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Abstract

A deployment of a multiagent system on a network refers to the placement of one
or more copies of each agent on network hosts, in such a manner that the memory
constraints of each node are satisfied. Finding the deployment that is most likely to
tolerate faults (i.e. have at least one copy of each agent functioning and in commu-
nication with other agents) is a challenge. In this paper, we address the problem of
finding the probability of survival of a deployment (i.e. the probability that a deploy-
ment will tolerate faults), under the assumption that node failures are independent.
We show that the problem of computing the survival probability of a deployment is
at least NP-hard. Moreover, it is hard to approximate. We produce two algorithms
to accurately compute the probability of survival of a deployment—these algorithms
are expectedly exponential. We also produce five heuristic algorithms to estimate
survival probabilities—these algorithms work in acceptable time frames. We report
on a detailed set of experiments to determine the conditions under which some of
these algorithms perform better than the others.
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1 Introduction

There have been tremendous advances in the last decade in the theory and
implementation of massive multiagent systems. However, one major obstacle
to the wider deployment of multiagent systems (MASs) is their capability
of tolerating failures. MASs that are deployed across a network can quickly
“go down” due to external factors such as power failures, network outages,
malicious attacks, and other system issues. Protection against such unexpected
failures that disable a node is critical if agents are to be used as the backbone
for real world applications.

Clearly, ensuring that MASs are safe and protected involves a vast range of
technologies that must authenticate users and agents, ensure secure commu-
nications, identify vulnerabilities, and identify and quarantine attacks. Our
goal in this paper is far more modest, and concerns the way replication can
form the basis of one tool (amongst many that are needed) to prevent a MAS
from succumbing to failure. By replicating agents, we hope to improve the
fault tolerance of a multiagent system. The faults considered in this paper are
those that cause disconnection (or crash) of the nodes in the network where
the MAS application resides. The fault model that we consider is one where
the failure of each node in the network is represented by a probability. Given
such a fault model, agents that locate on the nodes have different probabil-
ities to be unavailable, and therefore the multiagent system as a whole has
some probability of being out of function. The idea of using replication as a
fault tolerance method in our work is thus that, when facing failures, at least
one copy of each agent will continue to reside on a connected, working host
computer (node), so that the MAS as a whole can function as a unified ap-
plication. Furthermore, in this paper, we focus on the problem of measuring
the probability that a multiagent system will tolerate the node failure. We call
this probability the survivability ! of a MAS system.

For example, consider the CoAX [2,35] Coalition Agent Experiment in which
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1 A more formal definition of survivability is given in Definition 4. See Section 6.2
for a discussion on different notations of the survivability.



a large, multinational team? of universities, companies and government labs

pieced together an experimental multiagent application in which a set of sen-
sory agents deployed in an ocean tracked enemy submarines. These sensory
agents fed data to prediction agents that predicted when, where, and with
what probability the submarine would be in a given location. Thereafter a
whole set of decision making and visualization agents assisted a decision maker
in determining how best to proceed. All these agents were supported, in turn,
by other agents such as agents assessing trustworthiness of a source, database
agents, resource discovery agents, and the like. In applications such as CoAX,
it is quite likely that some nodes will “go down” or “get disconnected” from the
network. Any enemy sophisticated enough to use jamming technology would
also make efforts to jam the network, effectively causing some agents to have
no connectivity. Thus, critical agents such as the prediction agents and the
decision making agents need to be appropriately located and replicated so that
the whole multiagent system has a high probability of functioning. Of course,
it is assumed that the physical hardware (sensors) are already replicated to
support sensor failures—this paper does not address how to replicate physical
devices.

Likewise, consider the exhaustive set of deployed multiagent applications listed
in [36]. According to their description, Skoda—a branch of Volkswagen—
deployed an agent based production planning tool for manufacturing car en-
gines. Their multiagent solution looked both at low level planning and high
level planning. High levels plans are examined by a set of low level planning
agents that try to achieve a part of the high level plan and flag conflicts and
inconsistencies in the high level plan. A back and forth process ensues. Once a
consensus is achieved, the production plans are sent to higher level agents who
use resource allocation mechanisms to execute these plans on the production
line. It is clear that in critical applications such as these, any node “going
down” (for whatever reason) has the potential to cause the production line to
come to a grinding halt, leading to a loss of revenue for the company.

Tichy et al. [42] describe a multiagent system for the control of several com-
ponents of a ship so as to reduce manpower requirements, while still ensuring
highly reliable and survivable operation of the ship. They develop a hierar-
chical multiagent architecture in which agents are embedded within hardware
controllers and higher level agents coordinate and monitor the activities of
groups of agent-enhanced hardware controllers. The agents are continuously
engaged within a plan creation, plan commitment, and plan execution cycle.
Here too, it is clear that when agents are in control of a physical environment
(the ship in this case) there is high potential that the overall environment be-

2 The team included companies such as Lockheed Martin, BBN, Qinetiq, as well
as universities such as Univ. of Maryland, Univ. of Texas, Univ. of Edinburgh, and
many others.



ing controlled by the MAS can be adversely affected whenever an agent “goes
down”. In any situation where hardware components exist (and certainly on
ships), there is a possibility that hardware components will fail—for simple
reasons or for more complex reasons such as the actual physical movement of
the ship and/or the oceanographic and climactic conditions with which the
ship is forced to contend. Thus, mechanisms are needed so that MASs can be
deployed in a survivable manner even if some agents go down. Furthermore,
it is important to calculate the guaranteed probability that the system will
survive.

Fault tolerance and replication techniques have been extensively studied in
distributed computing systems [20,43,10,4,31], but much less so in the multia-
gent systems domain [33,16,29,5]. Building a fault tolerant distributed system
is notoriously hard. The autonomy of agents in multiagent systems such as
CoAX makes this task even more difficult. In this paper, we build upon the
framework of [27], which defined the probability that a given deployment of a
MAS 3 will survive, considered the basic problem of deployment survivability,
and proposed methods for finding most survival deployments. Zhang et al. [45]
also consider the complexity of the problem of finding the most survivable de-
ployment. That is, the complexity of finding the deployment with the highest
survival probability, given a MAS.

The model of [27] assumes ignorance about the dependencies between node
failures. However, this assumption is not always valid. For example, an attack
on Cornell’s web site is—in all likelihood—independent of the Israeli Defence
Ministry’s web site going down. The framework proposed in [27] cannot handle
this. The algorithm developed in [27] for finding the most survivable deploy-
ment of agents on the network only works under the ignorance assumption
and has two components. The first component is an algorithm for solving the
deployment survivability problem, i.e., computing the survival probability of a
given deployment of the MAS, while the second component uses the first com-
ponent to find the most survivable deployment. The algorithm provided in [27]
for the first problem is exponential, while the second is doubly exponential.
In this paper, we only focus on the first problem, of deployment survivability;
the algorithm for the second component in [27] can be used directly. More-
over, instead of studying the problem under the assumption of ignorance, we
assume independence between node failures.

The following contributions are included in this paper:

(1) In Section 2, we provide an abstract formal model to study the survival
probability of a given deployment under the assumption of independence

3 We will define deployment formally later in Definition 1. For now, a deployment
is simply a function that associates with each node in the network, a set of agents
to be placed on that node.



of node failures. We further show that even assuming independence, the
deployment survivability problem is at least NP-hard. Moreover, it is also
hard to approximate up to a factor of 21V (where |V is the number
of the nodes in the network).

(2) We show that the complexity of finding the most survivable deployment
problem, even assuming independence, is at least NP-hard. We also show
that for any polynomial approximation to find a sub-optimal deployment,
there will be instances in which the survival probability of the most sur-
vival deployment is 1 but the algorithm returns a deployment with a
survival probability of 0. Thus, any polynomial approximation algorithm
is guaranteed to find at least one terrible solution.

(3) In Section 3, we introduce two centralized algorithms to accurately com-
pute the probability that a given deployment will survive. Both algo-
rithms take exponential time.

(4) In Section 4, we develop five different approximation algorithms to com-
pute the probability of survival of a given deployment.

(5) About half the paper (Section 5) is devoted to a detailed comparison of
the performance of the different algorithms proposed in this paper. These
experiments try to identify the conditions under which one algorithm is
preferable to another so that MAS applications have some foundation
upon which to base a decision about which algorithm to use.

(6) Section 6 compares our algorithms with related work. We conclude by
discussing the main strengths and weaknesses of the paper in Section 7.

This paper is related to three prior papers of the authors. Kraus et al. [27],
as mentioned above, develop the basic MAS survivability upon which this pa-
per is based, but do so in a setting where the relationship between failure of
nodes is completely unknown. It provides a centralized algorithm to find an
optimal deployment (i.e. one that maximizes the probability of survival). Our
subsequent paper [41] provides a protocol by which multiple agents can dy-
namically re-deploy across a network when information is received that one or
more nodes have gone down. Both these papers provide algorithms to actually
find optimal and, when complexity does not allow so, suboptimal deployment
(statically and in a centralized manner in the first case, dynamically and in a
distributed manner in the second). However, when finding an optimal deploy-
ment, a common problem in both cases is to find the probability of survival
of a deployment. This is a precursor to finding the deployment with the high-
est survival probability. It is also necessary when MAS is applied in mission
critical domains. The computed survival probability can be used, for example,
in deciding on whether the system is safe enough, whether to add resources
and whether it is necessary to look for a new deployment (in a dynamic envi-
ronment). Zhang et al. [45] takes a first step at addressing this problem. The
problem presented in our work is a far more detailed and extended version of
the problem described in [45].



2 An Abstract Probabilistic Fault Tolerance Framework

2.1  Survivability Functions

Consider a multiagent system M consisting of a finite set of agents providing
one or more services. We are not concerned with the framework in which the
agents in M are encoded. For example, they could be implemented within
the BDI framework or within the IMPACT [40] or some other framework or
in a mix of frameworks as was the case of CoAX [2,35]. We also make no as-
sumptions about the services provided by these agents, or the communication
language they provide. We assume that M is deployed over a fully connected
overlay network® N' = (V,V x V'), where V is the set of nodes in the network.
Since N is a fully connected network, for simplicity we denote it by its sets
of vertices V. Each node n € V has some fixed amount of resources, denoted
space(n), that it makes available to hosting agents in a given multiagent sys-
tem. Let space(a) denote the resource requirements of an agent a, and let
space(M) =3 e m Space(a). We define a deployment w.r.t. M,V as follows.

Definition 1 (Deployment p) A deployment p w.r.t. M,V is a mapping
from V' to 2M such that u(n) is the set of agents in M that are deployed at
node n in the network. The deployment pu must satisfy the resource constraint,
namely, Yqcum)space(a) < space(n) for eachn € V.

We say that p is a valid deployment w.r.t. M,V if for each a € M there is
a node n € V such that a € u(n).

Throughout the rest of this paper, we assume that M is an arbitrary but fixed
MAS and that V' is an arbitrary but fixed set of nodes. As a consequence, we
simply say “deployment p” instead of “deployment p w.r.t. M, V7.

Example 1 Consider a fully connected network with V- = {ny,ny, n3} where
space(ny) = 6 and space(ny) = space(ng) = 3, and a MAS M = {ay,as,as}
where space(a;) =4 — i fori=1,2,3. A possible valid deployment 1 is given
by p(ni) = {a1, az, as}, p(na) = {ar}, p(ns) = {az, as}.

In a network V', any node of V' can “go down” or somehow get “disconnected”
from the network. In this paper, we do not go into details on for example
causes of failures, failure detection method or failure rate.? Instead, we adopt
an abstract representation on the fault model that the multiagent system will
tolerant, i.e., we assume each node has some probability of being unavailable

4 This is a reasonable assumption as we do not require full connectivity of the
underlying physical network (merely all nodes in the physical network need to be
reachable—perhaps through multiple physical links—from all other nodes).

% See Section 6.4 for a more detailed discussion on the failure mode.



(or out of function), due to its disconnection (or crash) from the network. We
define the probability of being unavailable of a node by a disconnect probability
function.

Definition 2 (disconnect probability function dp) A disconnect probability
function (dp for short) is a mapping of dp : V' — [0, 1] that assigns the proba-
bility of being disconnected to each node n € V.

In the context of the CoAX application [2,35], the disconnect probability func-
tion specifies the probability that a node will somehow fall off the network—
such a disconnect probability function might assign a high disconnect proba-
bility to sensory nodes deployed in the ocean, a lower disconnect probability
to nodes in more secure locations in the area, and an even lower disconnect
probability to highly secure nodes back in the US or Europe. In the case of
Tichy’s [42] application, the disconnect probabilities of agents embedded in a
controller might be higher than higher level agents because of more frequent
failures of hardware components. The same may be the case with the Skoda
application [36].

It is important to note that the failure of a node can be permanent or tem-
porary. Moreover, its disconnect probability dp(n) can be defined in terms of
time. For example, we may have a family of auxiliary functions dp’(n) that
assesses the probability that node n will get disconnected in exactly ¢ units
of time. One may then derive dp(n) in many ways from these dp’(n) func-
tions. For instance, dp(n) might be assumed to be the average of dp’(n)’s for
t ranging from 0 to some fixed upper bound.

