1

The problem of multi-robot patrol has gained interest in re-
cent year§Ahmadi and Stone, 2006; Chevaleyre, 2004; Ag-
monet al., 20084, mainly due to its applicability in various

security applications. In this problem, robots are required to
repeatedly visit a target area, to monitor it. Many researches
have focused on a frequency-based approach, guaranteeiW
some point-visit frequency criteria are met by the patrol algo
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Abstract

We study the problem of multi-robot perimeter pa-
trol in adversarial environments, under uncertainty
of adversarial behavior. The robots patrol around
a closed area using a nondeterministic patrol algo-
rithm. The adversary’s choice of penetration point
depends on the knowledge it obtained on the pa-
trolling algorithm and its weakness points. Pre-
vious work investigated full knowledge and zero
knowledge adversaries, and the impact of their
knowledge on the optimal algorithm for the robots.
However, realistically the knowledge obtained by
the adversary is neither zero nor full, and therefore
it will have uncertainty in its choice of penetration
points. This paper considers these cases, and of-
fers several approaches to bounding the level of un-
certainty of the adversary, and its influence on the
optimal patrol algorithm. We provide theoretical
results that justify these approaches, and empirical
results that show the performance of the derived al-
gorithms used by simulated robots working against
humans playing the role of the adversary is several
different settings.

Introduction

rithm. OtherdParuchuriet al, 2007b; Agmoret al., 2008a;

2008b; Amigoniet al, 2009 have advocated an adversarial
approach, in which the robots’ goal is to patrol in a way that
maximizes their chances of detecting an adversary trying
penetrate through the patrol path. This problem is inherentl
different from the frequency driven patrol problem, mainly in

the need to add randomization to the robots’ behavior.

*This research was supported in part by ISF grast#,/07 and
#1685/07.

Recent investigations have examined the optimality of pa-
trol algorithms in two extreme adversarial settings, which
vary in the knowledge of the adversary on the patrol algo-
rithm and its parameters. Agmon etfggmonet al., 20084
has explored optimal algorithms for a zero-knowledge adver-
sary which chooses its penetration point arbitrarily. More
commonly, a worst-case full-knowledge adversary is inves-
tigated, which is assumed to know the randomization pa-
rameters (e.g., heading change probability), and therefore se-
lect the optimal penetration poifiParuchuriet al, 2007b;
Agmonet al, 2008a; Amigongt al., 2004. However, realis-
tically, most adversaries would have neither perfect knowl-
edge nor zero knowledge, bptartial knowledge Unfor-
tunately, optimal algorithms for either extreme case fail in
partial-knowledge cases.

This paper provides a theoretical discussion of the case
in which the adversary lies somewhere along the knowledge
continuum, between full and zero knowledge. Specifically,
we focus on the influence of the adversary’s partial knowl-
edge on its uncertainty of its choice of action, and the impact
of this uncertainty on the robots’ optimal patrol algorithm.

We describe two approaches for bounding the uncertainty
of the adversary in its choices. In the first approach, we as-
sume the adversary will choose to penetrate through one of
thev weakest spots, i.e., thespots with minimal probability
of penetration detection. In the second approach, we assume
the adversary will choose to penetrate through the set of
points surrounding the weakest spot. Both cases generalize
the knowledge continuum; for both, maximaktorresponds
to zero knowledge (thus maximal uncertainty), and minimal
v is equivalent to full knowledge adversary (no uncertainty).
For both approaches, we preseptimal patrol algorithms
ich have polynomial run-time complexity. We prove that
I'some cases the physical neighborhood and weakest
spots algorithms are equivalent. However, in many cases,
their predictions of the adversary’s actions are different.

We therefore provide an empirical evaluation of the two

tgatrol algorithms, usingl human subjects that played as ad-

ersaries against simulated robots. We compare the two ap-
roaches to two other algorithmslaxiMin, proven optimal
for a full-knowledge adversafydAgmonet al., 20084, and a
novel heuristic algorithnMidAvg that averages thdaxiMin
and the zero-knowledge algorithm.
Results show that given partial knowledge (correspond-



ing to limited observation time), the twe-algorithms out-  versary’s choices, and provide new algorithms that deal with
performed the others. Moreover, thMaxiMin algorithm—  these types of uncertainties. In our work we discuss other
optimal for full-knowledge adversary—performed poorly. aspects of uncertainty in adversary’s choice, and prowjge
We discuss the results of the game, and the possible reasotimal polynomial-timesolutions.

