = (V,E),
in which n = |V | and e = 〈v, u〉 ∈ E represents an
interaction between v ∈ V and u ∈ V . In addition to the
network structure, each node vi ∈ V is associated with an
attribute vector ~AVi of length l. For example, in a social games
network, nodes are players, edges are friendship relationships
and attributes are node specific information, such as a player’s
country of origin, group membership and game playtime. We
assume that each attribute in the attributes vectors is a binary
attribute, i.e. each node has or does not have the attribute.
Formally, we define a binary attributes matrix A of size nxl
where Ai,j indicates whether or not a node vi ∈ V has an
attribute j. We choose to use a binary representation for the
attributes in order to ease our implementation. Nevertheless,
any other attribute type can be transformed into one or more
binary attributes. We use discretization to take all continuous
real-value attributes, such as playtime, and transport them into
one or more binary attributes. For example, game playtime
can be translated into one binary variable, using a zero value
threshold, where a user either plays or does not play this
specific game, or it can be translated into three binary attributes
– HeavyPlayer, ModeratePlayer and LitePlayer – using a
threshold vector of size three. All categorical attributes, such
as country, are transformed into a list of binary attributes, each
for any origin value, e.g. USA, UK, Canada, where a given
player did or did not originate from that country.

Some of the nodes in the network are missing and are
not known to the system. We denote the set of missing nodes
as Vm ⊂ V , and assume that the number of missing nodes
is given1 as N = |Vm|. We denote the rest of the nodes as

1Previous work [13] has found that this number can also be effectively
estimated.

known, i.e., Vk = V \ Vm, and the set of known edges is
Ek = {〈v, u〉 | v, u ∈ Vk ∧ 〈v, u〉 ∈ E}. Towards identifying
the missing nodes, we focus on the visible part of the network,
Gv = (Vv, Ev), that is known. In this network, each of the
missing nodes is replaced by a set of placeholders. Formally,
we define a set Vp for placeholders and a set Ep for the
associated edges. For each missing node v ∈ Vm and for each
edge 〈v, u〉 ∈ E, u ∈ Vk, a placeholder is created. That is,
for each original edge 〈v, u〉 we add a placeholder v′ for v
to Vp and connect the placeholder to the node u with a new
edge 〈v′, u〉, which we add to Ep. We denote the source of
the placeholder, v′ ∈ Vp, with s(v′). When these components
are considered together, Vv = Vk ∪Vp and Ev = Ek ∪Ep. As
for a given missing node v, there may be many placeholders
in Vp. The missing node challenge is to try to determine
which of the placeholders should be clustered together and
associated with the original v, thus allowing us to reconstruct
the original social network G. To better understand this

Fig. 1. A full network, the known network and the visible network obtained
by adding the placeholders for the missing nodes 1 and 5.

formalization, please consider the following example: Assume
we have a gamers network where users may register or not
before playing a game. An edge between two users indicates
that these two users play a game together. We might have
additional information regrading the registered users, such as
origin, group membership and playing time. We consider the
registered users to be the known nodes, while the anonymous
users are the placeholders. We would like to identify which
of the anonymous users are actually the same person.
Thus, our purpose is to output a placeholder clustering
C and a predicted graph Ĝ = (V̂ , Ê) where V̂ = Vk ∪
{vc|a new node vc for each cluster c ∈ C} and Ê = Ek ∪
{(u, vc) |a new edge for each placeholder v ∈ c, (u, v) ∈ Ev} .

Fig. 2. Correct clustering of the placeholders. The placeholders in each
cluster are united to one node which represents a missing node.

Affinity Measures: Both the previously developed
MISC algorithm as well as the SAMI-A and SAMI-N algo-
rithms proposed in this paper use affinity measures as part
of their clustering algorithms. Specifically, these algorithms
calculate an affinity measure between each pair of nodes in
the network and pass it to the spectral clustering algorithm to
determine which of the placeholders are associated with the
same source node. Spectral clustering is a general algorithm
used to cluster data samples using a certain predefined similar-
ity (which is known as an affinity measure) between them. It

creates clusters which maximize the similarity between points
in each cluster and minimize the similarity between points
in different clusters [17]. Thus, the success of the algorithm
depends on the affinity matrix. It is important to note that
while the spectral clustering algorithm’s goal is to cluster
the placeholders, it uses information from all nodes, both the
known ones and the placeholder ones, during the clustering
process. While several affinity measures based on network
structure were previously studied [13], in this paper we use
the two measures that previously yielded the best results:
the Relative Common Neighbors (RCN) measure [1] and the
Adamic/Adar (AA) measure [25]. Additionally, we use one
affinity measure based on common attributes between nodes
(Att). Note that this measure is not based on the general
structure of the network, but similarities between specific
nodes’ attributes.

