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Abstract

This paper generalizes optimal collective dichotomous choices by including constraints which
limit combinations of acceptance and rejection decisions for m projects under consideration. Two
types of constraints are examined. The first type occurs when acceptance of some projects requires
acceptance of others. This type reduces the choice problem to the tractable (solvable in polynomial
time) problem of finding a maximum weight closed subset of a directed acyclic graph. The second
type occurs when some projects must be accepted when certain others are rejected. We show that
this type renders the choice problem to be NP-complete by reduction from the problem of Vertex
Cover. Applicability of the generalization to information filtering is discussed.  2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

This paper focuses on committees that face dichotomous choices, such as accepting or
rejecting investment projects. Optimal group decision-making in a committee of fixed
size, that faces uncertain dichotomous choices, has been extensively studied in Grofman
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et al. (1983), Klevorick et al. (1984), Nitzan and Paroush (1982, 1984a,b), Sah (1990,
1991), Sah and Stiglitz (1985, 1986, 1988a,b), Shapley and Grofman (1984), Pete et al.
(1993), and Young (1995), as well as many others. Recently, Ben-Yashar and Nitzan
(1997) presented a general dichotomous choice framework and derived the optimal
decision rule. However, these papers did not study the issue of decision-making under
constraints, which is more relevant in economic settings.

The current paper presents optimal collective dichotomous choices under partial order
constraints in the general dichotomous choice framework. Choice under partial order
constraints is a problem which is often encountered in economic settings, but which can
be found in other areas as well. Although we focus on committee decisions, our results
are applicable also to problems in which projects with a given value are being
considered, such as cost–benefit analysis. We focus first on partial order constraints
when the approval of some projects must precede the decisions to approve others (the
first type of partial order). For example, the decision to build an overpass must be
preceded by a decision to widen the highway. Similarly, constructing holiday resorts in
exotic places would be impossible unless convenient access roads for tourists and heavy
equipment were constructed initially. We propose a reduction of this problem to a known
problem of finding a maximum weight closed subset (Ahuja et al., 1993). The solution to
the latter is efficient and tractable (polynomial in the number of projects). We consider
also partial order constraints when some projects must be approved if others have been
rejected (the second type of partial order). For example, if a decision has been made not
to build a by-pass, then lights must be erected. Also, if a hotel decides not to provide
access to the sea front, then it must build a swimming pool. We prove that this problem
is NP-complete (i.e. which is, in general, considered to be intractable). It is clear that the
problem which constitutes a combination of the two types of partial order constraints,
will also be NP-complete. A similar, but somewhat different, problem is presented in
Page (1997). Where we are concerned with partial order constraints, Page dealt with
positive complementarities that exist among projects. He has suggested an appending
algorithm which is, in general, intractable. Furthermore, we present an optimal way for
aggregating the various decisions made by the individuals, while Page relates to a given

1value of each project.
In addition, we expand the application of the collective dichotomous model by

developing an approach to information filtering problems.
The outline of the paper is as follows: in the next section, the general dichotomous

choice model is introduced. In Section 3 we present the problem. In Section 4 we
present a solution for an optimal collective decision-making process, while preserving
the first type of a given partial order, and we prove that the problem associated with the
second type of partial order is NP-complete. Application of the model of information
filtering is presented in Section 5. The last section contains a brief summary.

1Our problem does not belong to the class of functions UNI and POS discussed in Page (1997), nor does Page
assume that the utility from a set of projects is the sum of the utilities of the different projects, as we do.
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2. The model

There are m projects (tasks), N 5 ht , t , . . . , t j, and the committee must decide for1 2 m

every project whether to accept or reject it. There are n members in a committee, whose
task is to accept or reject projects (tasks). The decision-makers share a common
objective — maximizing the committee’s expected profit. The collective decision is
based on the decisions of the individual members. There are two types of projects, good
ones (1) and bad ones (21). Let s denote the state of a project t . s 5 1 and s 5 2 1i i i i

are referred to as the two possible states of nature with respect to project t , indicatingi

that t is a good or bad project, respectively. Therefore, for each project there are twoi

possibilities for making a correct collective decision, namely: (1 /1) — accept a good
project, and (21/ 21) — reject a bad project. The two possibilities of making an
incorrect collective decision are (1 / 21) — accept a bad project, and (21/1) — reject a
good project.