for reaching such results. Amigoni et. al. [Amigoni et al,, 200§ also used a game-
theoretic approach for determining the optimal strategy for
2 Background patrolling agents, using leader-follower games. They con-

sider an environment in which a robot can move between any
Multi-robot patrolling algorithms have been studied in var-two nodes in a graph, as opposed to the perimeter model we
ious contexts. Many of these focused on optimizing fre-focus on. Their solution is suitable for one robot, and since
quency criterid Ahmadi and Stone, 2006; Chevaleyre, 2004;the computation of the optimal strategy is exponential, they
Elmaliachet al., 2009, without any reference to the existence described a heuristic approach for finding a solution.
of an adversary. In this paper we consider the problem of
multi-robot patrol in adversarial environmetifsgmonet al,, )
2008a; 2008b; Sakt al, 2004, which is inherently different 3 Robot and environment model
from all frequency-driven patrol approaches.

Agmon et. al. [Agmon et al, 2008a; 2008binvesti- We are given a team of homogenous robots, required to

- : X ) . patrol around a closed area (perimeter). The perimeter is di-
gated multi-robotidversarialperimeter patrolling algorithms vided into N' segments, where the travel time of each robot

for full- and zero-knowledge cases. They introduced th : ; :
robot motion model that we also utilize. They describe th:throngh a segment is uniform, i.e., all robots travel through

MaxiMin polynomial-time algorithm that maximizes the min- one segment per time cycle . Hence the segments’ length is
X S . . . uniform in time, but not necessarily in distance.

imal probability of penetration detection along the perimeter . ) ) . . .

(i.e., improves the weakest point of penetration). This algo- The robots have directionality associated with their move-

rithm is proven optimal for a full-knowledge adversary. For Ment, i.e, if they go backwards they physically turn around.

the partial knowledge case, Agmon et al. propose a heuristiwe model the cost of turning around in time, and denote time

algorithm, yet provided no theoretical discussion of this caselt takes the robots to turn around and stabilize in their new

In contrast, in this paper we focus on the partial knowledgeirection by7. In this paper we focus on the caserof- 1.
case, and provide both theoretical and empirical analysis. ~ 1he system of perimeter patrol is linear, meaning that at
Sak et. al[Saket al, 200§ considered the case of multi- each time step the robots have one of two options: go straight
agent patrol in general graphs (rather than perimeters, as 4 turn around. Theref_o_re t_he robot’s pa_trol algorithm is (_:har-
our focus here). They concentrated on an empirical evalugicterized by a probability, i.e., at each time step go straight
tion (using a simulation, with no human subjects involved)forward with probabilityp, or turn around with probability
of several non-deterministic patrol algorithms that can bel = L=p.
roughly divided into two: Those that divide the graph be- We consider qoordinated robotic systems in the sense that
tween the patrolling agents, and those that allow all agentd the robots decide to turn around, they do it simultaneously.
to visit all parts of the graph. They considered three typedvioreover, we require that the robots are placed uniformly
of adversaries: random adversary, an adversary that alwa@ong the perimeter, with distance df = N/k segments
chooses to penetrate through a recently-visited node and d¢tween every two consecutive robots along the path. The
adversary that uses statistical methods to predict the chancggordination and uniform-distance requirements are derived
that a node will be visited soon. They concluded that therdrom the optimality proofs given inAgmon et al, 2008b;
is no patrol metric that outperformed the other in all the do-20084, which have shown that the probability of penetration
mains they have checked, but the results depend on the efletection is optimized under these conditions. These opti-
vironment. In contrast to this investigation, we provide em-mality proofsare based on the fact that the probability of pen-
pirical results from tests with human subjects, and theoreti@tration detection decreases as the distance from the robot in-
proofs of optimality for different settings. creasedAgmon et al, 20083. Therefore it is best to min-
Other closely related work is the work by Paruchuri et. al.imize the maximal distance between every two consecutive
[Paruchuriet al, 2007b; 2007k which considered the prob- robots. This is done by guaranteeing that the dlstarjce intime
lem of placing security checkpoints in adversarial environ-Petween every two consecutive robots is equal, maintained so
ments. They use policy randomization for the agents’ behay?y the requirement that the robots are coordinated.
ior in order to maximize their rewards. In their work, the In the adversarial models considered here, the adversary
adversary has full knowledge of the agents’ behavior, theredecides at timé through which segment to penetrate, and
fore it can use it in order to minimize its probability of being the time it takes it to penetrate is not instantaneous, and lasts
caught in some checkpoint. They again do not consider sert-time units.
sorial scenarios which depend on different sensorial models The chances of the robots to detect an adversary passing
of the robots. Pita et. al[Pitaet al, 2009 continued this through a segmen; is defined as thprobability of penetra-
research to consider the case in which the adversary makéisn detectionat the segment, and denoted fiyyd,. This is
their choice based on their bounded rationality or uncertaintythe probability that some robot will pass through segment
rather than make the optimal game-theoretic choice. Theguringt time units, and is a function of the probability of the
considered three different types of uncertainty over the adrobots to continue straightforwarg,