It is also important to note that disconnect probabilities can be computed in
many standard ways that are used in networking. One way is through the use
of round trip times (RTTs) used frequently in networking. RTTs describe the
time required for a packet to go from one node to another. An RTT graph
looks exactly like the network itself except that each edge is labeled with the
round trip time between the nodes in question. RTT(0) can be initialized in
any number of ways (e.g. by setting all nodes to have some fixed probability of
disconnect, or by assigning such probabilities based on some a priori knowledge
of the network). If RT'T'(t) depicts the RT'T graph for a given network at time
t, we can compute disconnect probabilities by identifying how RTT(t) differ
from RTT(t — 1), RTT(t — 2),..., and so on. If a large proportion of edges
associated with a node n have an increased RTT in RTT(t) as compared to
RTT(t — 1), then the disconnect probability of node n increases.

A future failure event F' may cause the disconnection of a set of nodes V.
Such a failure event will give rise to the partial network V', where V' = V' \ Vp.
Clearly, given the possibility of node disconnections, a partial network V' can
possibly materialize in the future for any V' C V' (in case of a failure event F’



in which the nodes Vi = V' '\ V’ get disconnected). The probability that the
future network V'’ will materialize is referred to as the occurrence probability
of network V', denoted by pocewr(V, V', dp).©

Consider a failure event F', and consider the deployment p restricted to the
future network V' for V! = V' \ Vp. Clearly, p still satisfies the resource con-
straint. However, the deployment x4 may no longer be valid w.r.t. V’ (i.e., some
agents in M may not be deployed in any node of V'). We say that the future
network V' is valid if this does not happen. Formally, we have the following
definition.

Definition 3 (Valid future network) Given a deployment p and a net-
work V', a possible future network V; is valid if and only if p is a valid de-
ployment w.r.t. Vi, i.e., for each agent a € pu, {n|a € p(n)} N V; #0.

The set of possible valid future networks of a network V' is defined by ValidV ()
{Vi | V; CV and p is valid with respect to V;}.

We say that the system (M, V. dp, p) survives the failure event F' (where the
set of nodes Vp gets disconnected) if the remaining V' = V \ Vi is a valid
network.

We are ready to define an abstract notion of the survivability function as given
below.

Definition 4 (Survivability Function) Consider a fized multiagent system
M and a network V. A survivability function SF(M,V,dp, i) maps a deploy-
ment i and a disconnect probability function dp to the probability that the sys-
tem (M, V,dp, p) will survive. When M,V and dp are clear from the context,
we may denote the survivability simply as SF ().

The survival probability of i is obtained by summing up the occurrence prob-
abilities of all its possible valid future networks.

SF(M,V, dp, ,U) = Z poccur(‘/a ‘/;7dp) (1)

Vie ValidV (1)

We call the survival probability of a given deployment u, SF(u), the surviv-
ability of deployment p.

Kraus et al. [27] use a linear programming model to define the survival prob-
ability of a MAS under the ignorance assumption, i.e., assuming we are com-
pletely ignorant about node failure dependencies. However, this assumption

6 Whenever V and dp are clear from the context, we denote the occurrence proba-
bility of V' simply by poccur (V).



may not be valid for many multiagent applications, where the hosts are geo-
graphically distributed, as there can be simple or complex dependencies (or
independence) between failures of different hosts. For example, the failure of
a node in Australia is likely to be independent of the failure of a node in
Maryland, in which case the independence assumption may be more appro-
priate than the ignorance assumption. In the case of the CoAX application,
for example, if a node n goes down, the probability that a node n’ will go
down depends on various factors. For instance, if n,n’ are both in the area
of the underwater sensor array, then the failure of n is likely to be positively
correlated with the failure of n’. However, if n is in the region of the underwa-
ter sensor array, and n’ is in the UK, the failures of these nodes will probably
be independent. It is therefore apparent that there is a wide array of possible
ways in which the failure of a node is related to the failure of another node.
Likewise, in the case of the Skoda multiagent application, it may well be the
case that the failure of agents associated with planning are independent of
failures of agents associated with the monitoring and execution process as the
latter are likely to directly control (or sense) physical devices, while the former
do not. The same could be the case for Tichy’s ship control [42] application.

Kraus et al. [27] study one extreme—where there is complete ignorance of the
relationship between node failures. This ignorance assumption causes all sur-
vival probabilities to be extraordinarily pessimistic (low). In addition, they [27]
show that the most survivable deployment problem (namely, finding a deploy-
ment p* which maximizes SF(M,V,dp, ) for given M, V,dp) is intractable
under the ignorance assumption.

Since there are many cases where the independence assumption is valid (as in
the example mentioned above), throughout this paper, we develop the surviv-
ability algorithms under the following independent assumption:

Assumption 1 (Failure independence assumption) Given a networkV,
node failures are independent of one another.

Later in the paper, we will discuss how the techniques in this paper can be
extended in order to remove the independence assumption.

Example 2 Consider the network and deployment given in Example 1, and
suppose the disconnect probability function dp is given by dp(ny) = 0.7, dp(ng) =
0.6,dp(n3) = 0.4. The possible valid future networks are Vi = {ny}, Vo =
{ngo,n3}, Vs = {ny,n9,n3}, Va = {n1,na}, Vs = {n1,n3}. The occurrence prob-
ability of Vi is Poceur(V1) = 0.3+ 0.6 - 0.4 = 0.072, and similarly, poccur(Va) =
0.168, Doccur(V3) = 0.072, poceur(Va) = 0.048 and poceur(Vs) = 0.108. The sur-
vivability of the deployment is given by SF(M,V,dp,u) = 0.072 + 0.168 +
0.072 4+ 0.048 4+ 0.108 = 0.468.



2.2 Complexity Results for Survivability

In this section, we investigate the complexity of the deployment survivability
problem (namely, we compute the survivability of a given MAS deployment)
by replacing the ignorance assumption [27] with the failure independent as-
sumption 1.

Given a network V', a multiagent application M, a disconnect probability
dp and a deployment p, the occurrence probability of network V' (under the
independence assumption) can be calculated by the following equation:

Poceur (V. V' dp) = [ A —dp(ny))- [ dp(ng).

npeV’ ng€V\V’

One might expect that the deployment survivability problem would be easier
with the assumption of independence. However, the following result shows that
this problem is at least NP-hard even under the independence assumption, and
moreover, it is also hard to approximate up to a factor of olvIte,

Theorem 5 Computing the survivability SF(M,V,dp, 1) of a given deploy-
ment p is at least NP-hard, and it is also hard to approximate up to a factor
of 2VI'°,

Proof. By a reduction from the problem of finding the number of satisfying
truth assignments of a given monotone CNF formula ¢. An instance of this
problem is a formula ¢ in (monotone) CNF form over K Boolean variables
x1...Tx, namely, a conjunction of M clauses, ¢ = C; N...N C}yy, where each
clause C; = (z;,,...,x;) is a disjunction of literals, and all literals are non-
negated. Given such an instance (p, we create an instance of the deployment
survivability problem as follows. For each clause C; we create an agent a;. For
each logical variable x; we create a node n;. An agent a; is deployed on all
nodes corresponding to literals that occur in Cj, i.e., a; € pu(n;) if x; appears
in C;. The disconnect probability of each node n € V' is set to dp(n) = 0.5.

It is easy to see that the survivability of p is Z/2/V! if and only if there are Z
truth assignments of the (monotone) CNF formula .

It is well-known that counting the number of satisfying truth assignments of a
given monotone CNF formula is NP-hard. It is even NP-hard to approximate
this number up to a factor of 25 °, where K is the number of variables.
This is true even if each clause of the formula contains two variables [38].
Consequently, the deployment survivability problem is NP-hard, and it is also
hard to approximate up to a factor of 2VI'™*. O

Next we show that the most survivable deployment problem, namely, finding

10



a deployment p* which maximizes SF(M,V,dp, ) for given M, V,dp, is at
least NP-hard. Consequently, it may be interesting to look for a polynomial
time heuristic algorithm that is guaranteed to output a deployment with a
survival probability within € of the optimal deployment u*, for some ¢ > 0.
Unfortunately, the following theorem also states that the best € is 1 (under
the assumption that P # NP.)

Theorem 6 (1) Finding an optimal (most survival) deployment p* for a given
M,V dp is at least NP-hard even under the independence assumption.

(2) If P # NP, then for every polynomial approximation to find a sub-optimal
deployment there are instances in which the survival probability of p* is 1 but
the algorithm returns a deployment with a survival probability of 0.

Proof. It is suffice to prove claim (2), since claim (1) follows immediately from
it. Suppose that claim (2) is false. Then a polynomial algorithm AL exists such
that it always returns a deployment with a survival probability larger than 0,
when the survival probability of the optimal deployment is 1. We will use AL
in order to obtain a polynomial time algorithm for solving the (NP-complete)
“subset sum” problem. This problem requires one to decide, given a finite set
S C N and a target integer K € N, whether there exists a subset S’ C S
whose elements sum up to K [9].

Given a set S = {s1,--,s,} and a target K, construct the following 2-node
network Ng . Each member of the set s € S is represented by an agent as,
whose space requirement is s, space(as) = s. The two nodes n; and ny have
space(ny) = K and space(ny) = Y ,cq 8 — K. Assume the network is reliable,
i.e., the disconnect probabilities are dp(n;) = 0 for i = 1,2. It is easy to see
that the survivability of the optimal deployment p* is

1, dJasubset " C Sst. Ducgs =K,
SF(M, Nssc,dp, i) = =

0, otherwise.
Therefore the following algorithm solves the subset sum problem:

e For given S and K, build the network Ng x as described above.

e Run algorithm AL on N k.

e If AL returns a deployment with a survival probability greater than 0, then
return Yes, else return No. O

3 Algorithms for Computing Exact Deployment Survivability

This section describes two algorithms for computing the survivability of a given
deployment. Algorithm SF'1, is a “naive” algorithm which is exponential in

11



the number of nodes (and is therefore suitable for use when |V| is small), while
Algorithm SF'1, is exponential in the number of agents (and hence is suitable
when | M| is small).

3.1 The Naiwve Algorithm SF1,

This algorithm uses the definition of Equation (1) directly in order to calculate
the survivability of u. More explicitly, it enumerates all possible valid future
networks V;, and computes their occurrence probabilities. Finally, it returns
the survival probability of x, namely, the sum of the occurrence probabilities
of all possible valid future networks.

3.2 The Agent-based Algorithm SF1,

Given a deployment p, let A, be the event that all the nodes that agent
a; is deployed on are disconnected. Let A; be the event that at least one of
the A,, events occurs. The probability that event A,, will occur is given by
Pr(As;) = Ia,eum) dp(n). In order for p to survive, none of the A, events
should occur. Unfortunately, the A,, events are not mutually exclusive. Thus,
in order to compute the survivability of p using A,, we need to calculate
the probability of the disjunction of non-mutually exclusive events using the
inclusion-exclusion formula as presented below.

Definition 7 Suppose p is a deployment w.r.t. an overlay network V and
suppose the node disconnect probabilities are independent. Then

SF1,(M, V. dp,pn) = 1— Pr(Ay) (2)
where

Pr(Ag)=Pr(Aq V Ay, V...V Ay )

= Z Pr(A,,) — Z Pr(Aq, NAg,)
a;EM a;#aj, a;,a; €M
o ()MIEPr(A, A A Ay (3)

Algorithm SF'1, calculates the probabilities of all the A,, events and then
computes the above formula and returns its result.

Example 3 Consider the network and deployment given in Example 1 and
consider the disconnect probability function given in Example 2. Agent ay is

12



located on nodes ny and nsy, and the probability that both will get disconnected
18 Pr(Aq,) = dp(ni)dp(ng) = 0.7 x 0.6 = 0.42. Similarly, Pr(A.,) = Pr(A.) =
dp(ni)dp(ng) = 0.28; Pr(As, AN Asy) = Pr(Ag A Aey) = dp(ni)dp(ne)dp(ns) =
0.168; Pr(Aay A Agy) = 0.28; Pr(Ag, A Ag, A Ag,) = 0.168.

Thus, the survivability of the deployment is given by

SF1u(M, V,dp, 1) = 1= (Pr(Ag, )+ Pr(Ag,)+ Pr(Ag,))+(Pr(Aa Aay)+Pr(Ag, A
Agy) + Pr(Ag, N Agy)) — Pr(Aa, N Agy N Agy) = 0.468.

Efficiency can be improved by using the idea presented in [27] to reduce the
number of agents and nodes without any loss of accuracy. For this purpose,
denote the nodes in which an agent a; is located by Loc(a;). In [27], Kraus
et al. prove that the survivability of a deployment is unaffected if we elim-
inate irrelevant agents—an agent a is irrelevant if any other agent o’ exists
such that it is deployed in a subset of nodes in which a is deployed, that is,
Loc(a’') C Loc(a). Throughout this paper, when computing survivability with
any algorithm, we always apply this method first to eliminate the irrelevant
agents, and then carry out the computation on the simplified deployments.”
The following example gives the reader a quick idea of how the elimination
idea works.