These affinity measures are calculated between each pair
of nodes, vi and vj , within the network. The Relative Com-
mon Neighbors measure, RCN ij , calculates the number of
common neighbors between vi and vj . The Adamic/Adar
measure, AAij , checks the overall connectivity of each com-
mon neighbor to other nodes in the graph and gives more
weight to common neighbors who are less connected. The
common attribute affinity measure, Attij , is based on the
nodes’ attributes’ similarity and it is defined as the number
of common attributes between the two nodes divided by the
size of the unified attributes set of the two nodes. This measure
was inspired by the homophily relationship (love of the same)
previously studied [26]. Formally, let Γ(i) denote the group
of neighbors for a given node, vi, in the network graph. We
define the RCN ij , AAij and Attij affinity measures as:
RCN ij = |Γ(i)

⋂
Γ(j)|

min(|Γ(i)|,|Γ(j)|)

AAij =
∑

u∈Γ(i)
⋂

Γ(j)
1

log(|Γ(u)|)

Attij =

{ |S(i)
⋂

S(j)|
|S(i)

⋃
S(j)| if vi, vj ∈ Vk

0 else
Since the nodes that act as placeholders for missing nodes only
have one neighbor each, we also consider them to be connected
to their neighbor’s neighbors, for both the RCN and the AA
measures. We divide the RCN measure by min(|Γ(i)|, |Γ(j)|)
to act as a normalizing effect in order to avoid biases towards
nodes with a very large number of neighbors. In the Att
measure, S(i) is defined as the set of attributes of node vi.
Note that we do not have attributes for nodes which are
placeholders. As a result, in the Att measure, if either vi or vj
is a placeholder, then we assume this measure is 0.

Evaluation Measures: We considered two types
of evaluation measures in order to measure the effectiveness
of the algorithms presented: Graph Edit Distance (GED) and
Purity. GED compares the output graph of a given algorithm,
Ĝ = (V̂ , Ê), to the original network graph, G, from which the
missing nodes were removed. GED is defined as the minimal
number of edit operations required to transform one graph to
the other [27]. An edit operation is an addition or a deletion
of a node or an edge. Since finding the optimal edit distance is
NP-Hard, we use a previously developed simulated annealing
method [27] to find an approximation of the GED. The main
advantage of this method of evaluation is that it is independent
of the method used to predict Ĝ, making it very robust. It can

be used to compare any two methods as long as they both
produce a predicted graph. The disadvantage of computing
the GED lies in its extended computational time. Due to this
expense, a purity measure, which can be easily computed, can
be used instead. Purity is an accepted measure of checking the
quality and accuracy of a clustering-based algorithm [28]. The
purity measure attempts to assess the quality of the predicted
clustering (placeholders) compared to the true clustering (the
missing nodes).

In evaluating our algorithms, we first consider the original
network, then remove nodes to make them “missing”. We can
then evaluate how accurate our algorithms were in identifying
the true structure of the network. Within the GED measure we
check how many edit operations separate the two networks.
The purity measure is calculated in two steps as follows: Step
one – classify each cluster according to the true classification
of the majority of samples in that cluster. Here, we classify
each cluster according to the most frequent true original node
v ∈ Vm of the placeholder nodes in that cluster; Step two –
count the number of correctly classified samples in all clusters
and divide by the number of samples. In our case, the number
of samples (nodes) that are classified is |Vp|. Formally, in our
problem setting, where ck is defined as the set of placeholders
which were assigned to cluster k, purity is defined as:
purity(C) = 1

|Vp|
∑

k maxv∈Vm
|ck ∩ {v′ ∈ Vp | s(v′) = v}|.

IV. THE SAMI ALGORITHMS

We now present two approaches for adding node informa-
tion: SAMI-A and SAMI-N. The novelty of these algorithms
lies in how they use this information to create new affinity
measures to better solve the missing node problem.