The profit associated with the acceptance (1) of a good project t is denoted byi

B (1:1). The profit associated with the rejection (21) of a good project t is denoted byi i

B (21:1), where B (1:1) . B (21:1). Similarly, the profits of the two remainingi i i

possibilities for project t are denoted by B (21: 2 1) and B (1: 2 1), where B (21: 2i i i i

1) . B (1: 2 1). Note that these profits can differ for different projects. Let B (1) 5i i

B (1:1) 2 B (21:1) be the positive net profit when s 5 1. B (21) 5 B (21: 2 1) 2i i i i i

B (1: 2 1) is the positive net profit when s 5 2 1. Let a be the a priori probability thati i i

project t is a good one, 0 , a , 1. Again, this probability can differ for differenti i
i iprojects. Let us denote by x , x [ h1, 2 1j, the decision of committee member jj j

i iconcerning project t . x 5 1 and x 5 2 1 denote, respectively, acceptance and rejectioni j j
i i i]of project t by committee member j. The vector x 5 (x , . . . , x ) is referred to as thei 1 n

decision profile of the committee members for project t . The decisional skill of memberi
1 2j concerning project t is characterized by the probabilities p and p that he accepts ai ji ji

1 2good project and rejects a bad project, respectively. That is, p 5 Pr(1:1) and p 5ji ji ji
1 2Pr(21: 2 1) . The probabilities (1 2 p ) and (1 2 p ) can be interpreted as Type I andji ji ji

Type II errors entailed in individual j’s decision regarding project t . We assume thati
1 2each individual has some, but not perfect, decisional skills, 0 , p , 1, 0 , p , 1,ji ji

1 2 2p . (1 2 p ), and that decisions are independent across individuals. Note that theji ji

assumption that decisions across individuals are independent is plausible and rational,
because the paper discusses the optimal collective rule (process) and as shown by
Austen-Smith and Banks (1996) and by Ben-Yashar (2000), independent decisions

3constitute a Nash equilibrium if and only if the optimal collective rule is used.

2 1 2p . (1 2 p ) means that for any project t a committee member j is more likely to accept a good project thanji ji i

a bad project, i.e. that the simple average of his decisional skills in the two states of nature exceeds 1/2.
3Recently, several authors (e.g. Feddersen and Pesendorfer (1996, 1997, 1998), McLenan (1998), Myerson
(1998) and Wit (1998)) have examined the choice model under rational behavior, relaxing the assumption that
decision makers vote non-strategically. However, as mentioned above, these discussions are not relevant when
dealing with the optimal collective rule.
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The committee’s decision regarding project t is a function of the profile of decisionsi
i]x that is associated with this project. Optimization of the committee’s collective

decision-making process with respect to each project and, in particular, the selection of
an aggregation rule (a function that assigns 1 or 21, acceptance or rejection of a project

i n]t , to any profile of decisions x in V 5 h1, 2 1j ) that maximizes expected payoffs hasi
4been studied in Ben-Yashar and Nitzan (1997). Our focus is on the optimization of the

committee’s collective decision-making process when there are constraints, such as
preserving a given partial order between the projects when a project may be accepted
only if all its predecessors have been accepted or when a project must be accepted if
other projects were rejected.

3. The problem

The committee needs to choose projects (tasks) so that the expected profit is
maximized, while preserving a given partial order between the projects. That is, the
committee must optimally decide which projects to accept. However, in the first type of
partial order, the decision to accept a project requires the acceptance of all the projects
preceding it. For example, the decision to build an overpass must be preceded by a
decision to widen the highway.