4 Uncertainty in the adversary’s perspective probability inside this interval. The algorithm needs to find
ﬁe probabilityp characterizing the patrol of the robots such

In most cases, it is realistic to assume that the adversary : L ;
knowledge on the patrol algorithm lies somewhere alon at it maximizes the expectegbd throughout the perimeter.

the knowledge continuum, between full and zero knowledge, JMfortunately, we prove that this problem is unsolvable un-
Usually, the adversary does not gain enough information O#ﬁ?\i(tsioi igéi(\j/\e/ir?éci)Xteeglgg ?]higwrknogng':gﬁnitgaellﬁ(npcercetgg?ng
the patrol algorithm in order to derive the exact algorithm. ’ : '
(i.e., probabilityp) or the exact weakest spots of the algo- I.e., asp grows the expecteppd grows, hence the optimal

: : e - does not converge unlegs= 0 (since maximization of the
rithm. Therefore we explore theoretically two directions in X . - . )
handling partial knowledge of the adversary. In the first, thee);]peﬁtemlpd f{‘:’] obt%nec_i Itn tfht?] rl_gf:t bOlldeOf tﬂg mtOervaI,
adversary might have some estimation of the probabjlity W\;\(/: IS qs% e m'f p?'?] Of ”e n er\lia on y‘g’ r= 0).
characterizing the patrol algorithm. In the second, the adver- Ve OMit the proof of the following Lemma due to space
sary might have some estimation of the weakest spot of th onstraints.

algorithm. In both cases, we wish to use the region of possi- et Eppd(p) be the expecteqipd for probabilityp € [0, 1]

ble beliefs of the adversary in order to find an optimal patrol_emma 1. The expecte@pd, as a function op, is a mono-
algorithm for the patrolling robots. tonically increasing function in the range, 1], i.e., for all
A common way of handling uncertainties of systems is tog < p/ < p < 1, E,nq(?') < Eppdg(P)
; SV =+ Lppd ppd

assume that when having no knowledge, a random choice, )

with uniform probability, is made. In this domain, this ap- Theorem 2. P-Interval is unsolvable unless= 0.

proach was proven to be useful in an empirical evaluation i
[Agmonet al., 20088, where a patrol algorithm proven to be e
optimal for a random adversary performed substantially bet-eX'StSp* that maximizes the expeciqrpd throughout the

. . erimeter. By the definition d®P-Interval, the adversary de-
ter than other algorithms for humans playing the role of arguces an interval aroung in which it chooses its believes

adversary that had no knowledge of the patrolling robots. Wat random inside the interval«—s. o). By Lemma 1, the

will use a similar approach here, i.e., within the region of ©Sex ectegppd function is monotonically increasing, therefore
timation of the adversary — either of the patrol algorithm P P Y 9,

or of the weakest spots — the adversary will be assumed twe maximal expecteppd inside this in_terval s obtr_:lin_ed in
choose its actions at random D * +d. This contradicts the assumption that maximizes

We first examine the approach according to which the adEhe expecte@pd, unlessy = 0. =

versary estimates the probabilipycharacterizing the patrol 4 » Uncertainty in the choice of penetration spot
algorithm with some error. Unfortunately, we show that it is
impossible to find an optimal patrol algorithm in this case.

We then discuss two alternative approaches, in which th
uncertainty is reflected by the choice énetration spotin
this case, we do not necessarily assume that the advers
calculates the probability, but tries to estimate the weakest
spot using two estimation methods - physical proximity, or
probability proximity to the minimappd.