A. The SAMI-A Algorithm

The first algorithm, SAMI-A (Structure and Attributes
Missing node Identification using Attributes’ similarity),
calculates an affinity measure based on a weighted sum
between two components. The first component is based on
the network structure, as in the MISC algorithm [13]. We
implemented affinity measures based on RCN and AA (see
Section III for definitions). The second component is based
on the number of common attributes between two nodes.
Formally, we define MARCN

ij and MAAA
ij as:

MARCN
ij =

{
(1− w)RCN ij + w ∗Attij if vi, vj ∈ Vk

RCN ij else

MAAA
ij =

{
(1− w)AAij + w ∗Attij if vi, vj ∈ Vk

AAij else

where MARCN
ij and MAAA

ij are the matrix of affinity mea-
sures for the SAMI-A algorithm using the RCN and AA mea-
sures respectively. w is an input parameter which represents the
relative weight of the attributes’ similarity measure. Because
we do not have attributes for nodes which are placeholders, if
one of the nodes, vi or vj , is a placeholder, we only use the
affinity component which is based on the network structure.

B. The SAMI-N Algorithm

The second algorithm, SAMI-N (Structure and
Attributes Missing node Identification using social-
attribute Network), combines the known nodes’ attributes’

data into a Social-Attribute Network (SAN) – a data structure
that was previously developed [7], [15], [16]. We then use a
weighted sum between different components within the SAN
to create the affinity measure. The algorithm first builds the
SAN network from the original network and the attributes
matrix. It starts with the original network Gv , where each
original node and link in the SAN network are called social
node and social link respectively. It defines a new attribute
node for each binary attribute and adds it to the SAN network.
It then adds a link – called an attribute link – between a
social node and an attribute node if the social node has this
attribute (i.e. TRUE value in the attributes matrix). As the

Fig. 3. Social-Attribute Network (SAN) with origin attribute nodes.

SAN network has two types of nodes and links, social and
attributes, it must adjust the affinity measures for this new
type of network. This is done in line with previous work
[7] with the option of giving weight to each node, social
or attribute. Formally, we define the MNRCN

ij and MNAA
ij

affinity measures as:
MNRCN

ij =
∑

u∈Γ(i)
⋂

Γ(j) w(u)

min(
∑

u∈Γ(i) w(u),
∑

u∈Γ(j) w(u))

MNAA
ij =

{ ∑
u∈Γ(i)

⋂
Γ(j)

w(u)
log(|Γs(u)|) if vi, vj ∈ Vv∑

u∈Γs(i)
⋂

Γs(j)
w(u)

log(|Γ(u)|) else

where MNRCN
ij and MNAA

ij are the matrix of affinity mea-
sures for the SAMI-N algorithm using the RCN and AA mea-
sures respectively. Γ(u) is defined as the group of neighbors
of node u according to the SAN graph which includes both
social and attribute links. Γs(u) is defined as the group of
social nodes which are neighbors of node u according to the
SAN graph, and w(u) is node u’s weight. Note that in our
implementation, we use only one input parameter w, therefore
we use the same weight value, w(u) = w/(1− w), for all of
the attributes nodes and w(u) = 1 for all of the social nodes.
We again divide by min(. . .) in order to avoid biases towards
nodes with a very large number of neighbors.

V. THE OASCA ALGORITHM

Based on preliminary tests, we found that the clustering-
based algorithms, including the SAMI-A and SAMI-N al-
gorithms we introduced as well as the MISC algorithm on
which they were based, were each best suited for specific
problem instances. Furthermore, we found that parameters
within each of these algorithms might need to be tuned for
different problems with differing numbers of missing nodes
or network sizes. Thus, an important question is to discover
which of these algorithms, and which tuned parameter value
within each algorithm, is best suited for a specific problem
instance. Towards solving this problem, we present OASCA, an
Online Algorithm Selection for Clustering Algorithms, which
is based on the general algorithm selection approach previously
proposed by Rice [21].

Following this approach, we define the OASCA algorithm as
follows: First, OASCA runs the given portfolio of q clustering
algorithms {CA1 . . . CAq} and keeps the clustering results,
Ci, of each algorithm. Specifically, in our case the clustering
results, Ci, represent the output of the placeholders’ clustering.
In order to evaluate the algorithms’ clustering results, we could
not use the purity measure, as in a real world environment we
do not know the true original mapping of the placeholders.
Thus, we had to define and calculate a novel measure, RSi,
which is based on a relative purity measure RPj(Ci) and
forms the core of the OASCA algorithm. The RPj(Ci) measure
assesses the quality of the clustering result Ci in relation
to other portfolio algorithms’ results. Formally, for each two
clustering results Ci, Cj where j 6= i and sj(v) is the source
mapping of the placeholders according to the result Cj :
RPj(Ci) = 1

|Vp|
∑

k maxv∈Vm |ck ∩ {v′ ∈ Vp | sj(v′) = v}|
and RSi =

∑
j 6=i RPj(Ci). Last, OASCA returns the clustering

results C∗ with the highest score, i.e. C∗ = argmaxiRSi.
Specifically, in this paper, we consider a portfolio which can
include the MISC, SAMI-A and SAMI-N algorithms, each
with the two affinity types defined above (RCN and AA).