In general, there may be situations in which t cannot be accepted unless t has beenj i
5accepted. Such a restriction may be represented by a partial order between the projects,

where t At means that t is a predecessor of t , and t is a successor of t . Note that thisi j i j j i

type of partial order constraints can be considered as ‘OR’ constraints. This can be
shown in the following way, t At implies that if t is accepted then t can be approved,i j i j

that is, t → t and this is equivalent to, ¬t ∨ t .j i j i

In the second type of partial order, a project must be accepted if other projects were
rejected. For example, if a decision has been made not to build a by-pass, then lights
must be erected. Also, if a hotel decides not to provide access to the sea front it must
build a swimming pool.

In general, there may be situations in which t must be accepted if t has been rejected.i j

Such a restriction may be represented by a partial order between the projects, where
t A¬t means that t is the predecessor of ¬t , in other words, ¬t requires thej i j i j

acceptance of t . Note that this type of partial order constraints can be also considered asi

‘positive OR’ constraints. This can be shown to be equivalent to t ∨ t implying that thej i

final decision must approve either t or t (or both).i j

The committee’s decision regarding a project is made by means of an aggregative
decision rule. A decision aggregation rule in this case is a function f that assigns a
decision profile of 1 and 21, while preserving the given order constraints. In the first

4Note that the present discussion pertains to the most general dichotomous model (Ben-Yashar and Nitzan,
1997). A similar discussion could have been developed for the reduced models that have been presented in the
past, such as the assumption of a symmetric model (Nitzan and Paroush, 1982; Shapley and Grofman, 1984)
or the assumption of homogeneous individuals (Sah, 1990, 1991; Sah and Stiglitz, 1988a,b).

5A partial order is a reflexive, anti-symmetric, and transitive order.
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type of partial order, f assigns either a decision of 1 or 21 for each project, such that if
f 5 1, then there is no t At such that f 5 2 1, where for any project ,, 1 # , # m, f isi j i j ,

the collective decision for project t . That is, t At ⇒ f $ f . In the second type of partial, i j i j

order, f must assign a decision of 1 for a project t if there is a t such that f 5 2 1 andi j j
n mt A¬t . The rule f is a function from the set (h 2 1,1j ) of all combinations of mj i

6decision profiles, each profile relating to a separate project.
To define formally the function f, we need to present for each project the conditional

probabilities of collectively accepting a good project or rejecting a bad one. For each
project t , we divide the set of all combinations of the decision profiles into two setsi

X (1 /f ) and X (21/f ), for which the decision rule assigns 1 and 21, respectively, toi i
1 2 3 m] ] ] ]project t . A combination of decision profiles is given by (x , x , x , . . . , x ), wherei

i i i i]x 5 (x , x , . . . , x ), such that1 2 n

1 2 m 1 2 m] ] ] ] ] ]X (1 /f ) 5 h(x , x , . . . , x )u f (x , x , . . . , x ) 5 1j (1)i i

and

1 2 m 1 2 m] ] ] ] ] ]X (21/f ) 5 h(x , x , . . . , x )u f (x , x , . . . , x ) 5 2 1j, (2)i i

where f is the collective decision for project t .i i

We denote the correct collective probability derived from the decision makers’
decisions about project t , by P ( f :1) and by P ( f : 2 1), in the two states of nature,i i i

s 5 1 and s 5 2 1i i

1 2 m] ] ]P ( f :1) 5 Prh(x , x , . . . , x ) [ X (1 /f )us 5 1j (3)i i i

1 2 m] ] ]P ( f : 2 1) 5 Prh(x , x , . . . , x ) [ X (21/f )us 5 2 1j (4)i i i

and

1 2 m] ] ]1 2 P ( f :1) 5 Prh(x , x , . . . , x ) [ X (21/f )us 5 1j (5)i i i

1 2 m] ] ]1 2 P ( f : 2 1) 5 Prh(x , x , . . . , x ) [ X (1 /f )us 5 2 1j. (6)i i i

Below we use the following non-standard notation to reduce the number of indices.

