
NegoChat: A Chat-Based Negotiation Agent∗

Avi Rosenfeld
Dept. of Industrial Engineering

Jerusalem College of
Technology

Jerusalem, Israel
rosenfa@jct.ac.il

Inon Zuckerman
Dept. of Industrial Engineering

and Management
Ariel University

Ariel, Israel
inonzu@ariel.ac.il

Erel Segal-Halevi, Osnat
Drein, Sarit Kraus

Dept. of Computer Science
Bar-Ilan University
Ramat-Gan, Israel

erelsgl@gmail.com,
osnatairy@gmail.com,

sarit@cs.biu.ac.il

ABSTRACT
To date, a variety of automated negotiation agents have been cre-
ated. While each of these agents has been shown to be effective
in negotiating with people in specific environments, they lack natu-
ral language processing support required to enable real-world types
of interactions. In this paper we present NegoChat, the first nego-
tiation agent that successfully addresses this limitation. NegoChat
contains several significant research contributions. First, we found
that simply modifying existing agents to include an NLP module
is insufficient to create these agents. Instead, the agents’ strate-
gies must be modified to address partial agreements and issue-by-
issue interactions. Second, we present NegoChat’s negotiation al-
gorithm. This algorithm is based on bounded rationality, and specif-
ically Aspiration Adaptation Theory (AAT). As per AAT, issues
are addressed based on people’s typical urgency, or order of impor-
tance. If an agreement cannot be reached based on the value the
human partner demands, the agent retreats, or downwardly lowers
the value of previously agreed upon issues so that a “good enough”
agreement can be reached on all issues. This incremental approach
is fundamentally different from all other negotiation agents, includ-
ing the state-of-the-art KBAgent. Finally, we present a rigorous
evaluation of NegoChat, showing its effectiveness.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Human Factors; Experimentation; Performance

Keywords
Human-Agent Systems; Negotiation; Chat Agent

1. INTRODUCTION
Negotiation is a basic task that forms a basic element in our

daily lives. We often find ourselves in important situations, whether
∗This work was supported in part by ERC grant #267523, ARO
grants W911NF0910206, W911NF1110344 and U.S. Army Re-
search Lab and Research Office MURI grant number W911NF-08-
1-0144. Sarit Kraus is also affiliated with UMIACS.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

simple or complex, that require negotiations. Most negotiations are
mundane, such as haggling over a price in the market, deciding on
a meeting time, or even convincing our children to eat their vegeta-
bles. However, they can also have colossal effects on the lives of
millions, such as negotiations involving inter-country disputes and
nuclear disarmament [8].

To date, a variety of agents have been created to negotiate with
people within a large spectrum of settings including: the number
of parties, the number of interactions, and the number of issues
to be negotiated [3, 9, 12, 11, 14]. As the next section details,
two key common elements exist throughout all of these previous
agents. First, these agents are all based on the assumption that the
human negotiators use bounded rationality. People did not success-
fully reach agreements with agents based on notions of equilibrium
or optimal methods, and thus alternatives needed to be found for
all agents [11]. Second, all agents needed mechanisms for dealing
with incomplete information. This is typically done through reason-
ing about the negotiating partners by learning their preferences and
strategies [15]. Unfortunately, Natural Language Processing (NLP)
abilities are lacking from current state-of-the-art negotiation agents
– something that has been previously noted [11]. This inherent lim-
itation requires these agents to “force” their human counterparts to
interact via menus or other non-natural interfaces.

This paper presents NegoChat, an agent that contains the fol-
lowing three key contributions: First, NegoChat successfully incre-
mentally builds agreements with people, something current auto-
mated negotiators do not do. Second, NegoChat integrates natural
language into its agent, allowing people to practice his or her ne-
gotiation skills from anywhere, without installing any complicated
software. Third, Negochat performs better than the current state-
of-the art agent, achieving better agreements in less time. Users are
also happier with NegoChat and think the agent is fairer.

This paper is structured as follows. We first provide background
of previous automated negotiation agents and their limitations in
Section 2. We also present an overview of Aspiration Adaptation
Theory (AAT) [17] upon which several key elements of NegoChat
are built. Section 3 presents an overview of the negotiation domain
and the KBAgent [14]. NegoChat also integrates key elements of
this state-of-the-art agent, but as Section 4 describes its negoti-
ation algorithm builds agreements incrementally based on AAT.
Section 5 presents how NegoChat generates and responds to nat-
ural language, allowing people to practice negotiation in this more
intuitive format. Section 6 explores the strengths and weaknesses
of NegoChat, including results supporting that it achieves signifi-
cantly better agreements in less time than the current state-of-the-
art KBAgent. Section 7 concludes and provides future directions.



2. RELATED WORK
This paper’s main contribution lies in describing NegoChat, what

we believe is the first negotiation agent successfully developed to
use a natural chat interface while considering its impact on the
agent’s negotiation strategy. Extensive studies in the field of Human
Computer Interactions (HCI) have noted that the goal of any system
should be an intuitive interface with the stress being put on creating
agents which operate in environments which are as real and natural
as possible [6, 7]. Thus, following these approaches, it is critical
to develop natural language support for negotiation agents to allow
for these types of “normal” interactions [10]. This form of typing
as natural interaction is referred to as Natural-Language Interaction
(NLI) in the literature. There have been numerous informal tests of
NLI systems, but few controlled experimental comparisons against
some other design [18].