Example 4 Consider the network, deployment and the disconnect probability
function given in Example 3. We have Loc(ay) = {ni,na}, Loc(az) = {ni,ns},
and Loc(az) = {n1,n3}. As Loc(asz) C Loc(asz), we may remove ag from the
deployment 1 and update p as follows:

W(ny) ={ay,az}, p'(ne) ={a1}, and p/'(n3) = {az}. We compute the surviv-
ability of i’ by Algorithm SFla as

SF1,(M\{as}, V,dp, ') = 1— (Pr(Aq, )+ Pr(Aa,)) + Pr(Ag ANAg,) =1—(0.42+
0.28) + 0.168 = 0.468.

Clearly, SF1,(M\ {as},V,dp, /) = SF1,(M,V,dp, u).

3.3 An Upper Bound of the Survivability

As Algorithms SF'1, and SF'1,, both take exponential time, we now establish
an upper bound for the survivability of p based on Algorithm SF'1,. This
upper bound can be used to evaluate heuristics proposed later in the paper.

As mentioned above, A, is the event that all nodes on which some agent is
located get disconnected. We are therefore interested in the complement of

7 Another simplification of the deployments presented in this paper is that we
assume the number of copies of an agent on one node is at most one. Note in
our model, the survivability of a deployment, where more than one copy of the
same agents exist on the same nodes, is equal to the survivability of the simplified
deployment.
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event Ay. Finding a lower bound for Pr(A,) and subtracting it from 1 yields
an upper bound on the survivability of . Given Equation (3), the Bonferroni
inequalities [18] state that if the sum on the right is truncated after k terms
(k < |M)]), then the truncated sum is an upper bound of Pr(A,) if k is odd
and is a lower bound of Pr(Ay) if k is even. For example, it is easy to see that
Yaiem Pr(Ae) — Xaitay, ana;em Pr(Aa; A Agy) (where [M| > 2) is a lower
bound for Pr(Ag). This lower bound can be calculated incrementally until
we run out of a predefined maximal running time or the difference between
what we add to the expression (an odd term) and what we subtract from the
expression (an even term) is very small. We can then take the maximum of all
the lower bounds that we computed. Subtracting this value from 1 will give us
an upper bound on the survivability of i. The following algorithm® explains
the way to find an upper bound of the survivability of .

Algorithm 1 UB(M,V,dp, u, D,TM)
(* Input:  a predefined value D and a mazimum running time TM  x)

(x  Output: an upper bound on the survivability of u *)

(1) start timer T, k = 1; (* k specifies the number of elements in the subsets *)
(2) value = 0, value, = 1;
(3) p=0, minub =1, maxlb = 0;

(4) while (( |value — value,| > D) and (T < MT))

(a) value, = value;
(b) value = ksubset(u, k);(* returns the sum of the probability of k-subsets *)
(c¢) if k is odd, then sign = 1;

else sign = —1;
(d) p=p+ sign X value;
(e) if (sign =1)

if p < minub, then minub = p;

(f) else

if p > maxlb, then mazlb = p;
(9) k=k+1;

(5) return (1 —maxlb).

Proposition 8 Given a deployment p and a network V', Algorithm UB yields
an upper bound on the survivability of .

Proof. Since Algorithm SF1,(M,V,dp, i) returns the exact survivability of
w, we still need to show that UB(M,V,dp,pu, D, TM) > SF1,(M,V,dp, 1).

8 All our algorithms receive a set of agents M, a set of nodes V, a disconnect
probability function dp and a MAS deployment p as input. For convenience, in the
input part of each algorithm we will describe only the additional input parameters.
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Define

Si = 2 Pr(AL), S2 = Y Pr(Aa, A Ag,), and Sy = Y, iy i Pr(Aa, A
N A, ) for 2 < k < [M]. Based on Equations (2), (3) and Bonferroni
inequalities [18], we have

SF1,(M,V,dp, ) =1—-Pr(UM A, ) <1- Sk (—=1)%LS; (for even k > 2)
<1—maxlb =UB(M,V,dp,u, D, TM). O

4 Heuristic Algorithms for Computing Survivability

As Algorithms SF'1, and SF'1, are too expensive for real-world applications,
we now propose several heuristics to compute the survivabilities of deploy-
ments. We are interested in finding lower bounds for SF (), which will allow
us to guarantee that a given deployment p has a survival probability that
exceeds some threshold.

4.1  An Anytime Algorithm SF2

Algorithm SF1, can be turned into an anytime algorithm using the same
idea used to compute the upper bound. If we find an upper bound for Pr(A,)
and subtract it from 1, then we attain a lower bound on the survivability of .
Again, looking at Equation (3), >-,.caq Pr(A,,) is an upper bound for Pr(A,).
Any odd number of terms of Equation (3) provides an upper bound. An any-
time algorithm can iteratively add terms until we exceed a time deadline or
the ratio between the maximum among the lower bounds and the minimum
among the upper bounds is smaller than a specified ratio r. The algorithm is
similar to Algorithm 1 except that the anytime algorithm returns (1 —minub)
as the lower bound on the survivability of the deployment.

Algorithm 2 Algorithm SF2(M,V, dp, u, R, TM)
(* Input:  a predefined ratio R and a mazimum running time TM  x)

(x  Output: a lower bound on SF(u) * )

(1) start timer T, k = 1; (* k specifies the number of elements in the subsets *)
(2) p=0, minub =1, maxlb = 0;
(3) while (azlb > R) and (t < MT)

minub
(a) value = ksubset(p, k);(* returns the sum of the probability of k-subsets *)
(b) if k is odd, then sign = 1;
else sign = —1;
(¢c) p=p+ sign x value;
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(d) if (sign = 1)

if p < minub, then minub = p;
(e) else

if p > maxlb, then mazlb = p;
(f) k=k+1

(4) return (1 — minub).

Proposition 9 Given a deployment p and a network V', the anytime Algo-
rithm SF2 returns a lower bound on SF(u).

Proof. The proof is similar to that of Proposition 8, except here we need
to show that SF2(M,V,dp,u, R, TM) < SF1,(M,V,dp, ). Again, define
Sk = Yir<ige.iy PT(Agyy Ar o AN Ay, ) for 2 < k < |M]. Based on Equation (2),
(3) and Bonferroni inequalities [18], we have

SF1,(M,V,dp, 1) =1 — Pr(UM A,) > 1 — S5 (=1)7+1S; (for odd & > 1)
> 1 —mimub = SF2(M,V,dp, u, R, TM). O

4.2 A Tree-based Algorithm SF'3

Algorithm SF3 is a heuristic which provides a lower bound on SF(u). Algo-
rithm SF'1,, computes the survivability of p by summing up the occurrence
probabilities of all possible valid future networks V;. The high complexity of
Algorithm SF1, is therefore caused by the fact that it enumerates and checks
an exponential number of possible future networks. In contrast, Algorithm
SF3 attempts to check only a bounded number of V;’s. This immediately im-
plies that SF3(M,V,dp, n) < SF(M,V,dp, i), that is, Algorithm SF'3 yields
a lower bound on SF(u). Obviously, in order to make this lower bound as
close as possible to SF(u), the selection process should try to pick the future
networks V; whose occurrence probability is as large as possible.

Algorithm SF'3 does this via a tree search in which every vertex is labelled
with a subset of V. The algorithm starts from the root of the tree, labels it
with V' and computes V’s occurrence probability. For every n € V, there is
a vertex labelled V' \ {n} in the second level of the tree. For each label V' of
such a vertex, the algorithm checks if V"’ is valid and computes its occurrence
probability. However, only the a vertices with the highest occurrence proba-
bilities on the second level of the tree are further expanded in the same way.
If a vertex labelled V; is expanded, its children will be labelled by V; \ {n}
for n € V;. Again, only « vertices on each tree level will be expanded. The
algorithm stops when there are no more vertices to expand, and returns the
sum of the occurrence probabilities of all the valid future networks occurring
as labels in the search tree.
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If o is polynomial in the size of the input, then Algorithm SF'3 considers
only a polynomial number of future networks. Therefore it may return poor
results if there is a large number of nodes. For example assume that the dis-
connect probability of nodes is distributed uniformly in [0, 0.5]. The output of
Algorithm SF'3 is bounded from above by the number of subsets considered
multiplied by the largest occurrence probability. The largest occurrence prob-
ability in this case is bounded by [],,cy (1 —dp(n)). Therefore the survivability
estimate given by Algorithm SF3 is usually no greater than 0.9Vl which is

smaller than 10_%.

Since the performance of Algorithm SF'3 could be very poor, we propose two
heuristics to improve its value.

Disjoint removal heuristic: The first heuristic is that prior to running
Algorithm SF'3, we check for each agent a € M whether the nodes in Loc(a)
are disjoint from those in Loc(a’) for any other agent a'. Let M’ denote the set
of such agents a’ with disjoint sets. We can compute the survivability of M’
directly by SF(M',V,dp, 1) = Maerr (1 = Macpm)nevdp(n)). We then apply
Algorithm SF'3 on the remaining agents M\ M’. At the end of the algorithm,
we multiply the returned value by SF(M', V,dp, n), i.e., SF3(M,V,dp, ) =

Node removal heuristic: The second heuristic is based on the idea that if
the number of nodes involved in Algorithm SF'3 is larger than some predefined
constant K (i.e. |V| > Kj), then we may reduce it by removing some nodes
which contribute less to the survival of the . We sort the nodes in ascending
order of {/1 — dp(n), where p denotes the number of agents on node n. The
first K, nodes can be deleted from the deployment. The intuition behind this
formula is to remove nodes whose disconnect probability is relatively higher,
since the occurrence probabilities of networks that include these nodes are
relatively low. In addition we want to remove nodes that are deployed with
a relatively small number of agents, since the disconnection of these nodes
influences fewer agents (compared to nodes that are deployed with a larger

number of agents). Note that as dp(n) increases (/1 — dp(n) decreases. In

addition as p increases (/1 — dp(n) increases, since 1 —dp(n) is a fraction. The
first K, nodes can be deleted from the deployment. Note that after the removal
action, it may be possible to eliminate more irrelevant agents by applying
the idea presented in [27] (see Example 4) in order to further simplify the
computation.

Algorithm SF3 is presented below.

Algorithm 3 Algorithm SF3(M,V,dp, u, o, Ky, K,)
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(* Input: (1) the predefined number of selected vertices av  *)
(* (2,3) the predefined constants Ky and K, * )
(x  Output: a lower bound on SF(u) * )

(1) disjointgy,, = rmuvdisjoint(u, V, M, dp);
(* remove the agents with disjoint locations, return the survivability of the
removed agent set as described above *)

(2) if |V| > Ky, then
V = rmonodes(u, V, M, dp, K,);
(* remove K, nodes, and update the network as described above *)

(3) bestya = Hnev(l - dp(n));

(* compute the occurrence probability of the network V- *)
(4) temp = {V'}, done = false, flag = false;

(5) while ( —done ), do

(a) X' =0;
(b) while (temp # 0 )
(i) X = headof(temp), temp = temp \ X;
(ii) X =X'U {X \ {I‘Z} | x; € X},’
(¢) Svatia = 0;
(d) while (X' #0), do (* remove invalid sets and repetitive sets in X' *)
(i) V! = headof(X'), X' = X'\ V/;
(11) if V' & Syariq and V' € ValidV (u), then
Svatid = Svatid U Vly flag = true;
(e) if (—flag), then done = true;
else, do
(1) for each (V; € Syarid)
Poceur Vi = HnEVi(l - dp(n)) ’ HnEV\Vi dp(n);
bestyal = bestyal + Poceur Vi
(ii) Svalid = Sort(svalid’poccurv;);
(* sort sets in Syariq in descending order according to their occurrence
probabilities *)
(iii) for (j=0,j < a,j+ +) (* keep the first a of sets *)
o temp = temp U headof(Syarid);
o Svalid = Svalid \ h/eadof(svalid);'
(i) flag = false;

(6) return (bestyq X disjointsyry).

In the algorithm, the function rmudisjoint(u,V, M, dp) implements the dis-
joint removal heuristic described earlier which removes agents whose set of
locations is disjoint from the set of locations of any other agent. The function
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rmonodes(p, V, M, dp, K,) implements the node removal heuristic, which re-
duces the number of the nodes by removing K, nodes which contribute less
to the survival of the deployment.

The following proposition states that Algorithm SF'3 is a correct polynomial
time approximation of SF(u).

Proposition 10 (1) For any o > 0, the value returned by Algorithm SF3 is
a lower bound for SF(u).

(2) Suppose « is fived. Then the time complexity of Algorithm SF3 is O(a |V |?
log(a |V]) + a |V[*IM]), i.e., the algorithm is polynomial if o is polynomial
in the size of the input.

A sketch of the proof of the above proposition is given below.

Proof. Suppose the search starts from the root in level 0 of the tree, labeled
by the set of nodes V. Consider a vertex z in level i of the tree, labeled by
a set V' of size |V'| = |V| — i. In the next level of the tree, level ¢ + 1, 2
has |V’| children, each of whose labels are generated by removing exactly one
node from V’. Only the « valid sets with the highest occurrence probabilities
in level 7 are used to generate the next level. Thus the total number of vertices
at level i + 1 is a(|V| — 7). For each generated set of nodes, the occurrence
probability of a set can be computed in O(1)? time, and checking if the set is
valid (i.e., if it contains all agents) can be done in O(|M|) time. In addition,
for each level, sorting the sets of the nodes takes O(a|V|log(a|V])). As the
maximum depth generated in the tree is |V, the time complexity of Algorithm
SF3 is:

O(IVI(alV]IM| + [V]a|V[log(a|V])) = O(e [V[* log(a [V]) +a [V]?IM] ).