VI. EXPERIMENTS METHODOLOGY

We use a previously developed social network dataset,
Steam [29] (http://steamcommunity.com), to empirically eval-
uate our work. The Steam community network is a large
social network of players on the Steam gaming platform. The
data we have is from 2011 and contains 9 million nodes
(“anonymous” users) and 82 million friendship edges. Each
user had the following data: country (the origin of the user;
50% voluntarily put country), member since (the date when
the user opened his Steam account), list of game playing
times (number of hours played in the last two weeks) and
list of group memberships. We choose groups of attributes:
country, playing time and player group association. These three
groups form a total of 60 attributes – one for the country,
20 attributes of different game playing times and 39 different
official associations. As we are interested in studying the
missing node problem where attribute information exists about
known nodes, we had to ensure that the nodes within our
dataset in fact contained such information. Towards this end,
we crawled the social network and only selected nodes that
have at least 2 games or groups. This crawling reduced the
dataset size to 1.3 million nodes (users). The next challenge
we had to address in using a dataset of this size was processing
the data within a tractable period and overcoming memory
constraints. To extract different networks’ samples, we use a
Forest Fire (FF) walk [30], [31], which starts from a random
node in the dataset and begins ‘burning’ outgoing links and the
corresponding nodes with a burning probability of 0.75. This
is a variation of BFS walk, which randomly chooses only part
of the node’s outgoing links. We use this method as we want
dense networks where each node has several links so that we
can demonstrate the missing nodes problem, but still sample
networks which preserve, as much as possible, the original
dataset features. We crawl a 16K network from this reduced
dataset, mark it as the training dataset and remove these nodes
from the dataset. We then re-sample this 16K node training
dataset to extract several 2K training networks, which we use
for parameters learning. Last, we extract several test networks
with different sizes from the remaining dataset.

A. Learning the Parameters’ Values

We used the training datasets to empirically learn the
domain dependent variables. These parameters include the op-
timal weight w for the SAMI-A and SAMI-N algorithms and
two thresholds in order to optimize the memory consumption
of SAMI-A’s attribute affinity measure.

The weight parameter. It is important to point
out that the weight w is used differently in the SAMI-A and
SAMI-N algorithms. In the SAMI-A algorithm, the weight w
is used for the weighted sum between the structure affinity and
the attributes affinity. In the SAMI-N algorithm, we use the
same weight w(u) = w/(1 − w) value for all attribute nodes
and w(u) = 1 for all of the social nodes in the affinity measure
calculation for the SAN network. We run these algorithms with
both affinity measure types RCN and AA using the 2K training
sample networks, the same 5 missing nodes values (11, 21,
31, 41 and 50) and a range of weights between 0.2 and 0.8
with 0.1 step. We repeat the run 5 times over the six training
networks we had. Table I shows the results for the 2K training
networks, where each value in the table represents the average
over all of the runs for all of the missing node values (i.e.
150 runs). Based on this training data, we use w=0.8 for both
AA SAMI-A and AA SAMI-N, w=0.3 for RCN SAMI-A and
w=0.2 for RCN SAMI-N.

