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Abstract

Emergency Departments (EDs) provide an imperative source
of medical care. Central to the ED workflow is the patient-
caregiver scheduling, directed at getting the right patient to
the right caregiver at the right time. Unfortunately, common
ED scheduling practices are based on ad-hoc heuristics which
may not be aligned with the complex and partially conflict-
ing ED’s objectives. In this paper, we propose a novel on-
line deep-learning scheduling approach for the automatic as-
signment and scheduling of medical personnel to arriving pa-
tients. Our approach allows for the optimization of explicit,
hospital-specific multi-variate objectives and takes advantage
of available data, without altering the existing workflow of
the ED. In an extensive empirical evaluation, using real-world
data, we show that our approach can significantly improve an
ED’s performance metrics.

Introduction
Nearly half of all US hospital-associated medical care is
delivered by Emergency Departments (EDs, also known as
emergency rooms), making EDs a major source of medi-
cal care, especially for vulnerable populations (Lewin and
Altman 2000; Marcozzi et al. 2018). EDs are faced with
a dynamic flow of patients who present a wide variety of
conditions, ranging from severe multiple percussive injuries
and drug overdoses to common colds and cuts and scrapes,
all of which seek fast and quality medical attention. Due to
the variability in patients’ conditions, as well as the limited
availability of medical resources and their own variability
(i.e., attending physicians, interns, etc), an efficient patient-
caregiver scheduling process is needed, a process which is
often referred to as triage (Christ et al. 2010).

Patient-caregiver scheduling is directed at getting the right
patient to the right caregiver at the right time, given the
ED’s constraints. Specifically, given a preliminary evalua-
tion of the patient upon arrival (commonly done by a triage
nurse) and the available medical staff, a decision has to be
made as to when the patient should receive treatment and
by which caregiver. Today, the patient-caregiver schedul-
ing process focuses almost entirely on assigning each pa-
tient a severity level using triage scales (e.g., between 1
and 5, 1 being the highest (Gilboy et al. 2012)), which
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in turn translates into an upper bound on the desired pa-
tient’s waiting time, leaving the decision as to when and
which caregiver should provide the treatment entirely in
the hands of the triage nurse(s). Unfortunately, due to the
time-critical environment, the multiple partially-conflicting
objectives of the ED (as discussed next) and multiple in-
terruptions, decisions are often inadequately made and are
mainly based on ad-hoc heuristics and experience which
need not necessarily fully align with optimizing the ED’s
objectives, e.g., (Franklin et al. 2011; Tanabe et al. 2004;
ENA 2017). Specifically, while EDs have been computa-
tionally investigated for over 70 years (Saghafian, Austin,
and Traub 2015), mainly focusing on modeling the patient
arrival flow and required staffing levels, to the best of our
knowledge, the patient-caregiver scheduling problem has yet
to be addressed by computational means.

In order to address this shortcoming, we first model
the patient-caregiver scheduling process as a novel online
scheduling problem. Deriving an efficient scheduling policy
to the corresponding problem is hard, therefore we remedy
this hardness by introducing a deep-learning-based pairwise
ranking approach which relies on ED-provided objectives
and leverages real-world data. Our approach provides the
ED with an effective and efficient scheduling policy targeted
at optimizing the hospital-specific objectives given the hos-
pital’s available resources and expected patient flow.

In an extensive empirical evaluation, using real-world
data and medical experts’ input, we show that our proposed
approach can significantly improve the patient-caregiver
scheduling process, which can translate into better ED care
for the greater good.

To ensure the validity of our approach and evaluation from
a medical perspective, we recruited 4 medical caregivers
(who did not co-author this paper) to follow this study: a
triage nurse, a physician’s assistant, an attending physician
and an ED director, from three large hospitals in Israel. We
refer to these caregivers as the expert panel in this study.