Since the survivability of p is the sum of the occurrence probabilities of all the
valid subsets while Algorithm SF'3 only considers a subset of all valid subsets,
clearly SF3(M, V., dp, u, o, Ky, K,.) < SF(M,V,dp, ) for any value of a, K,
and K,. O

Example 5 Consider the network and the updated deployment of Example 4,
where p(ny) = {a, a2}, u(ngy) = {a1}, and p(ns) = {as}. Suppose a = 1,
Ky =20 and K, = 3. The root is V- = {ny,na,n3}. Thus X5 = {n1,n2,ns},
and

Poceur(Xs0) = (1 — dp(n1))(1 — dp(n2))(1 — dp(ng)) = 0.072,

In the next level of the graph, three subsets are generated by removing one node

from V :

9 This can be done by using the occurrence probability of the parent’s vertex. This
is due to the fact that the difference between a vertex in the tree labeled V'\ {n} and
its parent’s vertex in the tree labeled network V' is that in V' \ {n}, a node n doesn’t

survive while in V' a node n survives. Therefore poceur(V '\ {n}) = & ff‘;;(%) x dp(n).
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Xs11 = {na,n3}, and poceur(Xs11) = (1 —0.6)(1 — 0.4)(0.7) = 0.168;

Xs12 = {n1,n3}, and poceur(Xs12) = (1 —0.7)(1 — 0.4)(0.6) = 0.108;

Xas = {n1,n2}, and poccur(Xs13) = (1 — 0.7)(1 — 0.6)(0.4) = 0.048.

As a =1, we use the set X 11 to generate subsets in the next level.

Xso1 = {na} and Xgo = {ns} are both removed because they are invalid.
The search terminates because no more valid subsets can be created. The sur-
vivability estimate computed by Algorithm SF3 for the deployment is
SF3(M,V,dp, 1, a, Ky, K.) = 0.396.

Hence Algorithm SF3 lower bounds SF(u), which is 0.468, as shown in Ez-
ample /.

4.8 A Disjoint based Algorithm SF4

Algorithm SF4 calculates survival probabilities while relying on the require-
ment that every agent must survive somewhere in the network, and using
information on the locations of each agent. For each agent a; € M in the mul-
tiagent application, let Loc(a;) = {n!,---,nL} be the set of nodes where qa; is
located. Let E; be the event that the node n; will survive. Then the event that
at least one copy of a; will keep functioning is denoted by £' = E{ V...V E}.
The probability of the event E* can be computed by

P(EY) = 1 — dp(n})dp(n) ... dp(n})
We can now define the event that a MAS deployment p will survive:

E(M,V,dp,p) = (E}V ... VEL) A AEMY . v EMY.

Eami

The probability of the event E(M, V, dp, i) represents the survivability of the
deployment p. Unfortunately, the E’s are not mutually exclusive. However,
Algorithm SF4 computes a lower bound of F(u) by assuming that the events
E' E? ..., EMl are pairwise disjoint. The SF4 algorithm is defined by the
following formula.

SFA(M,V,dp, u)=P(EY)YP(E?) - - P(EMI)
=(1—dp(ny)---dp(n;)) x ...
x (1 — dp(n‘lM ) - dp(niMh)

Proposition 11 Algorithm SF4 provides a lower bound on SF(u).
The following example illustrates the operation of Algorithm SF4.
Example 6 Consider the updated deployment ' of example 4. Agents a; and

as are located at nodes V= {ny,no} and V' = {ny,ng}, respectively. Thus
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P(E"Y) =1 —dp(ny)dp(ny) =1 —0.42 = 0.58;

P(E?) =1—dp(ny)dp(nz) =1—0.28 = 0.72.
So the survivability of p is computed by
SF4(M,V,dp,u) = P(E')P(E?) = 0.4176.

Algorithm SF4 returns a lower bound on SF(u) (i.e.,0.468). In this example,
compared with the value returned by Algorithm SF3 (0.396, see Example 5),
Algorithm SF4 provides the better solution. However, as shown later in the
section on experiments, there are some other cases where Algorithm SF4 re-
turns lower survivabilities than Algorithm SF3.

4.4 A Group based Algorithm SF4,

Algorithm SF4 computes each agent’s survival probability and then returns
the product of these survival probabilities. If no node contains more than one
agent, then Algorithm SF4 returns the exact answer. However, in general,
when the number of agents is large and there is a large number of nodes in
which many agents are located, Algorithm SF4 may return a very low approx-
imation ratio. To improve this, if there are agents in a deployment that coexist
in various nodes, we would consider these agents as a group and compute the
group’s survivability. We divide all agents into several such groups, and then
take the product of the survival probabilities of all groups as the survivability
of the deployment. An intuitive way to group agents is to consider an agent
a that has the lowest survivability. We group a with other agents that have
the most common nodes with it. When we compute the survivability of each
agent group, we use Algorithm SF1,. As Algorithm SF'1, takes exponential
time in the number of agents, we limit the size of each group.

Algorithm 4 Algorithm SF4,(M,V,dp, u, s)

(* Input: the number of agents in one group, s *)

(x+  Output: a lower bound on SF(u) * )

(1) agents = M, surv =1;

(2) for each agent a; € agents, do
P(EZ) =1- HnELoc(ai) dp(n);
(3) while (agents # NULL), do
o a; = argmingepmP(E?); (* choose the agent with the lowest survivability *)
o A" = group(a;, s, u, V,agents);
(* group at most s — 1 agents who have the most common locations with a;
into one group A’ *)
o value = SF1,(A,V,dp,u); (* use Algorithm SF1, to compute the surviv-
ability of A’ *)
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e surv = surv x value;
e agents = agents \ A’.

(4) return surv.

In this algorithm, the function group(a, s, 1, V, agents) takes as input, an agent
a, the predefined number of members in one group s, the deployment p, a set
of agents denoted agents and a set of nodes V' . For each agent, it computes
the number of common locations with agent a, selects the first s — 1 agents
who have the most common nodes (if two agents have the same number of
common nodes it chooses one of them arbitrarily), groups these s — 1 agents
together with agent a into one group A’, and then returns A’.

The following example demonstrates the grouping idea applied in Algorithm
SF4,.

Example 7 Consider a network with six nodes V. = {ny,ng, ns,ny,ns, ng}
and a multiagent application M = {ay,as,as,as}. Suppose the disconnect
probabilities are:

dp(ny) = 0.7, dp(ny) = 0.6, dp(nz) = 0.4, dp(ns) = 0.3,

dp(ns) = 0.2, dp(ng) = 0.1.
Consider the current deployment pu:

p(n1) = {ar, a2}, pne) = {ar}, png) = {az}, plng) = {as},

p(ns) = {az, as}, p(ng) = {as}.
We set the number of agents per group to 2. Algorithm SF4, first computes
the survivability of each agent based on the nodes in which the agent is located:

P(EY) =1 —dp(ny)dp(ns) = 0.58, P(E?) =1 — dp(ny)dp(n3) = 0.72,

P(E?) =1 —dp(ny)dp(ns) = 0.94, P(E*) =1 — dp(ns)dp(ne) = 0.98.
Since agent ay is most likely to fail, we select ay to form the first group g,. We
then group agent as and ay together since as has the most number of common
nodes with agent ay. Thus we have g1 = {ay,as}. Algorithm SF1, is applied
to group g, to compute its survivability:
SF(g1,V,dp,p) = SF1,(g1,V,dp,pu) = 1 — (Pr(Ay,) + Pr(As,)) + Pr(Aq, A
Auy) = 1= (dp(n1)dp(na) + dp(ny)dp(ns)) + dp(ni)dp(ns)dp(ns) = 0.468.
Similarly, the remaining agents, ag and ay, form the second group g, = {as, as}.
SF(ge,V,dp, ) = SF1,(g2, V,dp,pu) = 1 — (Pr(Aau) + Pr(Aa,)) + Pr(Au A
Au,) =1 = (dp(ng)dp(ns) + dp(ns)dp(ng)) + dp(ng)dp(ns)dp(neg) = 0.914.
Thus, the estimated survivability given by the algorithm is:

Using Algorithm SF1, on M, we know the survivability of p is SF(u) =
0.42775. Clearly, in this case, Algorithm SF4, returns the actual survivability
since there is no overlap whatsoever between the locations of two groups (g1 =
{a1,a2} and go = {as,as}). However, this may not necessarily happen with
other deployments.
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4.5 A Split Algorithm SF'5

Given a specific node, n € V, we can consider two possible disjoint events.
The first, Fy, is the event that the network survives given that node n remains
connected. Alternatively, Fs is the event that the network survives given that
node n becomes disconnected. If n remains connected, all the agents that are
deployed on it survive. Thus the survivability of the network, in this case, de-
pends on the survivability of the rest of the agents, which are not located on
n. If n is disconnected, then the survivability of the network depends on the
rest of the nodes, i.e., V'\ {n}. The survivability of the original network is thus
(1 — dp(n))Pr(Ey) + dp(n)Pr(E,). In both cases, the problem of computing
the survival probability is smaller than the original problem. This leads to a
recursive approach for solving the problem. The subproblems usually become
even smaller when we remove the irrelevant agents according to the idea pre-
sented in [27]. There are several stopping rules that are specified in the first
three lines of the pseudocode shown below. The first two rules refer to situa-
tions in which it is possible to compute the exact survival probability of the
future network. The third stopping rule has to do with future networks that
have a very small survival probability (computing through recursion using p;
p = 1 the first time Algorithm SF'5 is called). For these very low probability
future networks, Algorithm SF4 is applied to obtain a lower bound of the
survivability.

Algorithm 5 Algorithm SF5(, M, V,dp, i, p,€)
(* Input: (1)  survivability of the known nodes during split p; initially p = 1
(* (2) a predefined threshold €
(x+  Output: a lower bound on SF(j)

(1) if M =0, return 1;

else, if the agents of M are located on disjoint sets of nodes,
then return [],c (1 — [aepm) dp(n));

else, if p <,
then return SF4(M,V,dp, ).

else, choose a node n € V with the largest set of agents,
(a) V" =V'=V\{n};
() 1 = p; M’ = M\ {ala € pu(n)};
(¢c) get rid of irrelevant agents in M and M’ according to the idea in [27];
(d) adjust p and V' w.r.t M and (' and V" w.r.t M’;
(e) return dp(n) x SE5(M, V' dp, u,dp(n)p, €)+
(1 —dp(n)) x SE5(M', V" dp, i/, (1 — dp(n))p,e€).

Proposition 12 Algorithm SFE5 yields a lower bound on SF(p).
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Proof. Algorithm SF5 is recursive, with three termination conditions. If the
termination conditions are not met, the algorithm generates a (smaller) sub-
problem; if the algorithm terminates, there are three possible cases as follows.

If the algorithm terminates by the first termination condition, i.e., M = ) (line
1 of the pseudocode in Algorithm 5), the subnetwork of the subproblem does
not contain any agents. Thus we cannot simplify the problem any further. The
result returned by the algorithm is the exact solution for the original problem.

If the second termination condition applies, i.e., the agents of M are located
on disjoint sets of nodes, return [T,eaq(1 — [Taey(m) dp(n)) (lines 2,3 of the
pseudocode in Algorithm 5), the subproblem is easily computed by multiplying
each agent’s survivability. Since the agents in this condition are located in
disjointed nodes, the solution is the exact same solution as for the original
problem.

Finally, if Algorithm SFE'5 terminates by the third condition, i.e., if p < e,
then return SF4(M,V,dp, ) (lines 4,5 of the pseudocode in Algorithm 5).
Since Algorithm SF4 provides a lower bound on SF(u), the result returned
by Algorithm SF'4 is a lower bound for the subproblem of Algorithm SF'5.

In conclusion, Algorithm SF'5 also provides a lower bound on SF(u). O
The following example illustrates how Algorithm SF'5 works.

Example 8 Consider the network and the updated deployment of Example 4,
where p(ny) = {ay, a2}, p(ng) = {a1}, and p(ns) = {az}, and € = 0.001. The
heuristics we use to choose the node to split is the number of agents deployed
on that node. Since node ny has the largest number of agents of all the nodes,
ny s selected. There are two cases which refer to the splitting operation w.r.t
ny.
The first event Ey is where the network will survive given that node n, will
remain connected. In this case we have:

Vi ={ng,n3}, M1 =0,Yn € Vi, u1(n) =0,p1 =1 —dp(ny) =0.3;
The second event Ey is where the network will survive given that node ny will
be disconnected. In this case we have:

Vo = {ng,nz}, My = {ay, az}, pa(n2) = {a1}, pa(nz) = {az}, p2 = dp(n1) =
0.7;
We now call Algorithm SF5 with the updated parameters.
As My =10, we have Pr(Ey) = 1. In My, the agents a; and ay are located on
disjoint nodes, thus, we return

Pr(Ey) = (1 —dp(ny))(1 —dp(ng)) = (1 —0.4)(1 —0.6) = 0.24;
Therefore, we stop the split operation and return the survivability of the orig-
wnal deployment by:
SEF5(M,V,dp, i, 1,0.001) = p; x Pr(E;) + ps x Pr(Fy) = 0.468.
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Note that in this case, Algorithm SFES5 outputs the exact survivability (0.468,
as shown in Example 4). However, this is not necessarily true for other cases.