TABLE I. THE PURITY RESULTS FOR THE 2K TRAINING NETWORKS
WITH DIFFERENT WEIGHTS

Weight 0.2 0.3 0.4 0.5 0.6 0.7 0.8

AA SAMI-A 0.6325 0.6305 0.6338 0.6351 0.6369 0.6357 0.6372

AA SAMI-N 0.5945 0.6000 0.5999 0.6072 0.6118 0.6150 0.6199

RCN SAMI-A 0.6283 0.6337 0.6309 0.6296 0.6296 0.6260 0.6259

RCN SAMI-N 0.6215 0.6178 0.6121 0.6078 0.6037 0.5993 0.5947

Thresholds for MAtt. We use the training datasets
to optimize SAMI-A memory consumption. The analysis of
the 2K training datasets shows that the attributes affinity matrix
MAtt is very dense (average of 60%-70%), while the structure
affinity matrices MRCN and MAA are very sparse (average
4%-6%). Thus, the estimated memory for the attributes affinity
matrix MAtt, where n is the network size and d is the
percentage of non-zero values (0.6-0.7), is mem = n2 ∗ d ∗ 8
Bytes ≈ 5.5 ∗ n2 Bytes. Accordingly, the estimated memory
for n = 2K is mem ≈22MB, for n = 16K is mem ≈1.4GB
and for n = 100K is mem ≈55GB. That means that before
we could apply the SAMI-A algorithm for larger networks, we
had to develop a method to reduce the density of the attribute
affinity matrix. Using a combination of two techniques, which
were tuned on the 2K training datasets, we succeeded in
reaching a feasible density while keeping enough information
for the algorithm to use. The first technique uses a popularity
threshold. It reduces the number of nodes’ attributes based on
the attributes frequency in the current network. Our intuition
for this technique was that attributes with high frequency
contribute less information, thus we decided to filter out the
attributes with a higher probability than an input percentage
threshold. The evaluation showed that a popularity threshold
of 20% reduced the density from 60%-70% to 20%-25%. The
second technique was based on a fixed noise threshold value.
Our intuition was that low attribute similarity measures may
introduce noise to the affinity measures, thus we decided to
filter out the entries in the attributes affinity matrix which were

lower than a noise threshold. The evaluation showed that a
noise threshold of 0.15 reduced the density from 20%-25%
to 7%-15% and also improved the results as compared to a
zero noise threshold. We use these two thresholds during the
evaluation of larger networks described in section VII-B.

B. The Comparison Configuration

We evaluated our three algorithms – SAMI-A, SAMI-N
and OASCA – which use the additional nodes’ attributes
information using the Steam dataset. For comparison, we also
evaluated two recently developed algorithms – MISC and
KronEM – using the same dataset, which only use the network
graph structure and do not use attributes. We also considered
a third Random assignment algorithm that assigns each place-
holder to a random cluster. This algorithm is a baseline that
represents the most naive of assignment algorithms. Note that
the SAMI-A, SAMI-N and MISC algorithms each have two
variations according to the network graph structure affinity
matrix – Relative Common Neighbors measure (RCN) or
Adamic/Adar (AA). The OASCA algorithm was evaluated with
a portfolio which is based on variations of SAMI-A, SAMI-N
or MISC algorithms, each with RCN and AA measures. It is
also important to note that the KronEM algorithm accepts a
visible graph and the number of missing nodes. This algorithm
is not based on the existence of placeholders and therefore it
does not use them2. The KronEM algorithm outputs a graph
which predicts the missing nodes and their links. The KronEM
algorithm also assumes that the number of nodes in the full
graph is a power of two. Nonetheless, to facilitate a fair
comparison between the different algorithms, we generated 10
networks, each containing 211 = 2048 (2K) nodes sampled
from the test dataset. We randomly removed N missing nodes
from each network. The selected values for N were 11, 21,
31, 41 and 50 which are, respectively, approximately 0.5%,
1%, 1.5%, 2% and 2.5% of the network. The experiment
was repeated five times for each selected value of N in
each network, resulting in 50 iterations for each missing node
percentage. Each resulting network was tested with all of the
algorithms. The output of each algorithm was compared to the
original network graph using Graph Edit Distance (GED) and
Purity. Note that the purity measure is not applicable for the
KronEM algorithms as it expected a placeholders’ clustering,
in addition to the predicted graph, and thus this measure was
not calculated for the KronEM algorithm. While the MISC,
SAMI-A, SAMI-N, OASCA and Random algorithms only
predict the existence of links between the predicted nodes
and the neighbors of the original missing nodes, the KronEM
algorithm, on the other hand, might predict an erroneous
link between a predicted node and any other node in the
network which was not connected to the missing node. This
is due to the fact that KronEM does not take advantage of
the placeholders. Therefore, in order to fairly compare the
KronEM with the other algorithms when calculating the GED,
we only considered edit operations relating to links between
the predicted nodes and the neighbors of the missing nodes.
In addition, even though KronEM predicts a directed graph,
we treated each predicted link as undirected, since this slightly
improved the results of KronEM.

2In running the KronEM algorithm, we used the C++ implementation we
received from the authors of [10]. We set the algorithm’s additional parameters
to the values as described in the ReadMe file in their algorithm’s distribution.