Notation. For any expression M, such that M 5 M(x , y , z , . . . ), M is denoted by hM(x,i i i i i

y, z, . . . )j .i

The problem on which we focus is the maximization of the expected profit from the m
projects over the set F, the set of all aggregative decision rules which take into account
the order constraint. That is,

6We cannot assign 1 or 21 to an individual decision profile of a project, because the collective decision
depends upon the other profiles of the other projects. Thus, we need to rely on the combination of all m
profiles.
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m

max OE , (7)i
f [F i51

where E is the expected profit from project t ; i.e.i i

E 5 ha[B(1:1)P( f :1) 1 B(21:1)(1 2 P( f :1))]i (8)
1 (1 2 a)[B(21: 2 1)P( f : 2 1) 1 B(1: 2 1)(1 2 P( f : 2 1))]j i

or

E 5 haB(1)P( f :1) 1 (1 2 a)B(21)P( f : 2 1) 1 (aB(21:1)i

1 (1 2 a)B(1: 2 1))j . (9)i

i] ] ]Denote by g (x /1) and g (x / 2 1) the probabilities of obtaining the decision profile x ,i i

given s 5 1 and s 5 2 1 for project t , respectively. That is,i i i

1 1]g (x /1) 5 P p P (1 2 p ) , (10)i j jH Jj :x 51 j :x 521j j i

2 2]g (x / 2 1) 5 P p P (1 2 p ) . (11)i j jH Jj :x 521 j :x 51j j i

For a given decision rule f,

m
] ] ]P ( f :1) 5 O g (x /1) P hag(x /1) 1 (1 2 a)g(x / 2 1)j (12)i i j

] ] ] j51, j±i1 2 m(x ,x , . . . , x )[X (1 / f )i

m
]P ( f : 2 1) 5 O g (x / 2 1) Pi i

] ] ] j51, j±i1 2 m(x ,x , . . . , x )[X (21 / f )i

] ]3 hag(x /1) 1 (1 2 a)g(x / 2 1)j . (13)j

In writing P ( f :1), we assume that the state of nature is 1 only for project t . We doi i

not know the state of nature for the other projects, so we consider both states of nature.
Similarly, for P ( f : 2 1), the state of nature is assumed to be 21 only for project t ,i i

while for the other projects both states of nature are considered.
Notice that the solution of the maximization problem on which we focus is also the

solution to the following problem:

m

max O haB(1)P( f :1) 1 (1 2 a)B(21)P( f : 2 1) 1 Cj , (14)i
f i51

where C is a constant, or
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m m
] ] ]max O a B (1) O g (x /1) ? P hag(x /1) 1 (1 2 a)g(x / 2 1)ji i i jFf ] ] ] j51, j±i1 2 mi51 (x ,x , . . . , x )[X (1 / f )i

m
]1 (1 2 a) B (21) O g (x / 2 1) ? P (15)i i i

] ] ] j51, j±i1 2 m(x ,x , . . . , x )[X (21 / f )i

] ]3 hag(x /1) 1 (1 2 a)g(x / 2 1)j 1 C .Gj i

This can be written in the following way:

m m]aB(1)g(x /1) ]]]]]]]]]maxO O ?Phag(x /1)H J] ]F ag(x /1) 1 (1 2 a)g(x / 2 1)f ] ] ] j511 2 m ii51 (x ,x , . . . , x )[X (1 / f )i