Broof. Assume, towards contradiction that> 0, yet there

In this section we explore the case in which the patrial knowl-
dge of the adversary on the patrol algorithm is translated into
ifferent possible options of penetration spots. For several

%ﬁpsons, the adversary might not choose to penetrate through

e exactweakest spot. We present herein two deviations
from the weakest spots, hence two possible corresponding
optimal ways of choosing the patrol algorithm in such cases.

The adversary, after studying the robots’ patrol for a period
4.1 Estimatingp - negative result of time, could re_sult ir_1 several reasonable segments.which the

) ) ) ] ) ppd values, as it believes, are small enough. In this case it

In this section we discuss the case in which the adversary egpuld choose to penetrate through one ofittveeakest spots

timates the probability characterizing the patrol algorithm. gt random, with some probability distribution (for example

The problem of estimating the probabilifycan be con-  yniform). Hence the robots shoulid chogssuch that the ex-
sidered as ObserVing a Bernoulli trial, where a success is %Ctqupd a|ong thev Segments with m|n|majpd is maxi-
event of going straight with probabilify, and a loss is turning - mal. We refer to this approach yMin.

around with probabilityl — p. We can use the Central Limit  The second case is that the adversary might not choose to

TheorerT{Devore, 199]|.that .bOU-ndS the (?Xpected error from penetrate through the Segment with the miniw, but ei-

the real value op after viewing it fort, trials. The average ther through that segment, or through one of its neighboring

of successes after viewing trials is inside the boundaries segments at random. Hence the robots should chesseh

[p — d6,p + &] with probability pcon s, Whered is a function  that the minimal expectegpd alongv neighboring segments

of ¢, and depends op.,.. Therefore the adversary can es- js maximized. This approach is referred tovalieighbor.

timate the real value af inside some interval around and Note the difference between the two cases~Min we are

we will try to use this interval in order to optimize the patrol looking for the value) < p < 1 such that the weighted aver-

algorithm of the robots. Consider the fOIlOWing prOblem. age of they minimal ppd’s is maximized, and iN_Neighbor

P-Interval problem definition: case we are looking fgr such that the minimal weighted av-

Let p be the probability characterizing the perimeter patrol al-erage ofv neighboring segments is maximized.

gorithm of a team of robots. Assume the adversary estimates In both cases, the two extremities of uncertainties—full

that the real value op is inside the intervalp — §,p + 9]. knowledge adversary (no uncertainty) and zero knowledge

Therefore it chooses its believeg at random with uniform  adversary (complete uncertainty)—match the results obtained



by [Agmonet al, 2008a; 2008k respectively. Ifv = 1,i.e.,  V, theweighted averagégiven weightv; to thei'th mini-
there is no uncertainty in the choice of the weakest spot, themal curve) of they curves represent trexpectegpd in that
the algorithms are required to return exactly the valgeich  section. LastComputeMinV calculates the maximal value
that the minimalppd is maximized, similar to thdaxiMin of fauwg(a,b) in the sectiorjp,, ps|, and reports the poimnt,,;
algorithm presented ibAgmon et al, 20083. On the other thatis maximal among all minimal points of the average func-
hand, ifv = d and the probability distribution is uniform, tions. An illustration of this algorithm is shown in Figure 1.
then the algorithms will return the valyethat maximized
the expectegpd throughout the perimeter (=averagpd). T Vi
As proven infAgmonet al., 20084, the optimal algorithm in .
this case i = 1, i.e., the deterministic algorithm. A

The algorithms for finding an optimal patrol uses pipel, il i
function for each segment. Theseppd, are functions of
p, and are calculated in polynomial time using a dynamic- A
programming algorithm described [Agmonet al, 20083. [ , :

. PPD .