TABLE II. THE PURITY (ABOVE) AND GED RESULTS (BELOW) FOR
THE 2K TEST NETWORKS

Missing
Nodes

AA
MISC

AA
SAMI-A

AA
SAMI-N

RCF
MISC

RCF
SAMI-A

RCF
SAMI-N

OASCA Random

11 0.6610 0.6915 0.6435 0.6740 0.6910 0.6899 0.7077 0.3721

21 0.6246 0.6507 0.6366 0.6363 0.6452 0.6434 0.6525 0.3208

31 0.5914 0.6206 0.6155 0.6079 0.6161 0.6098 0.6214 0.2918

41 0.5703 0.6025 0.5977 0.5838 0.5934 0.5854 0.5944 0.2777

50 0.5472 0.5799 0.5726 0.5647 0.5698 0.5645 0.5727 0.2700

Average 0.5989 0.6291 0.6132 0.6134 0.6231 0.6186 0.6297 0.3065

Missing
Nodes

AA

SAMI-A

RCN

MISC

RCN

SAMI-A OASCA KronEM Random

11 36.55 39.75 37.45 35.35 50.58 70.35

21 71.70 77.00 73.95 73.65 92.66 135.05

31 116.47 123.13 118.18 117.00 138.86 208.90

41 152.02 164.65 159.90 159.05 186.10 277.73

50 190.40 202.38 200.88 199.15 228.64 339.07

Average 113.43 121.38 118.07 116.84 139.37 206.22

VII. RESULTS

A. The Comparison Results

We proceeded to compare the 10 networks of size 2K
described above where we randomly removed N missing
nodes. In these runs, we used the best weight from the training
experiment for each one of the two variations of SAMI-A and
SAMI-N, and we ran the OASCA algorithm, to empirically con-
firm its effectiveness, with a portfolio of q=6 which includes
the SAMI-A, SAMI-N and MISC algorithms each with RCN
and AA measures. Table II (above) shows the purity results
for all of the algorithms (besides KronEM3) for each missing
nodes option and the overall average result. All of the results
are significantly better than the Random algorithm (higher is
better). The AA SAMI-A algorithm outperformed all other
static algorithms (AA MISC, AA SAMI-N, RCN SAMI-A,
etc.). Getting higher results for the OASCA algorithm, with this
configuration and without significant difference between AA
SAMI-A’s performance, confirmed the correctness of the novel
measure of relative purity as the basis of the OASCA algorithm.
We found that both AA SAMI-A and OASCA results were
significantly better than the AA MISC, RCN MISC and AA
SAMI-N algorithms (specifically, the ANOVA test of OASCA
compared to AA MISC, RCN MISC and AA SAMI-N had
a much smaller than 0.05 threshold level with p=2.897E-7,
6.316E-3 and 5.786E-3 respectively). Table II (below) also
shows the graph edit distance results for the AA SAMI-A,
RCN MISC, RCN SAMI-A, OASCA, KronEM and Random
algorithms. Again, all results are significantly better than the
Random algorithm (lower is better). We again found that the
best results come from using the AA SAMI-A and OASCA
algorithms and that these results are also significantly better
than the RCN MISC and KronEM algorithms (the ANOVA
results for the mean difference of AA SAMI-A compared to
RCN MISC and KronEM at the 0.05 significance level being
p=2.637E-3 and 1.356E-19, respectively). The RCN MISC
results are also significantly better than the KronEM algorithm
(ANOVA results for the mean difference being p=9.336E-10).

B. Generalized Configuration

One potential limitation of the algorithms we introduce
is the large sizes of their affinity matrices, something that

3The purity measure is not applicable for the KronEM algorithm as it is
not a clustering-based algorithm.

may prevent these algorithms from scaling to networks with
larger numbers of nodes. As SAMI-A outperformed SAMI-N,
we studied how this algorithm may scale. Furthermore, we
wanted to see how well the algorithms do when generalizing
from 2K networks (which we used to identify the optimal
weights) to larger networks (for which we did not learn the
best weights). Our preliminary analysis of the training datasets
reduces the attributes affinity matrix MAtt from an average of
60%-70% to 7%-15% using a popularity threshold=20% and
a noise threshold=0.15. We run the OASCA algorithm with
q=10, considering only the MISC algorithm and the SAMI-A
algorithm with several values for the weight parameter w. We
use several weight values, as the previously learned weights
had been optimized for 2K networks and their values might
vary for the larger networks. Specifically, we use the AA
MISC and RCN MISC algorithms, 4 weight values for the AA
SAMI-A algorithm (w=0.5, 0.6 ,0.7, 0.8) and 4 weight values
for the RCN SAMI-A algorithm (w=0.2, 0.3, 0.4, 0.5). We
tested the algorithms on 10 instances of 2K, 4K, 8K and 16K
networks, with the same 5 missing node values. We repeated
the run 5 times over each network.