](1 2 a)B(21)g(x / 2 1)] ]]]]]]]]1 (1 2 a)g(x / 2 1)j 1 O (16)H J] ]j ag(x /1) 1 (1 2 a)g(x / 2 1)] ] ]1 2 m i(x ,x , . . . , x )[X (21 / f )i

m
] ]?Phag(x /1) 1 (1 2 a)g(x / 2 1)j 1 C Gj i

j51

or

m

max O O a 1 O b ? M 1O C , (17)i i j iF Gf ] ] ]1 2 m i51i[N 9 i[N2N 9j[(x ,x , . . . , x )

where

]aB(1)g(x /1)
]]]]]]]]a 5H J] ]i ag(x /1) 1 (1 2 a)g(x / 2 1) i

](1 2 a)B(21)g(x / 2 1)
]]]]]]]]b 5H J] ]i ag(x /1) 1 (1 2 a)g(x / 2 1) i

1 2 m] ] ]for a combination j [ (x , x , . . . , x )

m
] ]M 5P hag(x /1) 1 (1 2 a)g(x / 2 1)jj ,

, 51

N9 5 ht [ N /f 5 1j N 2 N9 5 ht [ N /f 5 2 1j.i i i i

Solving the maximization problem on which we focus (17) is done by solving the
following problem (18) for any combination of decision profiles. This is due to the fact
that the solution of the maximization problem is for any combination of decision
profiles; therefore, M is not a function of f. Also the C s are constantsj i

max O a 1 O b . (18)i i
f i[N 9 i[N2N 9

The following notation will be useful. Let us assign to a given combination of
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decision profiles the expected opportunity profit, i.e. the profit from accepting project ti
7*rather than rejecting it (a 2 b ), by DE , that is,i i i

] ]aB(1)g(x /1) 2 (1 2 a)B(21)g(x / 2 1)
]]]]]]]]]]]*DE 5 . (19)H J] ]i ag(x /1) 1 (1 2 a)g(x / 2 1) i

4. Optimization of the collective decision-making process while preserving an
order constraint

Without the order constraint, our problem is reduced to the special setting analyzed by
earlier literature. The optimal aggregative decision is to accept every project (task) t ini

*which a . b , that is DE . 0 (see Ben-Yashar and Nitzan (1997)). But in this paper,i i i

this result is extended and we refer to two types of partial order constraints.

4.1. The first type of partial order constraints — ‘OR’ constraints

We refer first to the first type of partial order constraints. In this case, we are unable to
accept all of the projects because of preceding projects (t ) in which b . a , whichj j j

therefore may be rejected. The optimal aggregative decision rule f could offer the
possibility of accepting every project t in which a . b where all preceding projects ti i i j

should be accepted. However, this possibility does not provide the optimal result. To
demonstrate this, assume that t is a predecessor of t . Also assume that a . b , butj i i i

b . a . Occasionally, it is worthwhile accepting the preceding project t even if b . a ,j j j j j

because project t can then be accepted. The alternative of rejecting the two projects isi

worse than the alternative of accepting them both. That is, a 1 a . b 1 b . There arei j i j

situations in which, although for one project it may not be worthwhile to accept the
preceding project t , it is possible that for a number of projects, project t should bej j

accepted. Assume that t and t should be accepted; i.e. a . b and a . b , but t Ati , i i , , j i

and t At . Also assume that for the sake of one project only, it is not worth accepting t .j , j

That is, a 1 a , b 1 b and a 1 a , b 1 b . If a 1 a 1 a . b 1 b 1 b , then thei j i j , j , j i , j i , j

alternative of accepting all of them is preferable over the alternative of rejecting all of
them.

Note that, in order to maximize the expected profit, we must examine which
alternative is preferable: to reject the project or accept the project as well as its

*predecessors. This is done by the sign of oDE when the sum is taken over the relevanti

projects. However, there remains a complex issue of which projects are relevant. We
now present special examples.

Example 1. Assume that t At , t At , t At , t At , t and t have a positive value of1 2 3 2 3 4 5 4 2 4

* * *DE ; t , t and t have a negative value of DE . The DE value of each project t isi 1 3 5 i i i

7 *DE can be also interpreted as the difference between the expected net profit when the state of nature is 1 andi

when it is 21, for a given decision profile.