The ED Workflow and Purpose
While different EDs deploy slightly different modes of op-
erations, a basic work-flow is common to most modern EDs
(Sinreich and Marmor 2005; Bedoya-Valencia and Kirac
2016), as depicted in Figure 1. In words, when a patient
arrives at the ED, her first stop would be the triage sta-



Figure 1: The common ED work-flow

tion, where she would receive a severity rank. Based on a
scheduling policy, which is in the focus of this study, the pa-
tient would then continue to a (first) treatment/examination
by a caregiver. If the condition is appropriately diagnosed
and/or treated, the patient may be released or admitted to
a hospital ward. Otherwise, additional lab tests (e.g., CT,
bloodwork) would be needed which in turn would require
a re-evaluation of the patient’s severity rank and a second
treatment/examination, possibly by a different caregiver. Ac-
cording to our expert panel, it is extremely rare for a patient
to have more than 2 cycles of treatment before she is dis-
charged or admitted.

The principal purpose of the ED is to ensure that pa-
tients receive the level and quality of care appropriate to
their clinical needs and that the ED resources are most use-
fully applied to this end (FitzGerald et al. 2010). Unfortu-
nately, explicitly quantifying the above purpose is highly
complex (Schuur et al. 2013), which often leads hospitals
and governmental agencies to define multiple, often partially
conflicting, objectives (Welch et al. 2011). These objectives
primarily focus on minimizing the following measures: 1)
risk of adverse consequences to patients (Calder et al. 2015)
(e.g., misdiagnosis, inappropriate medication); 2) ED over-
crowdedness (Cowan and Trzeciak 2004); 3) interruptions
to caregivers (Westbrook et al. 2010); 4) patients’ wait times
(Mowen, Licata, and McPhail 1993); and 5) patients’ length
of stay in the ED (Trzeciak and Rivers 2003). In this work,
we focus on these measures.

Patient-Caregiver Scheduling
We start by modeling the two main sets of actors in the ED,
patients and caregivers, and their interaction. Our modeling
is based on existing literature and common clinical practices
as prescribed by the expert panel.
Patients. A patient pi ∈ P is represented as a pair
〈Severity, Injury〉 where Severity is defined using a
common triage scale (such as the popular Emergency Sever-
ity Index (ESI) (Tanabe et al. 2004))1 and Injury, which
defines the type of injury or condition based on the patients’
symptoms (e.g., Orthopedic, Internal, etc.). According to
clinical guidelines, pi is associated with the maximal time
she is permitted to wait for the initial caregiver’s treatment,
denoted t1pi and, if needed, the second caregiver’s treatment
t2pi . Patients may arrive at time t to the ED based on an es-
timated distribution Dpi(t), commonly assumed to follow a
non-homogeneous Poisson process (Whitt and Zhang 2017).

1Using the ESI, each patient is assigned a number between 1
and 5 representing the acuity of her condition (with 1 being the
most acute).

We assume that upon arrival to the ED, pi’s characteristics
are correctly identified by the triage nurse. After leaving the
triage station (or when pi’s test results arrive, see Figure 1),
she is scheduled to meet one of the caregivers cj .
Caregivers. A caregiver cj ∈ C is represented as a
pair 〈Seniority, Specialty〉: Seniority is defined based
on the caregiver’s qualifications over a discrete set2, and a
Specialty which indicates if the caregiver has “special train-
ing” in a specific injury type defined over the same set of
injury types which characterize the patients (NONE other-
wise). As a result, different caregivers may have different
required treatment time and varying levels of care quality.
The set of available caregivers, as well as their characteris-
tics, is assumed to be known in advance and does not change
during a shift.

Scheduling Objective. We model the primary ED objec-
tives as follows:
1) Minimizing risk of adverse consequences. Each exam-
ination (e ∈ {1, 2}) performed by cj on pi has some risk
of an adverse consequence. For example, a physician’s as-
sistant with no specific specialty may be very well equipped
to perform a first examination of minor orthopedic injuries
with only a minimal risk of an adverse consequence, while
severe head injuries should be examined by a qualified
physician. We use AC(pi, cj , e) as an indicator of whether
pi was examined by cj in her eth examination. riski,j,e de-
notes the risk of adverse consequences associated with such
an examination.
2) Minimizing patients’ waiting time. Each patient pi, has
to wait for her first (and second) examination for WT (pi, e)