Automated Negotiation Agents
While automated negotiation agents have been developed for quite
some time, even state-of-the-art negotiation agents unfortunately
do not yet consider how natural language impacts the agent’s strat-
egy. Examples include Byde et al.’s AutONA automated negotiation
agent [3]. Their problem domain involves multiple negotiations be-
tween buyers and sellers over the price and quantity of a given prod-
uct. Jonker et al. [9] created an agent to handle multi-attribute ne-
gotiations which involve incomplete information. However, none
of these agents support NLI, and a different interface might pro-
foundly impact performance. In contrast, Traumet et al. [21] pre-
sented a model of conversation strategies which they implemented
in a virtual human to help people learn negotiation skills. Their vir-
tual human can negotiate in complex adversarial negotiation with
a human trainee. Their main effort was toward the Dialogue Man-
ager (DM) module and the virtual character module. Their strategy
module used rule-based strategies. In contrast, we focus less on the
DM and do not create a virtual character. However, we do study
how the agent’s strategy must be modified to incorporate NLP, and
conduct an exhaustive experimental study how the strategy we de-
velop is better than the state-of-the-art. As their focus in not on the
agent’s strategy, they do not report such a test. Another advantage
of our agent is its ability to be used by anyone that wants to prac-
tice her negotiation skills, from anywhere, without installing any
complicated software.

The QOAgent [12] is a domain independent agent that can nego-
tiate with people in environments of finite horizon bilateral negoti-
ations with incomplete information. The negotiations consider a fi-
nite set of multi-attribute issues and time-constraints. The KBAgent
currently represents the state-of-the-art automated negotiation agent.
It also considers negotiations with a finite set of multi-attribute is-
sues and time-constraints, and has been shown to be the most effec-
tive agent in achieving agreements with people in several domains
involving multiple attributes [14]. As NegoChat is built on several
elements of this agent, we provide an overview of how it operates,
including how it learns from previous data and how it decides if it
should accept proposals.

Please note that multi-attribute negotiation continues to be an im-
portant research challenge, with one active research avenue being
the ANAC (Automated Negotiating Agents Competition) Work-
shop. However, please note that even to date, this competition fo-
cuses on agent-agent interactions and the interface supports only
menu-based interactions between agents and people. Much research
within this field studies exclusively agent to agent negotiations.

It was previously shown [23] that existing negotiation algorithms
must be modified to support robust real-world interfaces with peo-
ple, such as chat. Specifically, it was shown that simply adding

chat support to the current state-of-the-art KBAgent was not effec-
tive. To address this limitation, we study what logical extensions
are needed, if any, to make existing negotiation agents suitable
for natural language. Previously economic and behavior research
into people’s negotiation would suggest that the current agent ap-
proach of attempting an agreement on all issues simultaneously will
not be effective. For example, Bac and Raff [1] found that simul-
taneously negotiating a complete package might be too complex
for individual buyers. Furthermore they show that, in the context
of incomplete information with time discount, the more informed
player (“strong” in their terminology) will push towards issue-by-
issue negotiation. Busch and Horstmann [2] found that some people
might like to decide all issues at once, while others prefer to de-
cide one by one. Chen [5] studied issue-by-issue negotiation with
opt-out factor, and argues that when the opt-out probability is low,
agent prefer to negotiate a complete package because intuitively
we know that the negotiations can last long enough so that agents
can get to a “win-win” situation. However, with high opt-out prob-
ability, agents prefer issue-by-issue negotiation. Sofer et al. have
shown that an alternative negotiation scheme which takes an issue-
by-issue approach can theoretically form the best protocol within
two self-interested rational agents [20]. Thus, one key contribution
of this paper is its study as to how people react to agents that do not
propose issue-by-issue agreements.

Aspiration Adaptation Theory
Given the realization that people prefer to negotiate issue-by-issue,
we present NegoChat, a negotiation algorithm that successfully does
this. NegoChat is built upon Aspiration Adaptation Theory (AAT)
[17]. Following our previous work, we found that people use key
elements from AAT in their negotiations, even when optimal so-
lutions, machine learning techniques for solving multiple parame-
ters, or bounded techniques other than AAT could have been im-
plemented [16]. The premise of AAT is that certain decisions, and
particularly our most complex decisions, are not readily modeled
based on standard utility theory. For example, assume you need to
relocate and choose a new house to live in. There are many factors
that you need to consider, such as the price of each possible house,
the distance from your work, the neighborhood and neighbors, and
the schools in the area. How do you decide which house to buy?
Theoretically, utility based models can be used. However, many of
us do not create rigid formulas involving numerical values to weigh
trade-offs between each of the search parameters. AAT is one way
to model this and other similar complex problems.

Despite its lack of utility to quantify rational behavior, AAT is
an approach by which bounded agents address a complex problem,
G. The complexity within G prevents the problem from being di-
rectly solved, and instead an agent creates m goal variables G1,
. . . , Gm as means for solving G. Agents decide how to set the goal
variables as follows: Them goal variables are sorted in order of pri-
ority, or the variables’ urgency. Accordingly, the order of G1, . . . ,
Gm refers to goals’ urgency, or the priority by which a solution for
the goal variables should be attempted. Each of the goal variables
has a desired value, or its aspiration level, that the agent sets for
the current period. Note that the agent may consider the variable
“solved” even if it finds a sub-optimal, but yet sufficiently desired
value. The agent’s search starts with an initial aspiration level and
is governed by its local procedural preferences. The local proce-
dural preferences prescribe which aspiration level is most urgently
adapted upward if possible, second most urgently adapted upward
if possible, etc., and which partial aspiration level is retreated from
or adapted downward if the current aspiration level is not feasible.
Here, all variables except for the goal variable being addressed are



assigned values based on ceteris paribus, or all other goals being
equal, a better value is preferred to a worse one.

For example, referring to the above example of searching for a
new home, one would like find the biggest home, for the cheap-
est price, in the best location. However, if this is found to not be
possible, the agent may retreat from, or settle on some of its goals,
say by selecting a smaller home, yet satisfy the other goals, such
as the home’s price and location. AAT provides a framework for
quantifying this process. Accordingly, a person might form an ur-
gency of the house’s price as being the most important goal vari-
able, its size as being the second most important variable, and its
location between the third most important variable. Agents, includ-
ing people, create an aspiration level for what constitutes a “good
enough” value for these variables. Borrowing from Simon’s termi-
nology [19] there is only an attempt to “satisfice” the goal values,
or achieve “good enough” values for these values instead of try-
ing to optimize or truly solve them. If it is not possible to achieve
all aspirations, the original values will need to be reexamined, or
retreated from. Thus, the agent may retreat, or reconsider raising
the budget they allocated for buying their house, the size they are
willing to settle on, or its location. We now describe NegoChat’s
negotiation algorithm, and specify how AAT is used.