5 Experiments

The survivability algorithms we shall compare in this section are:

e anytime algorithm SF2: where the threshold of the approximation ratio is
set to 0.9 and the time limit on the main part of the algorithm is set to 5
seconds;

o tree-based algorithm SF'3, where the constant « is set to the number of
nodes in the network, and the constants K, and K, are set to 20 and 6,
respectively:;

e disjoint based algorithm SF4;

o group algorithm SF4,, where the number of agents in each group is set to
4;

e split algorithm S F'5, where the threshold € in the stopping rules is predefined
as 0.005.

The performance measures we used are: (1) computation time, and (2) solution
quality. We evaluate the solution quality as follows.

e Exact optimal solutions: For small cases where the number of nodes or the
number of agents are small (less than 16), we obtain the exact survivability
Sk by using the naive algorithm SF'l,, when there are more agents than
nodes, or by using SF'1, when there are more nodes than agents. The so-
lutions provided by the heuristic algorithms Spy are then compared. The
solution quality (or approzimation ratio), is computed as: g—;’

e Upper bounds on optimal solutions: For large cases where computing op-
timal solutions is not feasible, we compute the upper bounds of the exact
survivabilities UB using the upper bound algorithm and compare them
with the values Sy returned by the heuristics. Thus, the solution quality

(or approzimation ratio) is evaluated by: 2£.

We considered various experimental settings. In this paper, we consider in-
stances taken from a (fictitious) company that uses local servers, personal
computers, and some web servers to locate and run multiagent applications.
As we know, web servers and personal computers have high probabilities of
going down, while local servers usually have lower disconnect probabilities.
In the next section, we describe the variations of the settings we used in our
experiments. We use the term number ratio to refer to the ratio of the number
of agents to the number of nodes. Space ratio describes the ratio of the total
amount of resources available on the nodes to the total resource requirements
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of the agents. In addition, the problem size is the sum of the number of agents
and nodes in the settings.

5.1 Environmental Settings

We used various environmental settings in the experiments. Suppose a multi-
agent application M includes many agents but only a relatively small number
of servers (or nodes) is available. We set the number ratio of agents and nodes
to 5/3. We then considered the following two environments:

s1: A network consisting of a small number of web servers N, which constitute
30% of the involved servers, and many local servers N;, which constitute
70% of the involved servers. The disconnect probabilities of the web servers
are very high—above 0.9 (i.e., dp(n) > 0.9, ¥n € N,,), while the disconnect
probabilities of the local servers are very low—below 0.1 (i.e., dp(n) < 0.1,
VYn € N;). The space ratio of nodes and agents is between 2 and 3.

s3: A network consisting of local servers only. Suppose some of these servers are
new, while the others are old. The disconnect probabilities of these servers
are between 0 and 0.4, where higher disconnect probabilities have a higher
probability to appear (there are more older computers than new ones). The
space ratio of nodes and agents is 4.

Consider another multiagent application M’ which consists of a small number
of agents. The company intends to deploy M’ on many personal computers
and local servers since the available resources on each server or PC are limited.
We set the number ratio of agents to nodes at 3/5. The following environments
are specified:

s2: Personal computers (30%) are employed, with disconnect probabilities over
0.9; they also use local servers (70%) which have low disconnect probabilities
(less than 0.1). The space ratio of nodes to agents is around 2-3.

s4: Only local servers of different agents are used to host M’. The disconnect
probability of the servers is distributed as in setting s3. The space ratio of
nodes to agents is around 4.

We apply an existing MAS application from the IMPACT system [40] with
31 agents to determine the resource distribution of agents (in the range of 0
to 250 KB) in our experiments.'® We use the environments s1-s4 described
above to test the survivability algorithms.

10'We do not distinguish the criticality between agents in a multiagent system when
computing its survivability. Therefore, other factor such as roles (or workloads) of
different agents does not play a role in the experiments, and thus not reported here.
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5.2 Agent Deployment Methods

The method used to generate deployment is important since different surviv-
ability algorithms may work well with different types of deployments. In this
paper, we generate deployments by the heuristics proposed in [27], namely
node-based and agent-based heuristics. In addition, we use a random-based
method to represent other possible deployments. The deployment methods
work as follows.

Node-based: This heuristic is based on the knapsack problem. We first sort
nodes in ascending order according to their disconnect probabilities. We then
place agents, starting from the one with the smallest ID in our implementation,
on the sorted nodes starting from the node with the lowest dp. We put as many
agents as possible on this node, then go to nodes with the second lowest dp
and so on.

Agent-based: This is based on the idea that we should first deal with agents
with high resource requirements. We sort agents in ascending order according
to resource requirements, deploy the first agent, then choose the agent with
the second highest resource requirement, and so on until no more space is left
for placing agents. When we deploy an agent, we always choose the node with
the lowest dp of the nodes capable of storing the said agent.

Random-based: First we randomly choose a node, and then randomly select
and place agents on it, subject to space constraints. We make sure the deploy-
ment uses all the available resources on the nodes.

In the experiments, we also wanted to investigate the performance of the sur-
vivability algorithms on different deployments returned by various deployment
methods, and to check whether the algorithms have preferences for particular
deployments.

5.3 Fxperimental Results

We are now ready to present the experimental results. All the algorithms in
this paper were implemented on a Linux PC running on a 1000 MHz CPU
machine with 512 MB RAM. Running times of all algorithms are reported
in microseconds. Every recorded observation was averaged over 50 runs. The
algorithms were compared on various deployments (node-based, agent-based,
and random-based) with different environment settings s1—s4. In all the ex-
periments, we varied the problem size, i.e., the total number of agents and
nodes. We present the results of the following experiments: Fxperiment 1 was
carried out in setting s1; Fxperiment 2 in setting s2; Fxperiment 3 in setting
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s3; Experiment 4 in setting s4; Ezperiment 5 compared different algorithms
in setting s1 but with a larger space ratio.

In order to ensure that the survivability computed by the upper bound algo-
rithm is close enough to the actual value, for each deployment, we estimated its
survivability by simulating the node failures on the network a thousand times.

The results show that the upper bounds are pretty close to the simulation
upper bound—simulation result
stmulation result ’

survivabilities. The average relative error, e.g.,
is within 0.5%.

The approzimation ratio of the algorithm reported in the experimental result
Su

is the solution quality described on Page 25, which is computed by either =

or %, depending on the problem size.

Ezxperiment 1

Problem Deploy Upper Anytime | Tree-based | Disjoint Split Group-based
size method bound (SF2) (SF3) (SF4) (SF5) (SF4g)

n18, a30 node-based 0.435412 | 0.951475 0.998919 0.879377 | 0.999515 0.948644

agent-based 0.349391 | 0.930565 0.972725 0.879446 | 0.973295 0.947005

random-based | 0.002281 - - - - -

n24, a40 node-based 0.355659 0.85197 0.964037 0.836856 | 0.965813 0.923682
agent-based 0.306698 | 0.861461 0.881713 0.796948 | 0.889531 0.859259

random-based | 0.000166 - - - - -

n30, a50 node-based 0.429062 | 0.899324 0.937145 0.775934 | 0.939865 0.893412

agent-based 0.331821 | 0.811792 0.851059 0.731787 | 0.852492 0.827303

random-based | 0.000006 - - - - -

Table 1
Experiment 1: Upper bounds and approximation ratios of the different algorithms
with setting s1.

In Experiment 1, we ran and compared five algorithms in setting sl where
the space ratio of nodes to agents was between 2 and 3 and the disconnect
probabilities were distributed either in 0-0.1 or in 0.9-1. The problem size
varied from 48, 64 to 80. Table 1 illustrates the results of upper bounds on
the survivability and approximation ratios by the different algorithms, where
n18, a30 refers to a MAS of 30 agents deployed over 18 nodes.

As can be seen from the upper bounds in Table 1, the deployments achieved by
the node-based deployment method have a higher survivability than the agent-
based deployments. Undoubtedly, when the disconnect probabilities of the
nodes vary dramatically, the MAS is better off if the highly surviving nodes are
considered first when deploying agents. Therefore, it is not surprising that the
node-based deployments result in the best survivabilities of all the methods,
and the random based deployment method returns very poor survivabilities
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Problem Deploy Anytime | Tree-based | Disjoint-based Split Group-based
size method (SF2) (SF3) (SF4) (SF5) (SF4y)
n18,a30 | node-based 65179 5999 7 26094 927
agent-based 75635 3874 5 22075 710
n24, a40 node-based 1237829 2877 9 55172 1527
agent-based | 1237632 975 7 51954 1066
n30,a50 | node-based | 5105916 10156 11 73187 2231
agent-based | 4302199 5039 9 71481 1707
Table 2

Experiment 1: Computation time (in microseconds) using the different algorithms
with setting s1.

(all below 0.005 according to the upper bounds in the table).

In Table 1, we exclude the random based deployments (due to their very low
survivabilities) and discuss the approximation ratios returned by the various
algorithms only on agent-based and node-based deployments. Of all the heuris-
tics, the tree based algorithm, SF'3, and the split algorithm, SF'5, return the
best solutions. SF'5 attains the best result, although the difference between its
results and those of SF'3 is very small. SF'3 always achieves higher accuracy
than the disjoint based algorithm SF4, the anytime algorithm SF2 and the
group algorithm SF'4,. The reason for this is twofold.

(1) First, when searching for the valid future networks, in each level of the
tree, SF'3 always keeps the networks which have higher survivabilities,
and removes those more likely to fail. Thus, in the s1 setting where the
disconnect probabilities are either very high or very low, SF'3 will select
the valid future networks where most nodes have low disconnect proba-
bilities, i.e., dp < 0.1. Since the valid future networks with low survival
nodes (dp > 0.9) do not greatly contribute to the survivability of the
deployment, SF'3 can make good approximations.

(2) Second, the space ratio of nodes to agents is small (i.e., 2-3) in the sl
setting, which implies that since the nodes cannot accommodate many
agents due to resource constraints, the number of valid future networks
is limited to a relatively small number. As SF'3 keeps the fixed o best
networks in each level of the tree search, it is very likely that S F'3 will keep
most of the “important” valid future networks which have a relatively
high survivability. Thus, SF'3 works very well with setting s1.

Statistical significance. In order to discover whether there are significant
differences in the performances of the algorithms, we performed a One-way
Analysis of Variance, or one-way ANOVA M [12], on the solution of each round

"'Tn one-way ANOVA, the number of degrees of freedom (df) associated with “be-

tween algorithms” is one less than the number of algorithms; the df for “residual” is
the total number of samples of the algorithms minus the total number of algorithms.
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Sum of Degrees of Mean square F value p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms 0.16483 4 0.04121 10.79146 | 2.9689E-07 | 2.46749
Residual 0.36275 95 0.00382
Total 0.52758 99
Table 3

ANOVA on the results of five algorithms in Experiment 1 with agent-based deploy-
ments and a problem size of 64. The level of significance required is set to 0.05.

Sum of Degrees of Mean square | F value | p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms 1.0266E-06 1 1.0266E-06 2.9647 | 0.09323 | 4.09817
Residual 1.3158E-05 38 3.4627E-07
Total 1.4185E-05 39
Table 4

ANOVA on the results of SF'3 and SF5 in Experiment 1 with agent-based deploy-
ments and a problem size of 64. The level of significance required is set to 0.05.

returned by the different algorithms. Table 3 shows the results of the ANOVA
applied to the data achieved in setting sl on the agent-based deployments
when the problem size is 64. The level of significance required in ANOVA is
set to 0.05. In the table, the calculated F value (F=10.79146) exceeds the
critical value of F' (2.46749) and the probability (p-value) that the calculated
F value would be obtained by change is nearly zero. Therefore, the difference
in performance of the five algorithms is significant. We then performed the
ANOVA only on the tree based algorithm SF'3 and the split algorithm SF'5.
Since the computed F value (F= 2.9647) is smaller than the critical value of
F (4.09817) as shown in Table 4, we can conclude that there is no significant
difference between the performance of SF'3 and SF'5.

Computation time. Table 2 shows the computation time taken by the dif-
ferent algorithms. From the results, we can see that SF'3 needs much less
computation time than the split algorithm and the anytime algorithm on
both node and agent-based deployments. The disjoint based algorithm is the
fastest of all, taking only several microseconds to compute the survivability of
a given deployment. The time needed by the group algorithm SF4, is close
to that of the tree based algorithm SF'3.

Conclusion. Overall, in experimental setting s1, when taking both the ap-
proximation ratio and the computation time into account, the tree based al-
gorithm SF'3 outperforms the other algorithms.