R. Ben-Yashar et al. / Mathematical Social Sciences 41 (2001) 349 –364 357

Fig. 1. A graphical representation of the partial order between the projects of Example 1. The optimal
alternative of this example is to accept projects t , t and t .1 2 3

5 *shown on the nodes in Fig. 1. Even though o DE . 0, it is clear that it is better toi51 i
3 5* *accept only t , t , t , since o DE . 0 and o DE , 0.1 2 3 i51 i i54 i

Example 2. Recall the holiday resorts example presented in the Introduction. In Fig. 2
we describe an investor who considers constructing three holiday resorts t , t and t .1 3 5

*The DE value of each project t is denoted on its node. (t , t and t have positivei i 1 3 5

*values of DE .) Project t consists of the construction of an access road that has to bei 2

approved before resorts t and t are approved. Similarly, project t the construction of a1 3 4

second access road must be approved initially for resorts t and t , and finally project t ,3 5 6

the construction of a third access road must be approved before resort t can be5

approved. Note that the construction of each of these access roads does not pay off (i.e.
*it has a negative value of DE ), but evaluating the projects as a whole justifies thei

construction of resorts t and t and thus requires, initially, the construction of two1 3

access roads, i.e. carrying out t and t .2 4

A more complex example appears in Appendix A.
It is easy to see the straightforward exponential solution: for any combination of

] ]
decision profiles, choose N9 from all N # N, such that the projects in N preserve the

] ]order constraints, with the highest value of o a 1 o b . Consequently, thei[N i i[N2N i

aggregation rule f will assign 1 to any project in N9 and 21 to all other projects.

Fig. 2. The holiday resorts example (Example 2). The optimal alternative of this example is to accept projects
t , t , t and t .1 2. 3 4
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mThe worst case requires evaluation of 2 sets of projects and therefore the proposed
solution is exponential. An alternative solution which is more efficient is presented in the
following theorem.

Theorem 1. The maximization problem (18) under the ‘OR’ constraints can be solved
in polynomial time.

Proof. A polynomial solution to the problem is based on a reduction of this problem to a
known problem of finding a maximum weight closed subset of a directed acyclic graph
which has a polynomial solution in the literature (Ahuja et al., 1993).

The maximum weight closed subset problem can be defined as follows: given a
directed acyclic graph (DAG), G 5 (V, E), where V is the set of vertices and E is the set
of edges, each vertex n having positive /negative weight, W , find a closed subset ofn

maximum weight. A closed subset is one, in which, if a vertex n is in the set, then all
predecessors of n must also be in the set (the predecessors of vertex n are all the vertices
that have a directed path to n).

We can rewrite our problem in the form

max O (a 2 b ) 1O b (20)i i i
f i[Ni[N 9

or

*max O DE 1O b . (21)i i
f i[Ni[N 9

Notice that the solution of the maximization problem on which we focus is also the
solution of the problem:

*max O DE . (22)i
f i[N 9

From this representation one can see that this is the same as finding a closed subset of
maximum weight in which each vertex n represents a project; the edges E represent the

*partial order, and the weight, W , is represented by DE .n n

Given the complexity of finding a maximum weight closed subset (Ahuja et al., 1993),
the solution to our problem is now a polynomial of order 3 in the number of projects

3(O(m )). h

The main definitions that are needed for finding a maximum weight closed subset and
an example are presented in Appendix B.

4.2. The second type of partial order constraints — ‘positive OR’ constraints

Now we refer to the second type of partial order constraints. In this case, we are
*unable to reject all of these projects, t in which b . a , that is, DE , 0, because ofi i i i

preceding projects to ¬t which have been rejected.i

We now prove that this problem is NP-complete (i.e. which is, in general, considered
to be intractable) by way of reduction from the problem of Vertex Cover.
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Theorem 2. The maximization problem (18) under the ‘positive OR’ constraints is
NP-complete.