3. THE NEGOTIATION DOMAIN
The negotiation environment we consider can be formally de-

scribed as follows: We study bilateral negotiation in which two
agents negotiate to reach an agreement on conflicting issues. The
negotiation can end either when (a) the negotiators reach a full or
partial agreement, (b) one of the agents opts out (denoted asOPT ),
thus forcing the termination of the negotiation with a predefined
opt-out outcome, or (c) a time limit is reached, that results in a pre-
defined status-quo outcome (denoted as SQ).

The negotiations resolve around multi-attribute characteristics.
There is a set of n issues, denoted as I , and a finite set of values,
domain(i) for each issue i ∈ I . An agreement is denoted as α ∈
O, and O is a finite set of values for all issues. The negotiations
are sensitive to the negotiation time that impacts the benefits of
the negotiating parties. Formally, we define the negotiation rounds
Rounds = {0, ..., dl}, where dl is the deadline limit and typically
use R to denote the current round. The time duration of each round
is fixed and known to both negotiators. Each agent is assigned a
time cost which influences its benefits as time passes. The time
effect may be negative or positive.

The negotiation protocol is fully flexible. As long as the negotia-
tion has not yet ended, each side can propose a possible agreement,
reject a previously offered agreement, opt-out of the negotiation, or
communicate a threat, promise, or any general remark. In contrast
to the model of alternating offers [13], each agent can perform up
to M > 0 interactions with the opponent agent in each round.

Last, we consider environments with incomplete information.
That is, agents are not fully aware of the scoring structure of their
opponents. We assume that there is a finite set of scoring struc-
tures which will be referred to as agent types. For example, one
type might model a long term orientation regarding the final agree-
ment, while another might model a more constrained orientation.
Formally, we denote the possible types of the agents Types =
{1, ..., k}. Given l ∈ Types, we refer to the scoring of the agent of
type l as Sl, and Sl : {O ∪ {SQ} ∪ {OPT}} × Rounds → R.
Each agent is fully aware of its own scoring function, but it does
not know the exact type of its negotiating partner.

The KBAgent
The state-of-the-art automated negotiator for the above environ-

ment is the KBAgent [14]. It has been shown that the KBAgent ne-
gotiates efficiently with people and achieves better utility values
than other automated negotiators. Moreover, the KBAgent achieves
significantly better agreements, in terms of individual score, than
the human counterparts playing the same role.

The main difference between the KBAgent and other agents is its
inherent design, which builds a general opponent model. KBAgent
utilizes past negotiation sessions of other agents as a knowledge
base for the extraction of the likelihood of acceptance and offers
which will be proposed by the other party. That data is used to de-
termine which offers to propose and what offers to accept. One
of its main advantages is that it can also work well with small
databases of training data from previous negotiation sessions.

In order to generate an offer, the KBAgent creates a list ordered
by the QOValue, which is an alternative to the Nash bargaining so-
lution (see [12] for the exact definition). KBAgent first proposes the
offer with the maximal QOValue. The subsequent offers are picked
from the ordered list based on the concession rate the KBAgent ap-
plies and are chosen with a decreasing QOValue for the agent and
an increasing utility value for the other party. To decide which of-
fers to accept, the KBAgent determines a time dependent threshold
to decide whether to accept or reject an offer. In order to decide on
the optimal threshold, the probabilities learned from the database
of past negotiations are used. The time dependent thresholds may
depend on the KBAgent belief on its opponent’s type. For space rea-
sons we do not get into it in this paper, but see [14] for additional
discussion. Given these thresholds, the KBAgent generates a list of
concession offers to be made for every round of the negotiation.
The concessions offers that are generated change with regard to the
round number as the agent is more willing to reach less beneficial
agreements as the round increases. There are two disadvantages to
this approach. First, the KBAgent only proposes one concession
offer per round, and if this offer is rejected, it does not attempt to
generate a similar offer during the current round. For the domain
they studied, this round was 2 minutes, which we found constituted
lost opportunities to reach agreements. Thus, if the other side re-
jects the one offer the KBAgent provides during a given round, an
agreement can only be reached if the other side takes the initia-
tive to offer an alternate above the learned threshold. Second, the
KBAgent never offers partial offers. We found this was a disadvan-
tage as people found it difficult only to receive full offers.

4. THE NEGOTIATION ALGORITHM
The goal of the NegoChat agent is to reach an agreement, α, that

maximizes its own score. Following AAT terminology, NegoChat
creates n goal variables, G1, . . . , Gn, one for each issue in the
negotiation issues set I . For each goal variable Gk we associate
domain values domain(Gk) setting it to domain(k). We use Vk

to denote a value in domain(Gk), αk to denote the value of Gk

according to α and S(α,R) to denote the agent’s score from α at
round R.

Each value V1, . . . , Vn is originally initialized to NULL to repre-
sent that no agreement initially exists on the values within Gk. As
the two sides negotiate, values from V1, . . . , Vn become non-null.
An offer is defined as a full offer if it has values for V1, . . . , Vn.
An offer is a partial offer if V1, . . . , Vn contains between 1 and n
-1 non-null values. We assume that an agreement must have non-
null values for all values, V1, . . . , Vn. Note that while the agent’s
goal is to maximize its own score, an agreement will likely only
be achieved through compromise with the person it is negotiating
with as the person is self-interested and also wishes to maximize
the score of her offer.