The F value is simply the ratio of the variance estimates of “between algorithms”
and “residual”. The critical values (F crit) are presented in an F table. Using the F,
we can compute the p-value, which is the probability of the obtained result occurring
due to chance. For a more detailed discussion on one-way ANOVA, see [12].
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Problem Deploy Upper Anytime | Tree-based | Disjoint Split Group-based
size method bound (SF2) (SF3) (SF4) (SF5) (SF4g)

n30,al8 node-based 0.520557 | 0.928353 0.990334 0.974706 | 0.99961 0.989189
agent-based 0.410592 | 0.939275 0.996562 0.973966 | 0.999569 0.998401
random-based | 0.001406 - - - - -
n40, a24 node-based 0.436522 | 0.880772 0.980832 0.952544 | 0.98856 0.979202
agent-based 0.342072 | 0.907723 0.968986 0.941974 | 0.991491 0.988068

random-based | 0.001808 - - - - -

n50, a30 node-based 0.398411 | 0.923707 0.981228 0.958711 | 0.973521 0.96628
agent-based 0.317906 | 0.910653 0.972855 0.900914 | 0.976648 0.967943

random-based | 0.001918 - - - - -

Table 5
Experiment 2: Upper bounds and approximation ratios of the different algorithms
with setting s2.

Problem Deploy Anytime | Tree-based | Disjoint-based Split Group-based
size method (SF2) (SF3) (SF4) (SF5) (SF4y)
n30,al8 node-based 5904 26546 8 19842 1361
agent-based 29781 1325 7 14043 586
n40, a24 node-based 55806 176935 11 39496 2111
agent-based 225411 1183 8 32944 998
n50,a30 | node-based 364816 1109754 15 86811 3096
agent-based | 1822433 11842 11 74323 1676
Table 6

Experiment 2: Computation time (in microseconds) using the different algorithms
with setting s2.

Ezperiment 2

Tables 5 and 6 present the results of the performances of the different algo-
rithms in experimental setting s2 in which there are more nodes than agents
(with a ratio of 5/3), the space ratio of nodes to agents is 2-3, and the dp’s
are distributed dramatically. Concerning the upper bounds of the deployments
returned by the different types of methods, the node-based method results in
the highest survivability. Again, the random based method does not work well
in this setting with dramatically varying dp’s over the network.

In terms of solution quality, the split algorithm SF'5 is the best, followed by the
tree based algorithm SF'3, which outperforms the group algorithm SF'4, both
on the node-based deployments with problem sizes of 48,64, 80, and on the
agent-based deployments with a size of 80. The disjoint algorithm SF4 gives
a pretty good approximation (with a ratio of over 0.9), regardless of the fact
that it returns the poorest measurements of all algorithms. The performance
of both SF4 and SF4, is significantly better than in Experiment 1. In the
deployments achieved with setting s2, the average number of agents located
on each node is smaller compared to setting s1 since there are more nodes than
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agents in s2, but the space ratio is the same as in s1. As there is less overlap
in the locations of agents, SF'4 and SF'4, work better in this experiment than
they did in Experiment 1.

Statistical significance. In addition, we performed a statistical significance
test for the algorithms SF'3 and SF'5. Table 7 shows that the calculated F
value (F=11.54003) is greater than the critical value of F (3.99092) with a
very small p value (p = 0.0012). Hence, we conclude that in this setting,
the performance of algorithms SF3 and SF'5 in terms of solution quality are
significantly different.

Sum of Degrees of Mean square F value p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms 0.00048 1 0.00048 11.54003 0.0012 3.99092
Residual 0.00265 64 4.1477E-05
Total 0.00313 65
Table 7

ANOVA on the results of SF'3 and SF5 in Experiment 2 with agent-based deploy-
ments and a problem size of 64. The level of significance required is set to 0.05.

Computation time. In terms of computation time taken by different heuris-
tics on the agent-based deployments, the results are similar to those in Ex-
periment 1, i.e., the split algorithm SF'5 and the anytime algorithm SF'2 take
much more time than the other three heuristics. If we look at the time taken
for computing the node-based deployments, it is clear that the tree based
heuristic SF'3 needs the longest time. As we have shown in section 4.2, the
complexity to compute SF3 is dependent on « |V|? log(a |V|). Therefore,
although the problem size remains the same in setting s2 as in s1, SF'3 needs
longer time to terminate compared to sl since the ratio of nodes to agents is
higher. However, note that this is not the case for SF'3 on the agent-based
deployments, where SF'3 completes the search fast, but the survivabilities it
returns are comparable with those on the node-based deployments, as de-
picted in Table 5 and 6. Apparently with setting s2, when applying SF'3 on
the agent-based deployments, the number of valid future networks in each level
converges fast with the tree search. Consequently, SF3 may terminate early.
Thus, the results suggest that in settings like s2, the tree based algorithm SF'3
leads to better performance in terms of computation time for the agent-based
deployments compared to the node-based ones.

| | 112,220 | n18, 230 | n24, 240 | 030, a50 | n36, a60 |

node-based 0.928231 | 0.889023 | 0.876090 | 0.858844 | 0.813199
agent-based 0.935944 | 0.867488 | 0.836907 | 0.831710 | 0.803683
random-based | 0.657132 | 0.474367 | 0.349565 | 0.302506 | 0.186378

Table 8
Experiment 3: Upper bounds on the actual survivability of the different deployments
with setting s3.
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Fig. 1. Experiment 3: Approximation ratios of the different algorithms with setting
s3. The x-axis represents the problem size and the y-axis represents the approxima-
tion ratio.

Conclusion. Overall, in experimental setting s2, the split algorithm SF'5 is
the preferred algorithm if both the solution quality and the running time are
taken into account.

Ezxperiment 3

Experiment 3 was performed in setting s3, where the disconnect probability
of nodes was distributed between 0-0.4 and higher disconnect probabilities
had a higher probability to appear. From the results in Table 8, we notice
that this type of disconnect probability distribution immediately increases
the survivability of the deployments, compared with the upper bounds shown
in Experiments 1 and 2. Even randomly deploying agents could result in better
deployments with higher survivability than those in Experiments 1 and 2. The
node-based method still seems to find better surviving deployments than the
other two methods.

Figures 1 and 2 present the approximation ratios and the computation time of
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Fig. 2. Experiment 3: Computation time of the different algorithms with setting s3.
The x-axis represents the problem size and the y-axis is the computation time (in
a logarithmic scale).

the various algorithms, respectively. In both figures, the x-axis represents the
problem size, varying from 32 to 98 in steps of 16. Note that we did not include
the results of the tree based algorithm SF'3 since its approximation ratio was
much lower (below 0.8) than the others in setting s3. Since in 3 the disconnect
probabilities of the nodes do not vary dramatically, the values of all the valid
future networks do not greatly vary. Therefore, the bad approximation of SF'3
is due to the fact that it excludes the survivabilities of many networks which
also significantly contribute to the overall survivability.

Figure 1 demonstrates the advantage of the split heuristic SF'5, which gives
the best approximation ratio no matter what kind of deployments it employs.
As described in section 4.5, SF'5 is a recursive algorithm and after each re-
cursion the subproblem becomes smaller. Moreover, when a node is chosen
during computation, the whole network could be updated by removing the
irrelevant agents, which further reduces the size of the subproblems. The al-
gorithm terminates only either when the future subnetwork (or subproblem)
can be accurately computed, or when the survivability of the future subnet-
work becomes small enough to be roughly estimated—the threshold is set to
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0.005 in the experiments. Thus it is not surprising that SF5 yields a very
good approximation. According to the experiments in this paper the split al-
gorithm SF'5 always provides a good approximation ratio regardless of the
environment settings.

Furthermore, all the algorithms achieve high approximation ratios (over 0.96)
on the node-based deployments. As for the agent-based deployments, all the
algorithms return approximation ratios of over 0.90 with a problem size no
larger than 80. Only the ratio of SF'4 drops to 0.86 when the problem size
rises to 96. All the algorithms excluding the anytime algorithm reach above a
95% accuracy on the random-based deployments. Seemingly the SF4 and the
SF4, do significantly better on node-based deployments than on agent-based
ones.

Statistical significance. Table 9 shows the ANOVA test result on algorithms
SF2, SF4, and SF5. The calculated F value (20.17751) is greater than the
critical value of F (3.96347). Thus the performances of these three algorithms
are significantly different. However, Table 10 implies that there may not be a
great difference between SF2 and SF5, since the calculated F value (2.45835)
is smaller than the critical value (3.96347).

Sum of Degrees of Mean square F value p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms 0.02316 1 0.02316 20.17751 | 2.412E-05 | 3.96347
Residual 0.08953 78 0.00115
Total 0.11269 79
Table 9

ANOVA on the results of 3 algorithms: SF'2, SF'5, and SF4, in Experiment 3, with
agent-based deployments and a problem size of 64. The level of significance required

is set to 0.05.

Sum of Degrees of Mean square | F value | p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms 0.00189 1 0.00189 2.45835 | 0.12095 | 3.96347
Residual 0.05998 78 0.00077
Total 0.06187 79
Table 10

ANOVA on the results of 2 algorithms: SF2 and SF5 in Experiment 3, with agent-
based deployments and a problem size of 64. The level of significance required is set
to 0.05.

Computation time. As far as the computation time is concerned (shown in
Figure 2 in a logarithmic scale), the anytime algorithm is the time consuming
one. The disjoint-based SF'4 is the fastest algorithm of all the algorithms. The
three graphs show that the computation times of the disjoint based, the group
based, and the split algorithms are barely affected by the deployment methods
they employ. However, the anytime algorithm converges much faster on the
node-based deployments than the agent-based deployments—the computation
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Fig. 3. Experiment 4: computation time of the different algorithms with setting s4.
The x-axis represents the problem size and the y-axis is the computation time (in
a logarithmic scale).

time taken on the latter is approximately 100 times more when the problem
size is over 48.

Conclusion. In setting s3, the split algorithm SF'5 and the anytime algorithm
SF2 outperform other algorithms in terms of solution quality. However, SF'5
is preferable to SF'2 since SF'5 converges to a solution much faster than SF2.

Ezxperiment 4

Experiment 4 was carried out with environment setting s4, where there are
more nodes than agents (with a ratio of 5/3), and dp’s are distributed as
in s3. Table 11 contains the results of the upper bounds and approximation
ratios by the various algorithms. With this setting, even the random based
deployments achieve survivabilities over 0.5 for problem sizes below 80. Using
the agent and node-based methods to deploy agents both result in deployments
with upper survivability bounds exceeding 0.97. Moreover, for the first time,
the agent-based method seems to result in better deployments than the node-
based method, although the differences are quite small (within 0.01). Since
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Problem Deploy Upper Anytime | Disjoint Split Group-based
size method bound (SF2) (SF4) (SF5) (SF4g)

n20,a12 node-based 0.972045 | 0.99988 | 0.999971 | 0.999996 0.999996

agent-based 0.980811 | 0.999845 0.99981 0.99996 0.99994
random-based | 0.774173 | 0.991724 | 0.999837 | 0.999998 0.999999

n30,al8 node-based 0.973543 | 0.999922 | 0.999965 | 0.999983 0.999988
agent-based 0.987256 0.99979 0.999535 | 0.999852 0.999823

random-based | 0.753271 | 0.991622 | 0.999918 | 0.999985 0.999983
n40,a24 node-based 0.979059 | 0.999723 | 0.999969 | 0.999985 0.999983
agent-based 0.989146 | 0.999588 | 0.999269 | 0.999729 0.999681

random-based | 0.609391 | 0.991255 | 0.999639 | 0.999895 0.999889

n50,a30 node-based 0.971718 | 0.999661 | 0.999968 | 0.99989 0.999895

agent-based 0.988569 | 0.999398 | 0.999136 | 0.999649 0.999638

random-based | 0.535532 | 0.990589 | 0.999655 | 0.999775 0.999787
n60,a36 node-based 0.978591 | 0.999681 | 0.999923 | 0.999957 0.999971

agent-based 0.983952 | 0.999217 | 0.998105 | 0.999344 0.999097
random-based | 0.427743 | 0.976279 | 0.998948 | 0.999663 0.999713

Table 11
Experiment 4: Upper bounds and approximation ratios of the different algorithms
with setting s4.

the upper bounds are high, we can assume that the real survivability of the
deployments are high—which suggests that in the deployments, every agent
is deployed on most of nodes in the network; and/or at least one of the valid
future networks has a very high survivability.

As far as the accuracy of the various algorithms is concerned, all the algorithms
exhibited excellent accuracies which always exceed 0.97. In particular, the
disjoint-based algorithm SF'4, the split and the group algorithms (SF5 and
SF4,) were able to always achieve approximation ratios over 0.998. This is
due to the fact that when there are more nodes than agents, the resources
available in each node decreases compared with that in Experiment 3. Thus
most of the agents are disjoint from the others w.r.t their locations, which
enables the algorithms, especially the disjoint and the group algorithms, to
perform very well.