Optimality of the patrol algorithm using the v-Min
approach

We present herein AlgorithifomputeMinV that finds the
optimal patrol algorithm, corresponding to the probabifity
of going straight at each time step under ¥h®lin scenario. ) ) . . .
Specifically, AlgorithmComputeMinV computes the valug Figure 1: An illustration of AIgontthomputeI_\/ImV for_
such that the minimat ppd’s are maximized, given a proba- ¢ = 8,t = 6,v = 3. The small stars mark the intersection
bility distribution V = {v;, va, . . ., v, }, whereu; is the prob- points, and the bolq curve is the average of thmwmal _
ability that the adversary will choose to penetrate through th&Urves at each section. The arrow marks the maximal point
i'th weakest spoty""_, v; = 1. This distribution can be used computed bfomputeMinV .

to further manipulate the impact of the extent of knowledge . . . . .

of the adversary on its choice of penetration spot, for exam- 1he time complexity of ComputeMinV is O(d* +

ple after obtaining more knowledge may increase to more d*logd*) (compared to time complexity oD(d®) of the
than the uniform distributionl(/v). MaxiMin algorithm for full knowledge adversafy\gmonet

al., 20081).
Algorithm 1 ComputeMinV(v, V, {ppd,,...,ppd,}) Optimality of the patrol algorithm using the v-Neighbor
1. SetBufP «— {0,1} {initialize list of all intersection approach . .
points} As stated previously, the adversary might attempt to pene-
2: for every paimpd,,ppd., 1 <4, <d, i+ j do trate not only through the weakest segment, but through one
. 7 7 =0 ) =W

of its neighboring segments. Therefore this can be used in

3 éggersedm — intersection points betweqipd; and order to find a patrol algorithmp(value) more suitable for

J the situation. AlgorithmComputeNeighborV computes the
4 BufP — BufP|Intersect;, weighted average of neighbporing sggments accrt))rding to a
5t SortBufPin ascgnd_mg order. . . distributionV' = {vy,...v,}, then finds the maximin point
6: Resy, Res), — 0 {initialize maximin value and its } of the new curves. Note that if the robot currently resides in-
7: for j <110 |BufP|do ) side thev-neighborhood of a segmest (i.e.,v — i < 0 or
8 Find v functions f;,,..., fj, such thatf;,(v’) < /"y~ g its current location is excluded, i.e., we average

Fu(0)) V9" € [BufP(j), BufP(j + 1)],1 < i < v, teywer segments for that case. The probability distribution can
o ;n a ijizv v x| be used to express the fact that the adversary tends, for exam-
' avg =111~ J3i , ) ple, to try and penetrate through the segments further away
10: m — faug(p*) such thawp & [BufP(j), BufP(j+  from the robot in its current position. Figure 2 illustrates the

1)]! fa’ug(p*) > favg(p) i = = =
1. ifm > Res; then algorithm ford = 8, ¢ = 6 andv = 3.
12: Resy < m ; Resp « p*

Algorithm 2 ComputeNeighborV (v, V, {ppd,,...,ppd,})

1: SetFuncSet « ()

2: for i — 1tod do

ie = min(d,i + v)

4:  FuncSet «— Z;;i vj—i+1 X ppd; J FuncSet
5 Popt — MaxiMin(FuncSet, d)

6: Returnp,y:

13: ReturnRes,

The algorithm works as follows. First, it identifies all in-

tersection points between every pairp@fd,, ppd; functions

(1 <4,5 <d,i# j). Then it divides the rang@, 1] to sec-
tions according to all the intersection points. For each sec-
tion [p., pp], the algorithm identifies the minimal curves
between[p,, py], and finds their average curvg,, . Since
the adversary chooses to penetrate through one of Heg- The time complexity of AlgorithmComputeNeighborV
ments with lowesppd at random with the given distribution is O(d?) (similar to the complexity oMaxiMin).

w




. , to the probability of reaching a segment in distande the
same direction, but multiplied b{i — p). Since we assume
thatp < 1, this it always true.

Combining all known facts together, from Lemmain
[Agmon et al, 20084 we see thappd,,; < ppd, , <
... < ppd;_; < ppd; and ppd, < ppd,_;... <
ppd;. Also, as shown hereinppd, > ppd,;, ppd, >
ppd,; i,...,ppd;_; > ppd,,,. It follows that, necessar-
ily, the minimal function isppd, . ,, the function above it is
ppd, andppd,_,, followed byppd, , , andppd,_, and so on
(see an example in Figure 3). Therefore, necessarily, when
considering the— minimal segments, for all, we remain in
thewv— neighborhood oppd, _ ;.

If d is even, then the only difference is that functiood,
receives components from bof, and R;, hence it is not
straightforward that it is smaller thagopd,_,. Calculating

: AR . : ; the exact value oppd, shows us thappd, = p' + (1 —
Figure 2: An illustration of AlgorithmComputeNeighborV ) =1 On the other handppd, , — p'—, i.e.,

ford = 8,t = 6,v = 3. The curves areot the original )P - P .

ppd, functions, but the average of-neighborhood o?each .ppdt—l = ppd,, and the rest of the proof follows directly as
segment. The arrow points to the maximin point of the new” the case of an odd U
curves.