The results in Table III show that the OASCA algorithm
outperforms all other algorithms in all of the tested network
sizes. These results were significantly better than the AA
SAMI-A algorithm (which gave the second best results) and
the original RCN MISC algorithm. Specifically, using the
pairwise test at the 0.05 level, we saw that the mean difference
of OASCA compared to AA SAMI-A for the 2K, 4K, 8K and
16K networks was p=8.37E-3, 4.90E-6, 3.85E-8 and 5.82E-5
respectively, and compared to RCN MISC was p=3.44E-10,
1.85E-14, 2.13E-12 and 2.27E-9. Getting the best results for
the OASCA algorithm shows the effectiveness of the algorithm
configuration as well as the correctness of its measure.

TABLE III. THE PURITY RESULTS USING A popularity
THRESHOLD=20% AND A nosie THRESHOLD=0.15

 Network

Size

AA

MISC

AA

SAMI-A

RCN

MISC

RCN

SAMI-A OASCA Random

2K 0.5949 0.6184 0.6127 0.6149 0.6237 0.3069

4K 0.5974 0.6223 0.6138 0.6185 0.6313 0.3029

8K 0.5541 0.5759 0.5689 0.5812 0.5920 0.2886

16K 0.5109 0.5404 0.5307 0.5125 0.5475 0.2942

VIII. CONCLUSIONS AND FUTURE WORK

We believe that this paper represents the first work to
study the missing node identification problem by including
information about both the network structure and attribute
information of known nodes. The first key contribution of
this paper is how to integrate information about the known
nodes to help better solve the missing node problem. Towards
this goal, we present two clustering-based algorithms suitable
for this problem – SAMI-A and SAMI-N. Both of these
algorithms combine the nodes’ specific attributes information
in two ways. SAMI-A calculates a weighted sum between two
affinity components, one based on the network graph structure
and the other based on specific nodes’ attributes. SAMI-N
first combines the known nodes’ attributes’ data into a Social-
Attribute Network (SAN) and then uses a weighted sum
between different components within the SAN to create the
affinity measure. We showed that both SAMI-A and SAMI-N

outperform the recent known algorithms, KronEM [10] and
MISC [13], which did not use the nodes’ specific information.

The second key contribution of this paper is the novel
OASCA algorithm, an online algorithm selection for clustering
algorithms. We found that even though the best average out-
come of AA SAMI-A was significantly higher than all other
algorithms, all of the clustering-based algorithms, SAMI-A
and SAMI-N, as well as the algorithm on which it was based,
MISC, were each best suited for specific problem instances.
We also found that parameters within each of these algorithms
might need to be tuned for different problem instances with
different missing nodes or network sizes. Thus, an important
question was how to discover which of these algorithms, and
which tuned parameter value within each algorithm, is best
suited for a specific problem instance. OASCA solved this
challenge during online execution by using a novel relative
measure to identify which clustering algorithm, from a given
algorithm portfolio, is best suited for a given problem instance.
This allows us to choose, online, the best classifier without
running all possibilities in advance, something that was done
in previous selection approaches [22], [32], [23] but was not
done in this real-world environment.

Our evaluation showed that overall the OASCA algorithm
gave the best results. Furthermore, the OASCA algorithm might
be suited for any given clustering problem and not only for
the missing node identification problem as its input and output
do not depend on the problem domain. In the future, we
would like to explore additional ways to improve our proposed
algorithms’ implementation, both SAMI-A and SANI-N, and
continue evaluating how these algorithms can be scaled up. We
would also like to further explore the potential of the OASCA
algorithm with a larger set of algorithms and for large scale
networks.

ACKNOWLEDGMENT

This research is based on work supported in part by
MAFAT and the Google Interuniversity center for Electronic
Markets and Auctions.

REFERENCES

[1] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. 7, pp. 1019–1031, May 2007.

[2] A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical structure
and the prediction of missing links in networks,” Nature, vol. 453, no.
7191, pp. 98–101, May 2008.

[3] M. Eslami, H. R. Rabiee, and M. Salehi, “Dne: A method for ex-
tracting cascaded diffusion networks from social networks,” in Social-
Com/PASSAT, 2011, pp. 41–48.