minutes. Given pi’s t1pi and t2pi (as defined by the triage
scale), the ED seeks to minimize the wait time and avoid
exceeding the wait time limits. The penalty for exceeding
the limits is provided by exci,e,δt where δt is the excess wait
time.
3) Minimizing patients’ length of stay. Each patient pi
spends LOS(pi) minutes from the time she arrives at the
ED to the time she is discharged or admitted to a hospital
ward. This LOS(pi) includes the time pi waits for exami-
nations, the treatment time needed by the caregiver, denoted
CE(cj) ·TT (pi, e), and (if needed) lab test time LT (pi) be-
tween the two examinations. TT (pi, e) denotes the nominal
treatment time and CE(cj) ≥ 1 denotes the caregiver’s time
efficiency factor, capturing the relative “examination speed”
which varies between caregivers.
4) Minimizing over-crowdedness. At any point in time, one
can measure the number of patients currently waiting and
being treated in the ED, denoted κ(t), where t indicates con-
tinuous time.
5) Minimizing interruption to caregivers. Unfortunately,
in some (extreme) cases a caregiver may be asked to stop
the treatment of one patient in order to treat another. This
preemption may be very costly. The number of preemptions
during pi’s eth examination is denoted as PC(pi, e). The
penalty for each interruption is given by prei,e.

2In Israel (as in most countries), c’s Seniority is classified to
one the following (from lowest to highest): physician’s assistant,
intern, resident and attending physician.



Notation Meaning
t Time.

pi ∈ P Patient.
cj ∈ C Caregiver.

AC(pi, cj , e) Indicator whether cj is assigned to
pi’s eth examination.

WT (pi, e) pi’s waiting time for her eth examination.
TT (pi, e) Time (nominal) required for the

eth examination of patient pi.
LT (pi) Time required for lab tests of pi.
CE(cj) A type-c caregiver time efficiency factor.
κ(t) #patients in the ED at time t.

PC(pi, e) #interruptions to pi’s eth examination.

Table 1: Summary of key notations.

The ED must choose, for each patient pi, which caregiver
cj will provide the examination/treatment e and at what time
t. Let yij [e, t] be indicator decision variables denoting that
patient pi is assigned to caregiver cj for her eth examina-
tion at time t. We assume that the ED is evaluated based
on some metric, defined by stakeholders and governmental
agencies, over the above 5 objectives, e.g., using a linear ob-
jective which summarizes the weighted objectives over all
patients, examinations and time as proposed in Equation 1.
Note however, that the objective need not be linear and, in
the interest of generality, we do not assume it to be in the
following sections.

Minimize
yij(e,t)

∑
pi

∑
e∈{1,2}

∑
cj

(

∫
t

yij [e, t]

(α1AC(pi, cj , e)riski,j,e + α5PC(pi, e)prei,e) dt+

α2WT (pi, e)exci,e,δt + α3LOS(pi)) + α4

∫
t

κ(t) dt)

(1)

Table 1 summarizes the paper’s notations.
The patient-caregiver scheduling problem is akin to the

well studied job shop scheduling problem of unrelated ma-
chines with preemption, with the analogy of caregivers to
machines and patients to incoming jobs, as discussed later
in this paper. This problem is known to be NP-hard (Du
and Leung 1991). Thus, in the next section, we propose a
novel machine-learning based approximation algorithm, tai-
lored to our setting.

Learning-Based Scheduling
In order to tackle the patient-caregiver scheduling chal-
lenge outlined above, we propose a novel machine learning-
based approach we term as LEARNING-BASED SCHEDUL-
ING (LBS). LBS is aimed at approximating the idealized
optimal offline schedule, which is informed of the entire
flow of patients and their characteristics in advance.

LBS works as follows: First, LBS creates a set of offline
patient-caregiver scheduling problems based on past data or
patient arrival models learned from actual data (e.g., (Whitt

and Zhang 2017)). Then, using an appropriate optimization
algorithm, each instance is optimally solved. The optimized
solution set is then used to generate a set of training exam-
ples to train a deep-learning ranking model which is used in
the online setting. See Algorithm 1. We first discuss how the

Algorithm 1 The Learning-Based Scheduling Process
1: Create a set of patient-caregiver offline optimization

problems based on past patient flow data or patient flow
distribution.

2: Solve the offline optimization problems.
3: Translate each assignment in each schedule into training

instances.
4: Train ranking model.
5: Use the resulting online scheduling policy.

optimal solution for each offline instance is obtained. Then,
we present the training of our machine learning algorithm
and its architecture which, in turn, translates into an online
scheduling algorithm.