As per AAT, G1, . . . , Gn, are ordered by their aspiration scale,



whereby the n issues that need to be negotiated are ordered by how
important these issues are to agent. This ordering is pushed onto a
stack, A, where the most aspired for issue (Gk) is at the top of the
stack, the second most aspired for issue is the second position from
the top, etc. In our approach, we choose this ordering based on pre-
vious historical data of what issues were typically discussed first,
second, third, etc. However, if the aspiration scale is not known, the
agent randomly chooses an aspiration scale.

Throughout the course of the negotiation process, the agent must
generate offers and decide how to respond to offers. In both cases,
as the agent and the person agree upon a value Vk, it pushes this
value onto a stack B. In generating offers, the agent pops the last
value from A to determine which goal variable Gk should be dis-
cussed next. An agreement is reached when A is empty as this indi-
cates that no more issues need to be discussed. The agent must then
search for an offer Vk, which represents a proposed value for Gk.
Note that in this approach, only partial offers are given, as Vk is
only one value. The search for Vk is executed as follows: Given the
existing non-null values for V1, . . ., Vn, search for highest value
for Gk within the search cluster, a concept that is based on the
KBAgent’s concession list [14].

While the output of the KBAgent’s learning process is an ordered
concession list that should be used during the negotiation session,
the list itself contains only full offers, one for each round, with
gradually decreasing QOValues. As NegoChat can make conces-
sions of partial offers we define a search cluster based on all possi-
ble full offers within an epsilon deviance for the QOValue for this
round that yields an equal or higher score to the agent. In particular,
given the KBagent’s offer for round R, αR, we define the search
cluster, SC(R) for round R as all offers which provide NegoChat
a score of at least S(αR, R) but still yield its opponent a score not
lower than Sopponent(αR, R)− ε.

Algorithm 1 NegoChat
1: Create stacks A and B, A← aspiration scale, B← ∅
2: while R <= DEADLINE do
3: SC← SearchCluster(R)
4: while NOT(AGREEMENT) do
5: if AGREEMENT OR OPT-OUT then
6: EXIT
7: if Received-Offer(Vk1 , . . ., Vkm ) then
8: HandleOffer(Vk1 , . . ., Vkm )
9: else

10: ProposeOffer(1, Top(A))

We present three algorithms that comprise NegoChat’s strategy,
which we now explain in greater detail. Algorithm 1 provides the
base of the agent, and controls how the agent handles offers it re-
ceives and generates offers. This is done by keeping two stacks, A
and B. Stack A contains the aspiration scale ofG1, . . . ,Gn and rep-
resents the order by which the agent should negotiate issues. Stack
B is initially set to be empty and represents issues that have been
resolved (line 1). The remainder of the agent (lines 2–10) controls
the timing of the agent and how it creates and responds to offers.
While the negotiation deadline has not been reached, the agent first
creates SC, its search cluster. Every round, the agent recalculates
the same search cluster until the negotiation deadline is reached
(lines 2 or 3). This loop is terminated before this point, either by
the sides reaching an agreement or the other side opting out (lines
4-6). As our agent never opts out, this can only happen from the
person’s initiative. As opposed to automated agents which can eas-
ily handle thousands if not millions of request every time negotia-
tion round, we found by trial-and-error that people do not appreci-

ate more than 1 offer more than every 25 seconds. Thus, while the
agent might immediately propose an offer for the most aspirated for
goal value (line 10), it will wait for counter-offers or other propos-
als for another 25 seconds. During this time, Algorithm 2 handles
these offers (lines 7–8).

Algorithm 2 HandleOffer(Vk1 , . . ., Vkm )
1: if ∃ (α ∈ SC s.t. ∀ki, αki = Vki AND ∀Vi ∈ B, αi = Vi)

then
2: Send-Accept(Vk1 , . . ., Vkm )
3: Push(Vk1 , . . ., Vkm , B)
4: Remove(Gk1 , . . ., Gkm , A)
5: else
6: Send-Reject(Vk1 , . . ., Vkm )
7: ProposeOffer(m, Gk1 , . . . , Gkm)

Algorithm 2 receives as its input an offer α for m goals variables,
G1, . . . , Gm, which have the corresponding values Vk1 , . . ., Vkm .
Note that m can be the trivial case of 1 issue or n representing all
issues. Assuming that every value for every goal issue is contained
within the search cluster (line 1), this is an acceptable offer, and the
agent responds with an accept message. The NLP module described
in the next section is responsible for generating a natural language
response. Once an agreement is reached, the agreed upon values,
Vk1 , . . ., Vkm , are added to the stack B (line 3), and the agreed
upon issues, Gk1 , . . ., Gkm are removed from stack A (line 4).

Algorithm 3 ProposeOffer(m, Gk1 , . . . , Gkm )
1: if SC 6= ∅ then
2: α← argmax {S(α′, R)} | α′ ∈ SC, ∀Vi ∈ B, αi = Vi}
3: if α 6= NULL then
4: Send-Offer(αk1 , . . . , αkm )
5: if Received-Accept(αk1 , . . . , αkm ) then
6: Push(αk1 , . . . , αkm , B)
7: Remove(Gk1 , . . . , Gkm , A)
8: if Received-Reject(αk1 , . . . , αkm ) then
9: SC = SC \ {α′ ∈ SC | ∀ki α′ki

=αki AND ∀Vi ∈ B, αi

= Vi}
10: else
11: Vlast← Pop(B)
12: Push(Glast, A)