Statistical significance. Since all four algorithms displayed a very good
solution quality, we performed the ANOVA test in order to assess statistical
significance. The test revealed a significant difference as depicted in the results
reported in Table 12, where the calculated F value (10.9514) is greater than
the critical value of F (2.6625). We did the test again on the same data but
only for the anytime algorithm SF'2, the group-based algorithm SF4,, and
the split algorithm SF'5. In Table 13 we notice that there is no significant
difference in the performances between these 3 algorithms since the calculated
F value (2.16635) is smaller than the critical value (3.07376).
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Sum of Degrees of Mean square | F value p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms | 5.15015E-06 3 1.71672E-06 10.9514 | 1.4427E-06 | 2.6625
Residual 2.44542E-05 156 1.56758E-07
Total 2.96043E-05 159
Table 12

ANOVA on the results of 4 algorithms SF2, SF4, SF5, and SF4, in Experiment
4, with agent-based deployments and a problem size of 64. The level of significance
required is set to 0.05.

Sum of Degrees of Mean square | F value | p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms | 4.09349E-07 2 2.04675E-07 | 2.16635 | 0.11917 | 3.07376
Residual 1.10541E-05 117 9.44791E-08
Total 1.14634E-05 119
Table 13

ANOVA on the results of 3 algorithms: SF'2, SF'5, and SF4, in Experiment 4, with
agent-based deployments and a problem size of 64. The level of significance required
is set to 0.05.

Computation time. We show the computation times in Figure 3, where
unlike those shown in Experiment 3, the anytime algorithm SF2 in Experi-
ment 4 converges pretty fast no matter what type of deployment employed. As
explained above, in the resulting deployments in Experiment 4, the locations
of many agents in the network are independent of one another. Consequently;,
we suppose that in Equation (2), the importance of the sum of each term
k(k=1,...,|M]) for the value of Equation (2) quickly decreases with the
increase of k. Therefore, the anytime algorithm can converge faster in Experi-
ment 4 than it did in Experiment 3. Again, the disjoint based algorithm SF4
was found to be the most efficient one.

Conclusion. We can conclude that for settings like s4, where there is rela-
tively little overlap between the agents’ locations in deployments, the disjoint-
based algorithm SF'4 is the best algorithm since it does very well on approx-
imation and always returns solutions very fast.

Ezxperiment 5

Experiment 5 repeats Experiment 1 with setting sl but with an increased
space ratio of nodes to agents from 2-3 to 3-4. We report the survivability re-
sults in Table 14. Compared with the results in Experiment 1 (see Table 1), the
first noticeable difference in these results is in agent-based and in node-based
deployments. In particular, there is a large increase in the upper bounds of the
actual survivabilities from 0.3 — 0.44 (Table 1) to 0.97 (Table 14). Again, we
did not include the survivabilities returned by the random based deployments
in this table since they are relatively very low. Another noticeable change
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Problem Deploy Upper Anytime | Tree-based | Disjoint Split Group-based
size method bound (SF2) (SF3) (SF4) (SF5) (SF4g)
n18,a30 node-based 0.973211 | 0.981061 0.98647 0.96855 | 0.998956 0.98707
agent-based 0.976032 | 0.973769 0.986316 0.964855 | 0.999059 0.988083
random-based | 0.094253 - - - - -
n24, a40 node-based 0.980687 | 0.979052 0.991792 0.978524 0.99866 0.994861
agent-based 0.980855 | 0.980291 0.992817 0.976784 | 0.998752 0.99174
random-based | 0.042501 - - - - -
n30, a50 node-based 0.983294 0.98326 0.975502 0.982723 | 0.998131 0.994358
agent-based 0.982777 | 0.981894 0.975746 0.978989 | 0.997898 0.994035
random-based | 0.070558 - - - - -
Table 14

Experiment 5: Upper bounds and approximation ratios of the different algorithms
in setting s1 but with a larger space ratio (3—4).

with the current setting is that the tree based algorithm SF3 is no longer
the favorite—it returns lower survivabilities than the split and the group algo-
rithms. Moreover, its accuracy is even lower than the disjoint based algorithm
SF4 when the problem size is 80.

When more resources can be used to accommodate agents on the nodes, there
are more valid future networks in the deployments compared to those in Ex-
periment 1. Consequently, more valid future networks which have high surviv-
abilities may not be included for the computation of SF'3. Thus, SF3 in this
set of experiments does not perform as well as it did in Experiment 1.

Sum of Degrees of Mean square | F value p-value F crit
squares (SS) | freedom (df) (MS)
Between algorithms 0.00325 4 0.00081 46.9782 | 1.303E-27 | 2.41796
Residual 0.00337 195 1.730E-05
Total 0.00662 199
Table 15

ANOVA on the results of five algorithms in Experiment 5 with agent-based deploy-
ments and a problem size of 64. The level of significance required is set to 0.05.

Problem Deploy Anytime | Tree-based | Disjoint-based Split Group-based
size method (SF2) (SF3) (SF4) (SF5) (SF4y)
n18,a30 | node-based 33674 19510 17 2372 1734
agent-based 33253 19460 15 2224 1516
n24, a40 node-based 117114 146123 24 4844 2800
agent-based 224809 148476 20 4576 2476
n30,a50 | node-based 284858 838123 30 9177 4299
agent-based 143220 839241 24 8744 3481
Table 16

Experiment 5: Computation time (in microseconds) using different algorithms in
setting s1 but with a larger space ratio (3-4).

Statistical significance. Again we performed ANOVA on the results of each
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round of the different algorithms. Table 15 suggests that the differences of
performances w.r.t solution qualities of the different algorithms are significant
since the F value (46.9782) is greater than the critical F value (2.41796).

Computation Time. Table 16 shows that SF'3 is the most time-consuming
algorithm with the problem size of 80 where it needs 100 times more compu-
tation time than the split and the group algorithms.

Conclusion. Compared to the results of Experiment 1, in Experiment 5 the
tree based algorithm S F'3 is no longer the most favorite algorithm. Instead, the
split algorithm SF'5 outperforms others since it returns high quality solutions
in relatively short computation time.

5.4 Summary and Discussion

We provide recommendations for the choice of the algorithms in Table 172,
assuming either the node-based or the agent-based deployment methods are
applied.

Setting Resulting Solution requirement Recommended

deployment algorithm

many overlaps between

sl agents’ locations quality and time SF3

few overlaps between

s4 agents’ locations quality and time SF4

many or few overlaps

s2, s3, sb between agents’ locations quality and time SF5
not many overlaps time is critical, much more
s2,83,s4,s5 | between agents’ locations important than quality SF4
Table 17

Recommendations on the selection of the algorithms in different settings and with
different criteria.

We show that in settings like s1, where node failures are distributed dramati-
cally and the resources available in the network are very limited, the tree based
algorithm SF'3 performs extremely well.

However as in the case of setting s4 where the node failures are not distributed
dramatically, and the deployments are those where most agents have disjoint
locations w.r.t. other agents, the disjoint based algorithm SF4 is the best
algorithm. Moreover, SF'4 is recommended for applications where fast com-
putation time is the most critical requirement, as long as the deployments will

12We made these recommendations based on the observations of the experimental
results. It is possible that they may be inaccurate for some deployments.

40



not result in too many overlaps between agents’ locations (e.g. those generated
in setting s1).

The group based algorithm SF4, is an improvement of SF'4. As a result, SF4,
returns a higher survivability than SF'4 while it takes longer time. As in the
case of SF'4, this algorithm can be applied to environments where agents have
disjoint locations on the nodes.

The anytime algorithm SF2 can be applied to applications which require
flexible adjustments between the solution quality and the computation time—
the solution returned by SF2 can be as accurate as possible as long as the
time is affordable.

The split algorithm SF'5 seems to be a general heuristic algorithm which pro-
vides good approximations. However when time is critical it may be preferable
to use a faster heuristic algorithm like SF4.

6 Related Work

We have introduced a probabilistic survivability model with various algorithms
based upon the idea of replication. In this section, we first briefly review
the work on fault tolerance (and particularly replication) in distributed sys-
tems and multiagent survivability. We then discuss more replication based
approaches in multiagent systems.

6.1 Fault tolerance in distributed systems

Fault tolerance is the ability of a system to behave correctly even under the
presence of faults. It aims to increase the dependability of a system, i.e., the
ability of a system to perform the service that can justifiably be trusted [4].
[3] for detailed comparison). Fault tolerance has been extensively studied in
distributed systems, and it is usually considered as a property of the system.
Research in fault-tolerant distributed computing aims at making distributed
systems more reliable by handling faults in complex computing environments
[19]. In order to build a fault tolerant system, the first step is to specify the
faults that the system may be subject to and thus must be tolerant to. Fault
detection techniques identify the presence of an error. Fault handling methods
are used for diagnosing faults and eliminating them from the system state. The
choice of different techniques is strongly dependent upon the underlying fault
assumption. We refer to [10,19] for detailed introductions on fault tolerance
techniques in distributed systems.
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An important characteristic which distinguishes multiagent systems from tra-
ditional distributed systems is autonomy. Autonomy makes MASs more ro-
bust. Consequently, fault tolerance techniques that are designed for distributed
systems may be difficult to directly apply to multiagent systems. Furthermore,
it is notoriously difficult to design fault tolerant systems [10], not to mention
fault tolerant multiagent systems due to their autonomy.

Replication is a well-known fault tolerance method for distributed systems.
Wiesmann et al. [43] review several replication approaches in distributed sys-
tems according to (1) failure transparency for clients, and (2) server determin-
ism. Services are implemented by multiple replicas on multiple servers. There
are mainly three types of replication protocols: active replication, passive repli-
cation, and semi-active replication. The key concept of active replication is
that all replicas receive and process every incoming request from a client con-
currently. The replicas are deterministic. Therefore, failures are transparent
to the clients, since if a replica fails, the others will still process the requests.
In contrast to active replication, in passive replication, only one replica, called
a primary replica, is contacted by the clients. The primary replica processes
the requests from clients and then sends update messages to all other repli-
cas. The passive replication is able to tolerate the non-deterministic servers.
And it requires less computation resources than the active approach. How-
ever, it suffers from longer recovery delays when the primary replica fails.
Semi-active replication does not involve the determinism problem because ev-
ery time replicas need to make a non-deterministic decision, a leader replica
makes the choice and sends it to the others. The selection of the replication
protocol is dependent on the environment, such as the failure rate, and the
application requirements. We refer to [20,43] for more details on replication in
distributed systems.

The traditional replication based fault tolerant approaches in distributed sys-
tems usually define the replication protocols explicitly and statically at design
time. Recently, dynamic data replication techniques have been investigated.
Lin et al. [31] propose a centralized dynamic object replication algorithm which
guarantees that at least t copies of the objects exist in a distributed system.
Their goal is to minimize the total service cost of all the incoming requests.
The t-availability is also guaranteed at any time instant as reported by Wolfson
et al. in [44].

The focus of replication techniques in distributed computing is mainly on
replication protocols and algorithms. Our work differs from theirs mainly be-
cause: (1) we do not develop the replication protocol but introduce a method
to measure the quality of replications; and (2) we require and measure an
entire set of agents to survive, rather than consider them individually as in
the approaches of fault tolerant distributed systems.
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6.2  Multiagent survivability

The concept of survivability was introduced as a means of protecting critical
systems. In earlier work, Ellison et al. [13] define survivability as the capa-
bility of a system to fulfill its mission, in a timely manner, in the presence
of attacks, failures, or accidents. Knight et al. [26,25] give a more precise
definition of survivability based on specification: a system is survivable if it
complies with its survivability specification. Their definition requires a com-
plete, well designed survivability specification which contains six elements.
However, there are some major open challenges in applying their definition to
multiagent systems since it is very difficult to define some of the elements in
their specification (e.g. such as enumerating all the states that the multiagent
system might encounter in an open Internet style environment.)

Survivability has been investigated in the context of multiagent systems re-
cently by the UltraLog project [1,7,6,22]. UltraLog aims at ensuring the sur-
vivability of military logistics applications which are deployed on a large-scale
distributed multiagent system in dynamic and hostile environments. In their
approach, a set of measures of performance have been used to determine
the overall success of the system, which include, for instance, performance,
availability, and integrity. They apply a hierarchy of control loops to guide
survivability. Their efforts focus on architectural issues. As their survivability
solutions are built on the Cougaar (Cognitive Agent Architecture) framework,
in order to apply their approach to survivability, one must also develop the
multiagent applications on Cougaar and its Ultral.og extensions and tools.

As an emerging discipline, survivability builds on related topics, such as fault
tolerance, security, reliability, performance, verification and testing. There are
multiple dimensions to the survivability of different systems and applications.
Thus, the precise definition of the goals and the measurements of whether
or not an application is a “success” or is “survivable” highly depends on the
applications. Our approach to multiagent survivability is distinguished from
theirs as follows:

e We study survivability in the context of multiagent systems. We propose a
general and intuitive way to define the survivability of a multiagent appli-
cation.

e We developed several survivability algorithms that are able to provide pre-
cise measurements of how well multiagent applications will survive under
different environments.

e In contrast to the UltraLog approach where applicability is limited to a
specific agent platform, our survivability model can be widely and easily
applied to various multiagent applications, independently of the agent’s de-
velopment platform.