Optimal Offline Scheduling
When the patients’ arrival times and characteristics are
known in advance, optimal patient-caregiver scheduling can
be derived over a discrete finite horizon t = 0, . . . , T using
the following Mathematical Problem (MP):

Minimize
yij [e,t]

ED Objective (i.e., Eq. 1) (2)

s.t
∑
i

∑
e

yij [e, t] ≤ 1 ∀j, t (3)∑
j

yij [e, t] ≤ 1 ∀i, e, t (4)

ρi,j,e,t = yij [e, t](¬yij [e, t− 1]) ∀i, j, e, t ≥ 1 (5)

χi,e,t = t ·
∑
j

ρi,j,e,t ∀i, e, t ≥ 1 (6)

sti,e = min
t
{χi,e,t} ∀i, e (7)

φi,e,t = t
∑
j

(¬yij [e, t])yij [e, t− 1] ∀i, e, t ≥ 1 (8)

eti,e = max
t
{φi,e,t} ∀i, e (9)

sti,e < eti,e , sti,2 ≥ eti,1 ∀i, e (10)
arrivali,2 = eti,1 + LT (pi) ∀i (11)
sti,e ≥ arrivali,e ∀i, e (12)
LOS(pi) = eti,2 − arrivali,1 ∀i (13)
WT (pi, e) = sti,e − arrivali,e ∀i, e (14)∑
j

∑
t

yij [e, t]/CE[j] = TT [pi, e] ∀i, e (15)

PC(pi, e) =
∑
t

∑
i

ρi,j,e,t − 1 ∀i, e (16)

AC(i, j, e) = I(
∑
t

ρi,j,e,t > 0) ∀i, j, e (17)



The MP consists of an ED-specific objective function
(e.g., Eq. 1) and the following constraints: Eq. 3 and 4 en-
force that at most one patient is treated at a time by each
caregiver and, similarly, at most one caregiver can treat a
patient at a given time. Eq. 5, 6 and 7 extract the treatment
start time and Eq. 8 and 9 extract the treatment end time. Eq.
10 and 12 enforce a valid treatment duration while Eq. 11
extracts the time in which a patient becomes available for
her second treatment. Note that arrivali,1 is assumed to be
given in the offline setting. Eq. 13 and 14 extract each pa-
tient’s LOS and WT , respectively. Next, Eq. 15 makes sure
that the time caregivers are assigned to a patient is appro-
priate and Eq. 16 extracts the preemptions that took place.
For simplicity, the above MP assumes each patient is treated
twice. Our implementation, which allows for up to two treat-
ments per patient, is available as a Mixed Integer Linear Pro-
gram (MILP) at https://goo.gl/rXaBRh. The MILP
was instantiated with the help of the expert panel.

Learning to Schedule
The main task of an online scheduling algorithm in our set-
ting is to select, or rank, a scheduling pair (patient-caregiver
matching) over all other possible pairs. The task of learn-
ing a function to select the best match is also common in
information retrieval and is called “Learning to Rank” (Liu
2009), where documents are ranked based on their relevance
to a given query.

Therefore, we draw on the intuition from information
retrieval literature and adapt and extend the “Learning to
Rank” approach to the online ED scheduling setting.

Using the set of optimized solutions generated offline, we
identify the times in which a new patient arrives or when
treatment of a patient is completed. For each such case,
we create all scheduling pairs consisting of the selected as-
signments according to the optimized solution (〈p?i , c?j 〉 or
〈p?i ,WaitRoom〉) coupled with any other assignment op-
tion which was not selected (i.e., 〈p?i , cj〉 or 〈pi, c?j 〉 and
WaitRoom options). For simplicity, from this point on-
wards, we will consider the assignment to the WaitRoom
as a dummy caregiver which can support an infinite number
of patients but does not provide any treatment. The result-
ing pairs are used as training data for a supervised ranking
machine learning algorithm as we will discuss next. In other
words, we use the set of optimized solutions to generalize
and mimic the optimal decisions made in the offline settings.

With the help of the expert panel, we define a feature vec-
tor that combines a description of the patient and the care-
giver’s current state as shown in Table 2.

Inspired by the neural network ranking approach in in-
formation retrieval (Rigutini et al. 2011), we develop a new
Deep Neural Network (DNN) architecture targeted at learn-
ing to rank among assignments based on the created dataset
of pairs discussed above.