[4] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75 – 174, 2010.

[5] A. Freno, G. Garriga, C., and M. Keller, “Learning to Recommend
Links using Graph Structure and Node Content,” in Neural Informa-
tion Processing Systems Workshop on Choice Models and Preference
Learning, 2011.

[6] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” TKDD, vol. 5, no. 4, p. 21, 2012.

[7] N. Z. Gong, A. Talwalkar, L. W. Mackey, L. Huang, E. C. R. Shin,
E. Stefanov, E. Shi, and D. Song, “Predicting links and inferring
attributes using a social-attribute network (san),” CoRR, 2011.

[8] V. Leroy, B. B. Cambazoglu, and F. Bonchi, “Cold start link prediction,”
SIGKDD 2010, 2010.

[9] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in networks,”
Notices of the American Mathematical Society, vol. 56, no. 9, pp. 1082–
1097, 2009.

[10] M. Kim and J. Leskovec, “The network completion problem: Inferring
missing nodes and edges in networks,” SIAM International Conference
on Data Mining (SDM), 2011, 2011.

[11] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina, “Correcting
for missing data in information cascades,” in WSDM, 2011, pp. 55–64.

[12] W. Lin, X. Kong, P. S. Yu, Q. Wu, Y. Jia, and C. Li, “Community
detection in incomplete information networks,” in WWW, 2012, pp.
341–350.

[13] R. Eyal, A. Rosenfeld, and S. Kraus, “Identifying missing node informa-
tion in social networks,” in Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[14] M. Kim and J. Leskovec, “Latent multi-group membership graph
model,” arXiv preprint arXiv:1205.4546, 2012.

[15] Z. Yin, M. Gupta, T. Weninger, and J. Han, “Linkrec: a unified
framework for link recommendation with user attributes and graph
structure,” in Proceedings of the 19th international conference on World
wide web. ACM, 2010, pp. 1211–1212.

[16] ——, “A unified framework for link recommendation using ran-
dom walks,” in Advances in Social Networks Analysis and Mining
(ASONAM), 2010 International Conf. on. IEEE, 2010, pp. 152–159.

[17] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing
Systems 14. MIT Press, 2001, pp. 849–856.

[18] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, December 2007.

[19] J. Leskovec and C. Faloutsos, “Scalable modeling of real graphs using
kronecker multiplication,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 497–504.

[20] M. Brand, “A random walks perspective on maximizing satisfaction and
profit,” in SIAM International Conference on Data Mining, 2005, pp.
12–19.

[21] J. R. Rice, “The algorithm selection problem,” in Advances in Comput-
ers, vol. 15, 1976, pp. 118–165.

[22] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimizing
conflicts: A heuristic repair method for constraint satisfaction and
scheduling problems,” Artificial Intelligence, vol. 58, no. 1-3, pp. 161–
205, 1992.

[23] M. Halkidi and M. Vazirgiannis, “A data set oriented approach for
clustering algorithm selection,” in PKDD, 2001, pp. 165–179.

[24] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, “Isac - instance-
specific algorithm configuration,” in ECAI, 2010, pp. 751–756.

[25] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
Networks, vol. 25, no. 3, pp. 211–230, 2003.

[26] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, pp. 415–
444, 2001.

[27] O. Kostakis, J. Kinable, H. Mahmoudi, and K. Mustonen, “Improved
call graph comparison using simulated annealing,” in Proceedings of
the 2011 ACM Symposium on Applied Computing, ser. SAC ’11, 2011,
pp. 1516–1523.

[28] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse
framework for combining multiple partitions,” J. Mach. Learn. Res.,
vol. 3, pp. 583–617, Mar. 2003.

[29] R. Becker, Y. Chernihov, Y. Shavitt, and N. Zilberman, “An analysis of
the steam community network evolution,” in Electrical & Electronics
Engineers in Israel (IEEEI), 2012 IEEE 27th Convention of. IEEE,
2012, pp. 1–5.

[30] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, 2005, pp. 177–187.

[31] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 631–636.

[32] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelli-
gence (AIJ), vol. 126, no. 1-2, pp. 43–62, 2001.

	Introduction
	Related Work
	Overview and Definitions
	The SAMI Algorithms
	The SAMI-A Algorithm
	The SAMI-N Algorithm

	The OASCA Algorithm
	Experiments Methodology
	Learning the Parameters' Values
	The Comparison Configuration

	Results
	The Comparison Results
	Generalized Configuration

	Conclusions and Future Work
	References