Proof. We prove that this problem is NP-complete by way of reduction from the problem
of Vertex Cover.

The Vertex Cover problem can be defined as follows: given a graph G, G 5 (V, E),
where V is the set of vertices and E is the set of edges, and given an integer K, ‘is there
a subset S of vertices, of size # K, that covers all the edges?’ An edge is covered if at
least one of its endpoints is in S.

Our problem can be simplified by assuming the special case in which each project has
a value of 21. We ask the question: ‘given an integer K9, is there a subset of projects
that satisfies this type of partial order constraints with a total profit $ K9?’

One can see that the special case is the same as finding a Vertex Cover in which each
vertex v represents a project, and for each edge e 5 (u, v) in E, we will have a ‘positive

8OR’ constraint that says that project u or project v needs to be done. A Vertex Cover of
size # K is the same set S9 of projects with profit $ K9, where K9 5 2 K that satisfied
the ‘positive OR’ constraints. The subset of vertices of size # K that covers all the
edges, is a subset S9 of projects with a total profit $ 2 K (multiply both sides by 21).

As seen in Garey and Johnson (1979) the problem of Vertex Cover is NP-complete.
We showed that this special case can be reduced from the Vertex Cover which is

NP-complete, therefore, our problem is NP-complete. h

Note that for this type of partial order constraints, in which there are t and t such thati j

t A¬t , the reduction described in Theorem 1 to the first type of partial order constraintsj i

(in which there are t and t such that t At ) cannot be performed. The reason is that thei j j i

reduction to the problem of finding a maximum weight closed subset requires that each
project have a corresponding vertex in the directed graph. In order to apply this
reduction to the second type of partial order constraints, each project must be considered
both as a positive project (t ) and as a separate negative project (¬t ). Hence, twoi i

vertices will be obtained, one for t and the other for ¬t . Clearly, only one of thesei i

projects can be accepted and in this reduction such a constraint cannot be defined since,
as mentioned, the graph is directed.

5. Application of the model to information filtering

This ‘constrained’ dichotomous choice model can be applied to alternative classifica-
tion decisions, such as information filtering. In recent years, on-line information has
become overwhelming and an urgent need has arisen for systems which can help in
filtering or searching for relevant information. For example, if a user who is limited in
time wishes to search through a large set of documents, the system should automatically
recommend documents worth reading. Recommendations can be based on other people’s

8As we have shown, this type of partial order constraints can be considered ‘positive OR’ constraints, since
t A¬t is equivalent to t ∨ t , implying that the final decision must approve either t or t or both.j i j i i j
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opinions about these documents and the similarity between their interests and the user’s
interests (Shardanand and Maes, 1995). Note that the recommendations are based on a
group of people and not on one person only because this improves the recommendations

9concerning information filtering (Condorcet [1785],1994). The problem is then to lay
out rules which decide which documents should be recommended, based on peoples’
opinions about a particular document and the similarity between these people and the
user.

This problem can be regarded as decisions made by a committee. Here the projects are
the documents, and accepting a project corresponds to recommending a document. A
‘good project’ is a document which is of interest to the user and should be recommended
to him, while a bad project is one which is of no interest to the user and should not be
recommended. Each member of the committee has to decide whether a particular
document is of interest and should therefore be recommended. A committee member’s
decisional skills are based on the similarity between his interests and the user’s interests.
That is, as the similarity between the user’s interests and those of the committee member
increases, the decisional skills of the committee member increase. That is, there is a
higher probability that a document which is of interest to the committee member will
also be of interest to the user. In order to find these decisional skills, a preliminary step
should be taken, where both the user and the committee members are given a set of
documents and are asked to indicate, for each document, whether it is of interest to them
or not. This information can be used to calculate the decisional skills (the probabilities).
Note that the decisions and the decisional skills of each member are independent across
individuals.