Specifically, our DNN is composed of two identical sub-
networks, with shared weights. The network architecture is
shown in Figure 2.

The anti-symmetric nature of the network is built by shar-
ing weights, as can be demonstrated for the connection be-

Feature Vector

Pa
tie

nt

severity (Following ESI) 1/5, 2/5, ..5/5
injury one-hot vector

remaining treatment time in minutes
wait time in minutes

remaining time in minutes

C
ar

eg
iv

er seniority 1/4, 2/4, ..4/4
specialization one-hot vector

status 0-idle; severity of patient
idle time in minutes

Table 2: Combined Patient-Caregiver Feature Vector

tween the input and the first hidden layer:
−→w 1
i,1 = w(

−→
X →

−−→
H1,1) = w(

−→
Y →

−−→
H1,2)

−→w 2
i,1 = w(

−→
X →

−−→
H1,2) = w(

−→
Y →

−−→
H1,1)

The bias term of both parts of the first hidden layer is also
shared. Thus, the two output vectors of the first hidden layer
are:

−−→
H1,1 = tanh(~w 1

i,1 ·
−→
X + ~w 2

i,1 ·
−→
Y +

−→
b1)

−−→
H1,2 = tanh(~w 1

i,1 ·
−→
Y + ~w 2

i,1 ·
−→
X +

−→
b1)

The rest of the layers share weights and connections in a
similar fashion with their appropriate activation functions.
Complete technical details are available in our code.

~X

~Y

~H1,1

~H1,2

~H2,1

~H2,2

~H3,1

~H3,2

~H4,1

~H4,2

O1

O2

Input
layer

hid-1
layer

hid-2
layer

hid-3
layer

hid-4
layer

Output
layer

Figure 2: DNN scheduling network.

This architecture has the following properties:
1. Reflexivity: for identical input vectors, the network pro-

duces identical outputs; and
2. Antisymmetry: for input vectors x, y, if x � y (reads “x

is preferred over y according to the DNN”) then for input
vectors y, x, we get y ≺ x and vice versa.

These properties make the network well suited to learn pair-
wise ranking functions.

The trained DNN is used in our online scheduling algo-
rithm as follows:
At each scheduling event, i.e. patient arrival, or caregiver
completion of treatment, all possible assignments are com-
pared to each other. Each comparison is worth one point to
the higher ranking assignment. Using a majority vote with
random tie breaking, the caregiver-patient assignment is se-
lected.



Evaluation
Setup
Case study. We consider one of the largest hospitals in Is-
rael: Rambam hospital in Haifa, which published extensive
data on its ED, specifically its patient flow and caregivers’
statistics. As a result, Rambam hospital has been the subject
of various research efforts aimed at modeling the patient ar-
rival process and caregivers’ and lab tests’ required time,
among others. Using existing literature, and with the help of
the expert panel (who are familiar with Rambam hospital’s
practices and Israel’s guidelines), we instantiate all functions
and constants of our model. Specifically, a linear objective
function as proposed in Equation 1 was adopted and instan-
tiated by our expert panel.

Rambam hospital works in a 3-shift workday. For this
evaluation, we focus on perhaps the most challenging shift
– the night shift. The night shift takes place from 23:00 to
7:00 during which only 2 to 4 caregivers, of various senior-
ity and specialties, man the ED, making the assignment ex-
tremely complex. Complete technical details as to the objec-
tive function’s parameters, expected treatment times, etc. are
provided in the code.

We examine two scenarios – normal patient flow and
heavy patient flow. The normal patient flow is provided in
the literature (Whitt and Zhang 2017) whereas the heavy pa-
tient flow is derived by multiplying the distribution parame-
ters, resulting in twice the number of patients on expectancy.
We train two LBS DNNs, one for the normal patient flow
case, denoted LBSN , and one for the heavy patient flow
case, denoted LBSH . we randomly generate 500 scheduling
instances for each condition, which in turn were optimally
solved using the Gurobi solver (Gurobi Optimization 2018).
The results are translated into two training sets for LBSN
and LBSH . The resulting scheduling policies, alongside the
baseline FCFSwU policy, will be evaluated next.
Baseline. In order to evaluate our approach compared
to existing ED practices, we will compare our approach
to the First-Come-First-Served-with-Urgencies (FCFSwU)
heuristic which, according to our expert panel, is the back-
bone of most ED scheduling decisions, including those at
Rambam hospital. FCFSwU works as follows: patients of
severity levels 3-5 are treated as a single “non-urgent” type
and are admitted in a first-come-first-served fashion to a
caregiver who specializes in the relevant injury type or to
a caregiver with no specialty. Specifically, a patient would
not be assigned to a specialist who specialized in a differ-
ent injury type. Patients of severity levels 1 or 2 are treated
as a single “urgent” type and, upon arrival, the most senior
specialized caregiver who is not already treating another ur-
gent patient is called (or interrupted) in order to provide the
needed treatment.