Algorithm 3 creates the agent’s offers. Note that when this algo-
rithm is typically called by the agent (line 8 of Algorithm 1), it only
proposes one issue at time (m = 1). The agent will only propose
offers with multiple issues in response to the person’s offer (line 7
of Algorithm 2). In either case, assuming an offer can be found (line
3), then the proposal is sent as natural language (line 4). Specifics
of this module are again described in the next section. Assuming
this search cluster is empty, there is nothing for the agent to do,
except wait for the next time R, during which the search cluster
will be recalculated. Assuming the search cluster contains differ-
ent possibilities, it offers the agreement with the highest score from
within the search cluster. If this offer is accepted, the agent adds
these values to B (line 6) and removes these issues from A (line
7). Otherwise, the agent removes all offers with this value (line 9).
For example, again assume you wish to buy a house and are in
negotiations to purchase a specific house. Your goal variables are:
price, payment schedule and occupancy date, and your agent offers
a price of 200,000 Euro for a house. If the other side rejects your
offer, the agent assumes that all agreements with the same price
will also be rejected. Thus, it removes these similar agreements



from the search cluster (line 9). If in another example, if you al-
ready agreed on the price of 180,000 EURO and your agent offered
the seller a payment plan with 4 payments over the next 4 months,
and the offer was rejected, NegoChat will remove from the search
clusters only the agreements that includes both the price of 180,000
and 4 payments. Next, NegoChat will look for a different payment
schedule to offer consistent with 180,000 EURO (back at line 2). If
there is no additional agreement in the search cluster that includes
180,000 EURO for the price, it will revisit the last agreed upon is-
sue (line 11) and then explore it again as the next issue to pursue
(line 12). Referring back to our example, if the person accepted a
bid of 180,000 Euro for a house and with this price the agent agrees
to a payment plan with 4 payments, once the offer of 4 payments is
rejected, NegoChat will renegotiate the price.

5. NEGOCHAT’S NATURAL LANGUAGE
Our natural language system has a standard dialog system ar-

chitecture, described in Figure 1. We illustrate the system with a
running example from our experimental domain, where the human
is an employer and the agent is a job-candidate, and they negotiate
over the candidate’s job conditions (described further in the next
section). Nonetheless, the system itself is general and can be ap-
plied to support chat in any system.

The natural language system is composed of several components.
The Natural Language Understander (NLU) translates the hu-
man sentences from natural language to a set of dialog acts that
represents the user intentions. We represent our dialog acts in the
standard JSON format (www.json.org).For example, the human ut-
terance “I accept your salary offer, but only if you work for 10
hours”, is translated to a set of two dialog acts: [[{Accept:Salary},
{Offer:{Hours:10}}]]. The NLU is described in detail in Subsec-
tions 5.1 and 5.2.

The Dialog Manager (DM) has several responsibilities: First, it
interprets the human dialog acts based on the current dialog state.
For example, it interpretes the dialog act {Accept:Salary} based on
the salary value in the most recent offer made by the agent, and
converts it to an explicit Offer. Second, it responds to human dialog
acts that are not directly related to negotiation, such as greetings
and questions. Third, it notifies the agent when the human dialog
acts are related to negotiation. For example, if one of the human’s
dialog acts in an offer, then the DM sends a “Received-Offer” noti-
fication (see Algorithm 1), and if the human has accepted a full of-
fer, the DM sends a “Received-Accept” notification (see Algorithm
3). Fourth, it controls the timing of conversation. For example, if the
human hasn’t done anything in a pre-specified time interval (e.g. 25
seconds), then the DM asks the agent to make an action, e.g., repeat
the previous offer or make a new offer. Fifth, it receives commands
from the agent, and translates them to dialog acts. For example, if
the agent issues a Send-Reject command (from Algorithm 2), then
the DM creates the dialog act {Reject:previous}. Finally, it com-
bines several dialog acts to a single set. For example, if the agent
issues a Send-Reject command, and shortly after that, a Send-Offer
command (from Algorithm 3), then the DM creates a set with two
dialog acts [{Reject:previous}, {Offer:...}].

The Natural Language Generator (NLG) translates the set of
dialog acts, created by the DM, to a single natural language sen-
tence, that is sent to the human. Our NLG works in cooperation
with our NLU in order to create human-like sentences, as we de-
scribe in detail in Subsection 5.3.

5.1 Natural Language Understander (NLU)
Our NLU component is a multi-label classifier (MLC) - a clas-

sifier that returns a set of zero or more labels for each input sample.

Figure 1: Dialog System Architecture. Example starts at the
top-left corner.

The set of possible labels is the set of dialog acts recognized by our
DM, whose total number is 58. They have a hierarchical structure,
for example: {Offer:{Salary:20000}} and {Offer:{Hours:9}} are
two different dialog acts. The top level of the hierarchy contains
8 different labels: {Offer, Accept, Reject, Append, Insist, Query,
Quit, Greet}. In order to take advantage of the hierarchical struc-
ture of the dialog acts, we used the HOMER approach (Hierarchy
Of Multi-label classifiERs, [22]). In this approach, there is a differ-
ent MLC for each level of the hierarchy. The input sentence is first
sent to the top-level MLC, which returns a subset of the top-level
labels, e.g., {Offer, Query}. Then the sentence is sent in parallel to
all relevant second-level MLCs, e.g., the Offer MLC and the Query
MLC. The Offer MLC returns a set of second-level labels from
the set relevant to Offer (i.e. Salary, Hours, etc.), and the MLC for
Query returns a set of second-level labels from the set relevant to
Query. This process continues until the leaves of the hierarchy are
reached. Then, the replies of all MLCs are combined to produce the
final set of dialog acts.

For the MLCs in each node of the HOMER, we used the One-
versus-All approach: each MLC is a collection of binary classifiers,
one for each label. For each input sentence, it runs each binary clas-
sifier in turn, and returns the set of labels whose classifier returned
“true”. As the base binary classifier, we used Modified Balanced
Winnow [4] - a classifier that supports online training and real-time
classification. In preliminary experiments we tried several other
state-of-the-art MLCs, and several other binary classifiers, and the
configuration described here performed best.

An input sentence goes through several pre-processing compo-
nents before it arrives at the MLC. The normalizer converts num-
bers and other common phrases in the input sentence to canonical
format. The splitter splits the sentence around punctuation marks
and creates several sub-sentences. We found out that this simple
heuristic greatly improves the performance of the MLC. The fea-
ture extractor creates a feature vector from each sub-sentence. As
features, we use unigrams and bigrams (pairs of adjacent words).1

As feature values we use the standard TF/IDF metric. The resulting
feature vectors are the inputs to the MLC.