43



6.3 Agent Replication Approaches

Introducing redundant agents into a multiagent system is an efficient way to
improve the survivability of the MAS. Kumar et al. [29] propose an adap-
tive multi-brokered agent system, which applies replication to a broker agent
(or middle agent). As the reduced number of brokers may degrade the sys-
tem’s performance, they hypothesize that a broker team commits to maintain
a specified minimum number of brokers. Thus, the system is robust to bro-
ker unavailability. However, the number of brokers in their system must be
predefined by the broker teams without the guidance of any algorithms. In
addition, they only consider the potential failures of brokers but ignore the
possible faults of the regular agents.

Cloning and merging agents to support load balancing is discussed in [11,39].
Fan [14] furnishes each local agent with the capability of load-balancing. He
proposes a BDI mechanism to formally model agent cloning for balancing agent
workloads. These agent-cloning approaches mainly target the agent’s overload
problem, while we aim to optimally deploy agents so that the survivability of
the multiagent system can be maximized.

In the context of mobile agent systems, survivability focuses on how to avoid
the loss of agents during execution. Mishra and Huang [34] introduce a Depend-
able Mobile Agent System to recover from node and communication failures.
Middle agents are distributed on every node in the network, which monitor
the movement of agents and ensure that agents can arrive at their destina-
tions reliably. Their approach deploys the agent replica on each node in the
network. However, replication is expensive. Furthermore, they do not take
into account the resource availability on the network. We propose various sur-
vivability algorithms to measure the quality of the deployments. Thus, it is
possible to guide the agent replication based on probabilistic notions of node
failures—something they do not consider.

Marin et al. [33] develop a Dynamic Agent Replication framework to design re-
liable distributed applications. Every agent in the MAS has a group of replicas,
and a replication scheme is applied to each agent. At runtime, each agent can
tune its internal parameters such as the number of its replicas. In their frame-
work, the replication costs are assessed by simulations. Fedoruk and Deters
[16,17] hide agent replication methods inside each agent. They propose a trans-
parent replication technique, which makes the group proxy act as an interface
between the replicas and the rest of the multiagent system. In this manner,
the proxies make the group appear to be a single entity and they control ex-
ecution and state management of a replicate group. In [33] and [16,17], the
importance of replicating agents optimally have been realized and they intend
to minimize the additional complexity and system loads that are introduced

44



by the use of replication. However, due to the lack of quality measurement
of replication, in their approaches, it is the MAS designer’s responsibility to
decide in advance for each agent, which, how many and where to deploy them.

The automatic and adaptive replication methods have been addressed in [8,21,5].
Briot et al. [8,21] propose a replication framework that allows adaptive control
of the replication method, i.e. which and how many copies of agent to replicate,
based on the criticality of each agent. In order to measure the criticality of
each agent, the authors propose several strategies, such as an agent’s degree of
dependence on other agents, the roles in the organization, its plan, etc. After
estimating the criticality of all the agents, the number of replicas of each agent
is then computed taking into account the criticality of agents, the minimum
required replicas, and the current available resources. Similarly, Bora et al.
[5] decide on the number of replicas in the system by measuring the agent’s
importance. The feedback control theory is used to dynamically evaluate the
criticality of agents, based on the information of failure rates and the agents’
roles. After receiving the criticality value from the feedback control mecha-
nism, each agent in the organization calculates the desired number of replicas
and then starts to clone or to kill its replicas subject to the available resources.
The approaches of [8,21,5] identify the criticality of each single agent in the
system in order to deploy the agent replicas. However, there is a lack of quality
measurement of the resulting deployments as a team of agents. Our approach
focuses more on the “application level”, i.e. given a task of MAS, we measure
the survivability of this team of agents which work cooperatively to perform
the task based on the information of the possible failures of the hosting nodes.
It will be interesting to integrate the information of each agent’s criticality in
a MAS into our approach of computing the survivability of the system.

In peer-to-peer applications, in order to maintain desired availability, Ran-
ganathan et al. [37] deal with the issues of determining the number of replicas
of any file and the location for new replicas. Similar to our model, they ex-
press the average probability of a node remaining operative, i.e. stability, which
includes node failures, communication failures, and the disconnection of the
node from the network. They compute the probability of replicas for each file
being unavailable in the same manner as we calculate the single agent’s surviv-
ability. Such computation problem is polynomial solvable. They do not study
the availability or unavailability of the application which consists of multiple
agents or files.

6.4 Discussion

In this paper, we have introduced an abstract probabilistic failure model, by
using a disconnect probability function to represent the probability of the
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physical failure of a node which may result in the malfunction of its deployed
multiagent application. Our assumptions for this failure model are (1) the in-
dependence of failures between nodes, and (2) the fully connected network.
We do not make any further assumptions, such as cause of failures, failure de-
tection method, failure rate, and calculation of the disconnection probability.
These, however, can be detailed in the failure model when it is applied to spe-
cific applications. For instance, the disconnect probability of a node may be
estimated from the statistical data, or be measured by round trip time between
this node and others. It may also take into account time in the probabilistic
failure model, as that of [23]. We have shown in Section 2.1 the possible ways
to specify the disconnection probability in the context of the CoAX applica-
tion, the Skoda application, and Tichy’s ship control application. Furthermore,
the second assumption about fully connected networks assumed in this paper
can be relaxed in some way. For example, given a partially connected agent
system, the disconnection of a node can be considered as the event that this
node becomes unreachable in the system. In this way, the model can be used
to represent different environments where the MAS application is deployed
and works.

Our goal in this paper was not to develop a replication scheme for multiagent
systems. Instead, we assume that the deployment (of replicas) is already given,
and we introduce various algorithms to measure the survival level of the de-
ployment. Hence, our approach does not make any hypotheses about the repli-
cation protocol and its implementation, such as active or passive replication,
deployment methods, etc. However, we could select and use the existing repli-
cation protocols or deployment methods described in related work for specific
applications. For instance, for disaster management or military applications
where a fast recovery delay is critical, the active replication protocol can be
chosen, and a fast survivability algorithm can be used to estimate whether
the current deployment meets the minimal survival requirement. Another ex-
ample is a multiagent application consisting of highly heterogeneous agents,
for which we can apply the methods in [8,5] to deploy replicas subject to the
importance of agents. By selecting a proper survivability algorithm, together
with these deployment methods, we are able to find a high quality multiagent
deployment. Therefore, the contribution of our work is the ability to guide the
replication by assessing the resulting deployments associated with the current
condition of the failure model.

Likewise, there are many different ways of maintaining consistency amongst
multiple replicas of a piece of data or software. In databases, there is a long
history of methods [44,43] used to maintain consistency amongst multiple
replicas. These are done primarily through the use of checkpointing methods—
timestamps adorn changes to the data and consistency is maintained by using
these timestamps to update replicas to maintain consistency. Many papers
on MASs distinguish between a state that the agent has at a given point in
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time and the behavior of the agent that is often encoded via certain types of
rules [40]. In such cases, the state can be stored in a relational database. The
rules do not change as the agent operates and hence, we only need to ensure
that the states of different agents are synchronized. The numerous techniques
to synchronize replicated relational databases can now be applied here.

Another relevant problem that has been extensively studied is that of under-
standing when nodes in a network go down [28,15]. Our framework can be
used in conjunction with any existing method to determine when a network
node goes down.

7 Conclusion

Kraus et al. [27] were the first to propose a probabilistic notion of fault tol-
erance of a multiagent system based upon replication principles. Their algo-
rithms for solving the most survivable deployment problem (finding a deploy-
ment that has the highest survival probability) include two elements:

(1) An algorithm to solve the deployment survivability problem (measuring
the survival probability of a given deployment) under the assumption that
we are ignorant about the relationships between node failures in a network
and

(2) An algorithm that uses the previous algorithm to find the deployment
that has the highest probability of survival.

In this paper, we have focused on the deployment survivability problem, and
we have studied this problem under the assumption of independence of node
failures. We have made the following contributions.

(1) We have proven that the deployment survivability problem is at least
NP-hard (under the independence assumption) and hard to approximate
up to a factor of 2IVI'™".

(2) We have proven that the most survivable deployment problem is at least
NP-hard (under the independence assumption). Moreover, we have proven
that any polynomial-time approximation algorithm is bound to provide
maximally bad answers in some cases unless P = NP.

(3) We then presented two algorithms to accurately compute the probability
of survival of a given deployment. One of these algorithms is exponential
in the number of agents, while the other is exponential in the number of
nodes in the network. Thus, if one of these quantities is small, we can
use this algorithm to accurately compute the survival probability of a
deployment.

(4) We then presented a set of five different heuristic algorithms to compute
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the survival probability of a deployment.

(5) Finally we have compared the performance of our algorithms according
to the quality of the solution found (i.e. how close the solution found
by the heuristic is to either the correct solution or to a bound on the
solution in cases where the solution cannot be accurately computed) and
in terms of computation time. In all cases, we tried to use statistical sig-
nificance tests to determine if our inferences had statistical significance.
We did this under five different environmental settings. Our results show
that the performance of most of the algorithms, namely the tree-based
algorithm SF'3, the disjoint based algorithm SF4, the group based al-
gorithm SF4,, and the anytime algorithm SF2, vary greatly with the
environment settings—that is, each of these algorithms is appropriate
for certain settings, but not for others. In contrast, the split algorithm
SF'5 has demonstrated a relatively stable performance in terms of quality.
Nonetheless its running time is dependent on the setting and the problem
size.

In addition, we believe some existing MAS replication frameworks may bene-
fit from the proposed algorithms in order to compute the survival level of the
resulting deployments, and thus result in better fault tolerant multiagent sys-
tems. Integrating the proposed method into existing replication frameworks
would be interesting to address in future work.

One problem with the approach described in this paper is that it is static in the
sense that it does not adapt to changes that affect the survivability of the MAS.
However, it provides a basis for the development of an adaptive approach.
An adaptive approach cannot be built without learning how to compute the
survival probability of a candidate deployment. For instance, if there is any
change or failure in the network, the algorithms proposed in this paper could
be used to first quickly check if the survivability of the current deployment is
too low (or invalid). If this is the case, the algorithms then calculate a better
new deployment according to the new environment parameters, and agents
could be re-deployed to new locations accordingly. In this manner, we would
be able to ensure maximal survivability of an agent application in dynamic,
changing environments.

A second problem of the developed survivability algorithms is that they are
centralized. So even though the agents are distributed across the network, the
survivability algorithm itself resides on a single node. One solution to this
problem could be distributed algorithms which are built on top of the central-
ized survivability algorithm. We are currently working on such an extended
distributed, adaptive approach, based on our previous work [41].

A third major topic for future work would be to use a mixture of assumptions
when computing the probability of survival of a MAS. As this paper shows
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through the CoAX example, the Skoda example, and the ship onboard con-
trol example, in many applications, there is a mixture of assumptions about
node failures that can be used. For example, in the CoAX example, node fail-
ures in the UK and US may be independent of node failures of sensor nodes.
However, there may be dependencies between failures of sensor nodes. One
way to do this would be to adapt probabilistic conjunction strategies (PCSs)
proposed in [30] as an extension of the notion of a triangular norm [24]. PCSs
are functions satisfying certain axioms that provide methods to compute the
tightest probability interval of an event (e; A ey) given a probability interval
for each of ey, e5. Lakshmanan et al. [30] propose a set of axioms that PCSs
must obey. They show that the ignorance (of node failures) assumption used
in [27] and the independence assumption used in this paper are both special
cases of PCSs. Future work could examine how to replace disconnect probabil-
ity functions proposed in this paper with an extended disconnect probability
function epd that expresses statements such as edp(n;) = 0.3 denoting that
ny’s disconnect probability is 0.3, epd(ny A ny) = epd(n;) ® epd(ng) where ® is
a conjunction strategy. Thus, the syntax used to represent epd’s would allow
joint probabilities to be specified. A disconnect probability specification would
then be a set of equations of the form mentioned above. A major challenge
would be to extend the methods and results of this paper when a disconnect
probability specification of this type is used.

There are many other interesting directions for future work that are related
to this topic. In many real-world applications, it is essential to maintain a
mainimal level of survival. Thus, one variant of the current approach would
be to develop algorithms for deployments that meet such minimal survival
requirements. Another topic would be to study the survivability of a dynami-
cally changing multiagent system, instead of a fixed one. This could be useful
for multiagent applications where agents are connected intermittently. An-
other issue is the trade-off between the survivability of a multiagent system
and its performance. Ensuring survivability could be costly due to, for exam-
ple, state synchronization among replicas and computing survivability. Conse-
quently this comes at the cost of actually providing the services the multiagent
system is supposed to provide. Such problems are significant for multiagent
applications with scarce resources. Thus, it would be worthwhile to study how
these two concerns could be balanced.

Yet another important issue is “gaming” the system. For example, suppose
the methods described in this paper are used to implement MAS security for
an application. A user who knows that the techniques of this paper are used
in the system can try to utilize this knowledge in order to break security. This
leads to a game theoretic framework whereby we need to reason about how an
adversary would make use of such knowledge in order to break the system. The
root node of the game tree consists of the state of the system. The children of
the node refer to the possible states resulting from an action that an adversary
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could take. The system then needs to make a “move” in order to determine
how best to respond to the user’s action. This is an important area which we
plan to study in the future.
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