Results
We evaluate both the LBSN and LBSH against the FCF-
SwU heuristic on a series of 100 eight-hour scheduling in-
stances sampled according to the parameters discussed ear-
lier. Both approaches were evaluated using the expert panel
objective function available in our code.

Interestingly, for all 100 sampled instances, the LBS ap-
proach brings about a better scheduling performance com-
pared to the FCFSwU heuristic. The difference is statisti-
cally significant, for both the normal and heavy patient flow
conditions, using paired samples t-test, p < 0.05.

We further evaluate the results based on the five major ED
objectives. We encounter the following results:

1. Risk of Adverse Consequences: the average risk of adverse
consequences is reduced by 10% (normal flow) and 15%
(heavy flow) compared to FCFSwU.

2. Wait times: the average wait time was slightly reduced by
an average of 20 seconds per patient, across both patient
flow conditions, compared to FCFSwU.

3. Length of stay: the average length of stay was reduced
by 5% (normal flow) and 11% (heavy flow) compared to
FCFSwU.

4. Crowdedness: no significant differences.
5. Interruptions: the most prominent difference was mea-

sured in the number and cost of preemptions. Specifically,
a treatment is approximately 10 times more likely to be
interrupted using the FCFSwU compared to LBS. By
weighting the interruptions by their associated penalties,
we see a penalty that is 20 times higher per shift.

Table 3 summarizes the results.

Criteria Normal Load Heavy Load
Risk 10% 15%
Wait times marginal marginal
Length of stay 5% 11%
Crowdedness - -
Interruptions 95% 90%

Table 3: Marginal improvement of the LBS approach com-
pared to FCFSwU.

Contrary to what the authors initially expected, there is no
apparent trade-off between the LBS approach and the FCF-
SwU heuristic. Specifically, based on the results, the use of
LBS improved 4 out of the 5 performance metrics while hav-
ing no impact on the fifth. It is important to note that the
crowdedness measure was assigned a very low priority by
the expert panel, possibly explaining this result.

Discussion
The results for Rambam hospital indicate that the use of the
LBS approach encompasses significant benefits compared to
the common practice. Specifically, by leveraging real-world
data and an explicitly defined ED objective, the LBS ap-
proach brings about a better suited scheduling policy to the
ED environment.

By explicitly considering the ED-specific objective and
characteristics (e.g., patient flow, available caregivers), the
LBS further allows stakeholders to experiment and inves-
tigate different patient flows, capacity planning, room and
staff shortages, etc. which are at the core of ED research and
practice (Saghafian, Austin, and Traub 2015). These may



also include “softer” objectives (not usually specified by
medical metrics) such as the fairness of a caregiver’s work-
load. Such an investigation could be accomplished by simply
changing the modular functions and constants of our model
and re-running the process described in Algorithm 1.

However, when presenting a new approach, such as the
LBS, it is worth discussing limitations. First, the results
demonstrate an interesting trade-off between scheduling
quality and development time. While the LBS allows for
better scheduling performance, arriving at the LBS policy
requires the construction of the scheduling instances, solv-
ing them and training a DNN, which in turn takes signif-
icantly more time compared to the easy-to-deploy heuristic
commonly applied today. It is important to note that the LBS
training is performed offline, thus in deployment of the re-
sulting policy, no runtime differences are encountered. Sec-
ond, deploying an automated scheduling policy such as the
one proposed in this study may encounter deployment chal-
lenges or even resistance from the medical staff. We plan
to focus on translating the LBS approach into a real-world
application in future work.