5.2 Development and Training
As a first step in adding natural language capabilities, we man-

ually wrote a single natural language sentence for each dialog act
supported by the agent. This facilitated the coordination between
the team working on the agent and the team tagging the training
data, and made sure they both understand the negotiation acts in
the same way. We also used these sentences as an initial training
set for the Multi-Label Classifier (MLC).

Using this initial NLU component, we let our agent speak with
students and Amazon Mechanical Turk workers. During these pre-
liminary experiments, one of the developers acted as a “Wizard-of-

1We tried more sophisticated features, such as pairs of non-adjacent
words, but this didn’t improve performance.



Oz”: through a web-based GUI, he viewed each set of dialog acts
produced by the NLU component, and could edit it before it is sent
to the DM. He could also immediately train the classifier with each
new sentence, thanks to its fast training abilities. During the on-
line learning process, the sentence-level accuracy of the NLU com-
ponenet improved from 18% (with only the initial 58 manually-
written sentences) to 72% (with 775 tagged sentences).2

5.3 Natural Language Generator (NLG)
The NLG takes as input a set of dialog acts produced by the DM,

and returns a natural language sentence that is sent to the human.
Usually, NLGs are based on manually-written templates. In con-
trast, our NLG uses the NLU’s training data in the reverse direction.
For each dialog act, the NLG asks the NLU for a sentence tagged
with exactly this dialog act, and combines the received sentences
to a single output sentence. This approach has several advantages,
which we exemplify with several actual examples from our experi-
ments: First, the agent’s replies are versatile, even when the strategy
demands that it repeats the same offer again and again. For exam-
ple: the agent says “I would like to work for 20,000”, and 25 sec-
onds later, “I need to make 20,000”. Second, the agent’s replies are
human-like. They even contain spelling and grammar mistakes that
occur naturally in chat conversations between humans. Third, some
of the agent’s replies contain reasoning and argumentation. For ex-
ample: “i would like a 20000 salary. this is mandatory to me to have
a good salary as i believe working conditions affect directly my ef-
fectiveness” (sic). Last, the agent continuously learns new ways to
express itself during the NLU’s online learning process.

6. EXPERIMENT DESIGN AND ANALYSIS
The main goal of this research was to push the envelope of auto-

mated negotiators research by moving from menu-driven interfaces
to chat based environments. As this work transitions from the fruit-
ful work of previously developed agents, we intentionally chose to
base ourselves on these agents and the complex environments they
had studied. Thus, we shied away from dealing with overly sim-
plified settings, such as those with full information, single issues,
or alternating turn based offers, and instead considered a complex
problem with partial information, multi-attribute negotiations, and
an unconstrained interaction protocol.

In order to properly evaluate the influence of natural language
input on automated negotiation agents, we picked the job candi-
date domain used in previous research [12, 14]. In this domain,
a negotiation takes place after a successful job interview between
an employer and a job candidate. In the negotiation both the em-
ployer and the job candidate wish to formalize the hiring terms and
conditions of the applicant. Below are the issues under negotiation:
[Salary]:This issue dictates the total net salary the applicant will
receive per month. The possible values are {7000, 12000, 20000}.
[Job description]:This issue describes the job description and re-
sponsibilities given to the job applicant. The possible values are
{QA, programmer, team manager, project manager}. [Social ben-
efits]:The social benefits are divided into two categories: company
car and the percentage of the salary allocated, by the employer,
to the candidate’s pension funds. The possible values for a com-
pany car are {leased car, no leased car, no agreement}. The possible
value for the percentage of the salary deposited in pension funds are
{0%, 10%, 20%, no agreement}. [Promotion possibilities]: This
2Sentence-level accuracy is the number of sentences whose classi-
fication was exactly correct (i.e. the set of dialog acts returned by
the MLC is identical to the correct set), divided by the total num-
ber of sentences. The 72% accuracy was calculated using 5-fold
cross-validation on the set of 775 tagged sentences.

Figure 2: The negotiation system’s interface.

issue describes the commitment by the employer regarding the fast
track for promotion for the job candidate. The possible values are
{fast promotion track (2 years), slow promotion track (4 years),
no agreement} [Working hours]: This issue describes the number
of working hours required by the employee per day (not including
over-time). The possible values are {8 hours, 9 hours, 10 hours}.

In this scenario, a total of 1296 possible agreements exist (3×4×
12× 3×3 = 1296). Each turn in the scenario equates to two min-
utes of the negotiation, and the negotiation is limited to 15 rounds of
2 minutes each (30 minutes total). If the sides do not reach an agree-
ment by the end of the allocated time, the job interview ends with
the candidate being hired with a standard contract, which cannot be
renegotiated during the first year. This outcome is modeled for both
agents as the status quo outcome. Each side can also opt-out of the
negotiation if it feels that the prospects of reaching an agreement
with the opponent are slim and it is impossible to negotiate any-
more. Opting out by the employer entails the postponement of the
project for which the candidate was interviewing, with the possible
prospect of its cancelation and a considerable amount of expenses.
Opting-out by the job candidate will make it very difficult for him
to find another job, as the employer will spread his/her negative im-
pression of the candidate to other CEOs of large companies. Time
also has an impact on the negotiation. As time advances the can-
didate’s score decreases, as the employer’s good impression has of
the job candidate decreases. The employer’s score also decreases as
the candidate becomes less motivated to work for the company. To
facilitate incomplete information there are 3 possible score struc-
tures for each side, which models a long term candidate, short term
candidate and compromising candidate.

6.1 Experiment design
For our experiment we developed a negotiation system with a

chat interface and natural language processing mechanism (see Fig-
ure 2). We have implemented both agents in this system: the cur-
rent state-of-the-art KBAgent and the newly developed NegoChat



agent.3 To decide upon the aspiration scale we first ran 16 trials
of two people negotiating with each other within the system (32
people total). We noted that on average people discussed issues in
the order of: Salary, Job Description, Pension, Working Hours, Car
Benefit, and Promotion Possibilities.