1-

Comparing v-Min and v-Neighbor T
The two approaches of-Min and v-Neighbor towards il
bounding the uncertainty of the adversary in its choice of pen- I
etration spot might seem to be inherently different. Consider e”s'
for example the case in whicth = 8, ¢ = 6 andv = 3 Qs
(Figures 1 and 2). The optimalin case ofv-Neighbor is &
p = 0.7359, and the optimap for v-Min is p = 0.9273. The agr
result returned by th#&laxiMin algorithm (used in case of a il
full knowledge adversary, i.ev,= 1) isp = 0.7037. ot
However, in some cases they coincide, as proven in the D —ET—_ %

following Theorem.

Theorem 3. The optimal choice ofp according to _ _ _ ) )
v-Neighbor coincides with the optimal according tov-Min ~ Figure 3:An illustration of proof of Theorem 3, in which the
ift = [d/2] + 1. v—neighborhood and— minimal coincide (herd = 9, ¢t =
5andv = 3). The bold line represents the averagevef
Proof. The optimalp in the v—neighborhood and in the— minimal /v— neighboring segments.
minimal, is the one maximizing the minimppd of the av-
erage of thev— neighborhood anaé— minimal ppd, func-
tions, correspondingly. Therefore it is enough to show thaq5 Evaluation
along this optimal pointp,, the v— minimal ppd, func-
tions are also all neighbors. Formally, we need to show thaln order to evaluate the performance of the suggested algo-
ppd; ,...,ppd; are minimal, whereé; = j + [ for some rithms when working against different adversaries, we cre-
index1 <j<d-—w. ated a variation of th&®enDet-game that was described in
Consider the section of segments between two consecu- [Agmonet al, 20084. In this game, the adversary is played
tive robotsR, and Ry. First, assume is odd. In this case, by a human subject, working against simulated robots in a
ppd, for 1 < ¢ < ¢ is influenced only byR,, andppd, for ~ Web-based environment. Using humans as adversaries mod-
t+ 1 < i < dis influenced only byR,. Moreover, ev- els the realistic requirement of such a system, i.e., the robots
ery ppd, function for1 < ¢ < ¢ equalsO if p = 0, and  will perform in real world against human adversaries in var-
equalsl if p = 1. On the other hand, eveppd, function for  ious environments (similar evaluation method is also used in
t+1<1i<dequals)in bothp = 0 andp = 1. [Pitaet al., 2009; Agmoret al, 20084).
Note that if a robot is headed clockwise, then ppy func- The patrol algorithms executed by the robots were calcu-
tion of a segment; of distancei to its right is larger than a lated according to the following:
ppd function of segment which is in the same distance, but to/-Min (with several values)
the left. For exampleyppd, > ppd,, ppd, > ppd,_, andso v-Neighbor (with several values)
on. The reason lies in the fact that the probability of reachingVlaxiMin, which maximizes the minimappd along the
a segment of distancgdn the opposite direction is equivalent perimeter, proven byAgmon et al, 20084 to be optimal



against a full-knowledge adversary
MidAvg, a novel heuristic algorithm that averages between 06
the p value of the optimal algorithms against full and zero . — -
knowledge adversariesM@xiMin and deterministic algo-
rithms, respectively).

5.1 Experimental setting &

The game was played Bs1 human subjects, all undergrad-

uate Computer Science students, playing the role of the ad- ot

versary that tries to penetrate through the simulated robots. 0

The subjects received both an oral presentation explaining the

rules of the game, and were handed additional explanation & .