It is important to note that the evidence that the ED pa-
tient arrival process can be modeled (e.g (Whitt and Zhang
2017)) provides an assurance that a scheduling policy can be
derived - but the model itself is not constructive. Namely, the
model cannot be directly mapped to a scheduling policy. In
this study we adopted a machine-learning approach to tackle
this challenge.

Related Notions in Scheduling
The patient-caregiver scheduling problem can be seen as a
special type of Job Shop Scheduling (JSS), which is a fun-
damental problem in computer science and operations re-
search (Pinedo 2015). The scheduling of jobs to machines
in JSS is analogous to the allocation of patients to caregivers
in the ED setting. However, the unique characteristics of the
ED environment, such as the complex and partially conflict-
ing objectives of the ED and the heterogeneous patients and
caregivers available, push us to address a novel version of
the JSS problem, most relevant for medical scheduling.

In JSS, considering the value of completing a job is usu-
ally much simpler than in the ED environment. For example,
Zheng and Shroff (2016) address the scheduling of com-
puter jobs to a cloud cluster in a setting where tasks ar-
rive online but give some partial value for partial execu-
tion. Naturally, in the ED setting, all patients must be fully
treated and therefore we do not allow for partial treatment,
except for the preemption case which only occurs in ex-
treme cases. The notion of preemption was also investi-
gated in Doucette et al. (2016), addressing the assignment
of tasks to agents in an online fashion. Neither of the above
studies addresses the possible differences in valuation and
the completion rate between the agents/machines in con-
trast to how our model is capable of differing between care-
givers (i.e., seniority and specialty). From a machine learn-
ing perspective, task scheduling using classification was re-
cently investigated (e.g., (Tripathy, Dash, and Padhy 2015;
Panda, Mohapatra, and Panigrahi 2015)). Most work in this

realm focuses on the offline scheduling of tasks with depen-
dencies (e.g., temporal dependencies) and deadlines, while
we focus on the online scheduling of independent tasks (pa-
tients) where there is no strict deadline but rather a desired
upper bound on the patient’s waiting time. More relevant to
this work is (Gombolay et al. 2016) which takes a Learn-
ing from Demonstration (LfD) approach—that is, learn-
ing human-quality heuristics based on demonstrations—to
a scheduling problem without varying values for tasks. Sim-
ilar to our proposed approach, the authors use a pairwise
ranking function, however, while the authors try to mimic
a human-quality scheduling policy, we follow optimal so-
lutions, thereby overcoming the inherent suboptimality of
existing human-generated ED policies.

From the medical scheduling perspective, a few works
have addressed patient scheduling concerns. Notably, Peretz
et al. (2013) focus on the nuclear medicine domain, and
take a two-stage stochastic integer programming approach
to scheduling patients that require multi-step tests, e.g., a pa-
tient arrives with three tests to be performed that have to be
performed sequentially, with the restriction that any individ-
ual task cannot be paused once it has begun. In the proposed
model, once a patient’s tasks are scheduled (in the future),
they cannot be changed or interrupted, a constraint we do not
have in the ED setting. There are also various techniques for
scheduling a caregiver to shifts under different constraints
(Erhard et al. 2017). To the best of our knowledge, none have
addressed the patient-caregiver scheduling problem to date.

Conclusions
This paper introduces a novel framework and solution for the
patient-caregiver scheduling problem in EDs. First, based on
existing literature, real-world data and 4 medical experts (in-
cluding an ED director), we model the ED workflow, charac-
teristics and objectives in terms of a new online scheduling
problem. Next, we propose the Learning-Based Scheduling
(LBS) approach, which leverages optimal offline solutions
to sampled scheduling instances, in order to learn an efficient
online scheduling policy. In an extensive empirical evalua-
tion, we demonstrate the benefits of the LBS approach com-
pared to existing ED practices. All code and data used in this
work are available in https://goo.gl/rXaBRh.

We plan to extend this work in two main directions: First,
since many hospitals also operate as training centers, there
may also be an added value for assigning multiple caregivers
of different seniority to treat the same patient. Therefore, we
plan to extend our model to incorporate these complex allo-
cation objectives. Second, additional medical environments
such as the online assignment of scans to radiologists will
be investigated.

We hope that this study will encourage other researchers
to tackle the important and challenging task of promoting
quality and timely medical care.
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