We then ran the agent with 46 human participants, most of whom
were university students in Israel. These students were motivated
through receiving bonus points to their course grade as a function
of their final score in the session. The groups were divided ran-
domly to play against either the KB or NegoChat agents and 27
participants played against the KBAgent and 19 against the Ne-
goChat agent. All people played the role of the employer, while the
agents played the role of the job candidate.

Before starting the negotiation task, the subjects were given a full
tutorial about the task at hand, the interface and the possible score
functions. A short test was issued to verify that the participants un-
derstood the instructions and task at hand. The participants did not
know any details regarding the automated agent with which they
were matched, or the fact that it was not a human player. The out-
come of each negotiation task was either reaching a full agreement,
opting out, or reaching the deadline.

In addition, following each session of the experiments for both
interfaces we conducted a post-experiment questionnaire to evalu-
ate the users’ satisfaction with both agents. This questionnaire had
participants answer the following questions using a scale of 1 (low-
est) to 5 (highest): How happy are you with the negotiation’s end
result? Do you consider the end result to be fair?

6.2 Experimental results

Figure 3: A summary of NegoChat vs. KBAgent results.

The main result, found in Figure 3, is that the NegoChat agent
significantly outperformed the state-of-the-art KBAgent. NegoChat
achieved on average significantly better scores (p-score 0.036 in a
two-tailed t-test, left side Y-axis) and reaches agreements in less
time (p-score 0.005 in a two-tailed t-test, right side Y-axis, less
time is better). However, in addition to the scores of the agreements
themselves, we also analyzed two additional factors, the score of all
outcomes including those cases when the person chose to opt-out
of the negotiation and the results of the post-experiment user eval-
uation, the results of which are found in Table 1.

Please note that the NegoChat algorithm does better than the
KBAgent in all categories that we analyzed. Since the results for
the agent scores including the opting out cases were not normally
distributed, here we performed the Mann-Whitney’s significance
test and still found a score 0.026 for single tailed test implying sig-
nificance. Not only does NegoChat reach better agreements, but it
still performs better when all outcomes are considered including
3A copy of the KBAgent and NegoChat agents are found at:
http://u.cs.biu.ac.il:5555/demo.

those when the person opted-out. Similarly, people felt that the Ne-
goChat agent was fairer and were happier with the overall agent.
We attribute these results to the more intuitive chat interface and
its ability to handle partial offers. We posit that NegoChat’s more
natural interface made its results seem superior, even to people who
had no means of comparison with other agents’ performance. Addi-
tionally, while negotiation is primarily a zero-sum interaction, we
found that while subjects’ score was lower when interacting with
NegoChat than when negotiating with the KBAgent, NegoChat’s
agreements had a higher social welfare than that of the KBAgent.

We then proceeded to evaluate the NegoChat’s NLU (see Sec-
tion 5.1). To evaluate this component, we employed a human ex-
pert that tagged each human sentence from our experiments with
its correct set of dialog acts. We then compared the correct set to
the set returned by the NLU during the experiments, and calculated
the sentence-level accuracy. Some sentences could not have been
translated correctly, because they are out-of-domain - their correct
meaning is currently not handled by the agent, for example: “What
is your work experience?” or “If you will be good you will get bet-
ter conditions”. For each of the two agents, we calculated two ac-
curacy figures: one for only those sentences that could be handled
("In domain"), and once for the entire set of sentences ("All").

Table 2 summarizes the results of this analysis. As expected, the
KBAgent required less interaction from the user, as it only works
with full offers, full accepts or full rejects. In contrast, NegoChat
also adds counter-offers to rejections, accepts partial offers and sug-
gests new issues to discuss, making its language richer. KBAgent
typically elicited a smaller range of language, resulting in a smaller
average number of utterances in this group (11.3 vs. 28.42 for in-
domain utterances, 12.48 vs. 30 overall). The NLU unit was more
accurate in the KBAgent games (by either 8 or 4 percent), because
of the more limited type of language used by the average partici-
pant. These results highlight the centrality of NegoChat’s success.
Not only did this agent perform better in all categories, but it did so
despite a less accurate NLU unit, something that inherently should
have hurt its performance.

Table 2: The NLU sentence-level accuracy (#correct/#all) in
KBAgent games vs. NegoChat games

Agent Average #instances Accuracy
In domain: KB 11.3 195/305=64%

NegoChat 28.42 305/540=56%
All: KB 12.48 195/337=58%

NegoChat 30 305/570=54%

To further analyze the impact of the NLU in general, we studied
how the KBAgent’s performance was impacted by its NLU. To aid
in the collection of data, we hired 42 workers from Amazon Turk
to participate in this experiments. 21 participants interacted with
the KBAgent with the NLU, and 21 people used a “Wizard-of-Oz”
approach where an expert manually edited the translations gener-
ated by the NLU and corrected them before they were sent to the
agent. These results, shown in Table 3, show that when a Wizard
of Oz was active, the agent was more successful in all categories:
it achieved a higher score, in less time, and people were happier
with this agent and thought it fairer. This result implies that if an
improved NLU could be generated, the results of NegoChat, and a
new generation of Chat Agents we hope it will help create, will be
even more significant.