W @) @

sheets. & <
Each trial was composed 6fsubgames. Each such sub-

game starts with an observation phasé®$econds, in which . . . . .

the player studies the patrol algorithm by observing the acgfrls”feél}E:SE:tfhgfégeeﬁggrlrgﬁg:rgot?o%\?j §t7etct_io(ri1' r-g?ig

tions of the robots in order to choose a penetration spot. f the rgbot ven ther) act alpcho'ce of the plaver
Preliminary experiments that included observation periodéj S gV u ICes players.

of 5 and 30 seconds have shown that these observation pe-

riods were not long enough to enable learning of the robotsy-Min for v = 2 (p — value = 0.001 andp — value = 0.01,

patrol algorithm, hence the choices made by the subjects werespectively) MaxiMin (p — value = 0.003) and MidAvg

arbitrary. Thus we focused on an observation perio80f (p — value < 0.002). However, the results df—min were

seconds. not significantly better tham-Neighbor for v = 3 (denoted
After the observation phase, the players chose a penetratidsy 3—Neighbor).

spot through which they assumed to maximize their chance of In order to explain the advantage of usiBigMin, we in-

penetrating without being detected by the patrolling robotsspected the actual choices the players made concerning their

Each player playe@ subgames, however the player did not penetration spots. Approximatelp% of the players decided

get feedback on whether the penetration attempt was succesg-penetrate through one of tABsegments with minimadpd,

ful. and the expecteppd in these segments &.%. In contrast,
We checked two pairs ofd,t) values: (8,6), in which  only approximately29% of the players detected the weak-

the resulted patrol algorithm was different for theMin
andv-Neighbor for v = 2,3. In the second pair(16,9),
as proven also by Theorem 3, the resultsvelin and
v-Neighbor coincide, hence we checked the followingal-

ues:v = 3,5,7,9. We considered only the uniform distribu-

tionof V,i.e.,u; = 1/v.

est spot when executing tivaxiMin algorithm (in this case
having an expecteppd of 24%). This means that th&—Min
algorithm indeed had better predictions concerning the pene-
tration spots.

Another reason for the—Min’s good performance lies in
the fact that the othei0% of the players who didn’t choose

Each set of(d, ¢) values and algorithm (characterized by to penetrate through the weakest spots, had better chances of
probability p) was played by4 to 37 subjects. The order of getting caught by th8—Min algorithm also in the other seg-
the subgames in the trial was randomly selected, and ther@ents. TheMaxiMin algorithm attempts to strengthen the

were no repetitions of sets in one trial.

5.2 Experimental results and discussion

Figures 4, 5 describes tlexpectegrobability of penetration

weakest spot, and thus it substantially decreases the probabil-
ity of penetration detection in the other segments. For exam-
ple, ford = 8,¢t = 6, the expectegpd in the non-weakest
segments using tHdaxiMin algorithm is49%, whereas with

detection given the players’ choice of penetration locationghe 3—Min algorithm it is83%. The minimalppd, though,

ford = 8,t = 6 andd = 16,t = 9 (respectively) for all algo-
rithms described above, given an observation timélafec-

decreases fror24% to 11% with the 3—Min algorithm.
Since the players did not obtain enough information to

onds, where the patrol algorithm was unknown to the playeridentify the exact weakest spots and enter through those spots,
The bars represent the expected penetration detection ratibe use of theMaxiMin algorithm was not worthwhile. The
given the actual choices of the players’ penetration spots. I8—Min and 2—Neighbor algorithms suffer from the same
order to compare the performance results obtained by the diproblem, though not as profoundly as tMaxiMin does.

ferent algorithms, we used the Mann-Whitney U-f@gann

Therefore they did not perform as well as tBenin or 3-

and Whitney, 194J7 which is a non-parametric test, suitable neighbor algorithms. Tha—Min algorithm performed better
for data with no normal distribution (like the data in our case).than the3—Neighbor algorithm, yet not significantly better,

For the first case in whicd = 8,f = 6 we can clearly

since they both assume similar uncertainty legeddgments).

see that the best-performing algorithm, i.e., the algorithm that Note that it may be worthwhile to enlarge the level of un-
achieved the highest expected probability of penetration decertainty, i.e., they value in order to capture more choices

tection based on the choices of the players, whfn for v =
3 (denoted by3—Min). Specifically, the results of—min
were statistically significantly better tharNeighbor and

of penetration spots. However,df = 8,¢t = 6, forv > 3
the optimal algorithm is deterministic, which is highly pre-
dictable, and as shown [®gmonet al., 20081, it is easily



manipulated by an adversary with even a small amount of inempirical evaluation with a longer learning phase of the pa-
formation. trolling robots, and try to extract the transition points between
possiblev values. We would also like to examine possible
uncertainties in the internal robotic system, originated for ex-
06 ample in faulty movement and faulty sensing.
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For future work we consider the following points. We
intend to further investigate uncertainties in the adversary’s
choice. As a first step, we would like to perform additional