7. CONCLUSIONS AND FUTURE WORK
This paper presents NegoChat, the first negotiation agent that



Table 1: Results of NegoChat vs. KBAgent Negotiation Experiments
AGREEMENTS AgentScore Participants Time to Reach Agreement Fairness Standard Deviation Happiness
KBAgent 435.12, σ = 65.92 25 1017.4, σ = 401.79 3.58, σ = 0.88 3.25, σ = 0.89
NegoChat 487, σ = 64.4 17 652.94, σ = 376.56 3.78, σ = 0.97 3.1, σ = 0.99
WITH OPT OUTS
KBAgent 409.56, σ = 111.92 27 (2) 1001.67, σ = 399.23 3.56, σ = 0.86 3.16, σ = 0.98
NegoChat 446.05, σ = 137.02 19 (2) 664.74, σ = 370.08 3.76, σ = 0.94 3.19, σ = 1.03

Table 3: The NLU Impact on the KBAgent
Interface AgentScore Participants Time to Reach Agreement Fairness Happiness

NLU 468.71, σ = 62.68 21 767.62, σ =, 326.62 3, σ = 1.21 2.7, σ = 1.08
Wizard of Oz 481.47, σ = 59.21 21 669.76, σ = 343.614 3.3, σ = 1.28 3.3, σ = 0.86

considers a natural language interface and its impact on the agent’s
strategy. In creating NegoChat, we present several novel contri-
butions. First, we describe a new negotiation algorithm based on
bounded rationality that facilitates incremental agreements crucial
for interacting with people. Second, we present a Natural Language
module for interacting with this agent, and describe its originality.
Last, we describe extensive experiments highlighting NegoChat’s
ability to reach significantly better agreements, in less time than
the current state-of-the-art KBAgent. We also present results from
a user satisfaction survey showing how people were happier with
this agent and thought it to be more fair– something we attribute
to the agent’s more natural interface and ability to generate partial
offers. Last, we calculated the accuracy of our natural language un-
derstanding unit. We show that it was more difficult to understand
humans speaking with NegoChat than humans speaking with the
KBAgent. We conjecture that it is because NegoChat itself uses a
more versatile natural language than the KBAgent. The success of
NegoChat over KBAgent, even when considering the greater dif-
ficulty of the task, highlights the challenge NegoChat faced, and
further emphasizes its success.

For future work, we hope to study how NegoChat can be applied
to additional domains and cultures. In this paper we used partici-
pants in Israel who participated in an employer / employee nego-
tiation scenario. An open question which we have begun to study
is what extensions, if any, are needed to apply NegoChat to these
problems. Furthermore, we hope to analyze if other bounded ratio-
nality theories, in addition to Aspiration Adaptation Theory, can be
used by agents with natural language interfaces.

8. REFERENCES
[1] M. Bac and H. Raff. Issue-by-issue negotiations: The role of

information and time preference. Games and Economic
Behavior, 13(1):125–134, March 1996.

[2] L.-A. Busch and I. Horstmann. A comment on issue-by-issue
negotiations. Games and Economic Behavior,
19(1):144–148, April 1997.

[3] A. Byde, M. Yearworth, K.-Y. Chen, and C. Bartolini.
AutONA: A system for automated multiple 1-1 negotiation.
In International Conference on Electronic Commerce, 2003.

[4] V. R. Carvalho and W. W. Cohen. In KDD, 2006.
[5] M. K. Chen. Agendas in multi-issue bargaining: When to

sweat the small stuff. Technical report, Harvard Department
of Economics, Cambridge, November 2002.

[6] M. H. Coen. Design principles for intelligent environments.
In AAAI/IAAI, 1998.

[7] P. R. Cohen. The role of natural language in a multimodal

interface. In UIST, 1992.
[8] P. T. Hoppman. The Negotiation Process and the Resolution

of International Conflicts. University of South Carolina
Press, May 1996.

[9] C. M. Jonker, V. Robu, and J. Treur. An agent architecture
for multi-attribute negotiation using incomplete preference
information. Autonomous Agents and Multi-Agent Systems,
15(2):221–252, 2007.

[10] P. Kenny, A. Hartholt, J. Gratch, W. Swartout, D. Traum,
S. Marsella, and D. Piepol. Building interactive virtual
humans for training environments. In I/ITSEC, 2007.

[11] R. Lin and S. Kraus. Can automated agents proficiently
negotiate with humans? CACM, 53(1):78–88, January 2010.

[12] R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. Negotiating
with bounded rational agents in environments with
incomplete information using an automated agent. Artificial
Intelligence, 172(6-7):823–851, 2008.

[13] M. J. Osborne and A. Rubinstein. A Course In Game Theory.
MIT Press, Cambridge MA, 1994.

[14] Y. Oshrat, R. Lin, and S. Kraus. Facing the challenge of
human-agent negotiations via effective general opponent
modeling. In AAMAS, 2009.

[15] N. Peled, Y. Gal, and S. Kraus. A study of computational and
human strategies in revelation games. In AAMAS, 2011.

[16] A. Rosenfeld and S. Kraus. Modeling agents based on
aspiration adaptation theory. Autonomous Agents and
Multi-Agent Systems, 24(2):221–254, 2012.

[17] R. Selten. Aspiration adaptation theory. Journal of
Mathematical Psychology, 42:1910–214, 1998.

[18] B. Shneiderman and C. Plaisant. Designing the User
Interface: Strategies for Effective Human-Computer
Interaction. 2004.

[19] H. A. Simon. Models of Man. John Wiley & Sons, New
York, 1957.

[20] I. Sofer, D. Sarne, and A. Hassidim. Negotiation in
exploration-based environment. In AAAI 2012.

[21] D. Traum, S. C. Marsella, J. Gratch, J. Lee, and A. Hartholt.
Multi-party, multi-issue, multi-strategy negotiation for
multi-modal virtual agents. In Intelligent Virtual Agents.

[22] G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and
Efficient Multilabel Classification in Domains with Large
Number of Labels. In MMD’08, 2008.

[23] I. Zuckerman, A. Rosenfeld, S. Kraus, and E. Segal-Halevi.
Towards automated negotiation agents that use chat
interfaces. In ANAC 2013.


	Introduction
	Related Work
	The Negotiation Domain
	The Negotiation Algorithm
	NegoChat's Natural Language
	Natural Language Understander (NLU)
	Development and Training
	Natural Language Generator (NLG)

	Experiment Design and Analysis
	Experiment design
	Experimental results

	Conclusions and Future Work
	References