When there is a need to make recommendations with respect to a set of documents
with which the user is not familiar, the opinions of the committee members are used.
That is, each committee member has an opinion whether a given document in the set is
of interest (i.e. assigning ‘1’ to the document) or whether it is uninteresting (i.e.
assigning ‘21’ to the document). Note that, since the number of users is huge, the
decisions of each committee member are given, regardless of the user, and hence the
collective information can be used for making recommendations for many users. Using
the decisional vector of all the committee members with respect to each document, as
well as their pre-computed decisional skills, recommendation can be given based on the
method for optimal group decision-making.

In some situations, there may be a partial order constraint on the documents. The
intuitive meaning of document D1 preceding D2, according to the partial order, is that
D1 is a prerequisite of D2; i.e. reading (or viewing) D2 requires information provided in
D1. In such situations, the solution for optimal collective decision-making presented in
Section 4 can be applied in order to decide which documents should be recommended to
the user.

In some situations, there may be more general partial order constraints on the
documents. The intuitive meaning of such a D1∨D2 constraint is that D2 and/or D1

9The statement that majorities are more likely to select the correct alternative than any single individual is
attributed to Condorcet [1785], (1994).
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must be read and in no case will neither be read. In such situations the solution is, in
general, considered to be intractable.

6. Conclusion

This paper has presented optimal collective dichotomous choices under partial order
constraints in the general dichotomous choice framework.

There are a number of issues not dealt with here, but that would be of further interest.
For example, until now, the optimal collective decision was a function of the individual
decisions in cases where these decisions did not take into consideration the existence of
other projects nor the existence of the constraints. It would be interesting to see if and
how the optimal collective process and the decision would change as a result of
individual decisions taking these factors into account, and if such a change would be
profitable.

Another question discusses the advantages of a method in which each individual ranks
each project instead of giving a binary decision. In the example of recommending
documents, each individual would need to assign a score to each document. On the basis
of these rankings, the decision about which documents to recommend will be made.
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Appendix A

Example. Sometimes there are two projects that constitute a prerequisite for a third
project, while each also serves as a prerequisite for an additional project. For example,
deciding to read books in mathematics and books in game theory serves as a prerequisite
for deciding to read articles in economics. Moreover, books in mathematics also serve as
prerequisites for physics articles, and books on game theory serve as prerequisites for
articles in political science, see Fig. 3.

Appendix B

The definitions described in this appendix are taken from Ahuja et al. (1993), Even
(1979) and Ford and Fulkerson (1962).

The max weight closed subset problem can be solved efficiently by reducing it to
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Fig. 3. A graphical representation of the partial order between the projects of the example discussed in
Appendix A.

computing the minimum s 2 t cut in the following directed network, which can be done
by a single max flow computation.

A network consists of the following data.

1. A finite digraph G 5 (V, E), with no self-loops and no parallel edges.
2. Two vertices s and t are specified; s is called the source and t, the sink.
3. Each edge e [ E is assigned a non-negative number c(e), called the capacity of e.

The relevant directed network NN is comprised of the following.

1. The vertex set of NN is V < hs, tj, where s and t are two new vertices.
2. For each vertex n of a negative weight, add the edge (s, n) with capacity uW u to NN.n

3. For each vertex n of a positive weight, add the edge (n, t) with capacity W to NN.n

4. All edges of G are added to NN, and each of these edges has infinite capacity.

]
Let S be a subset of vertices such that s [ S and t [⁄ S. S is the complement of S; i.e.

] ]
S 5V < hs, tj 2 S. Let (S; S) be the set of edges of G whose start-vertex is in S and

] ]
end-vertex is in S. The set (S; S) is defined similarly. The set of edges connecting

]
vertices of S with S (in both directions) is called the cut defined by S.

Let us denote by c(S) the capacity of the cut determined by S, which is defined as
follows:

c(S) 5 O c(e).
]

e[(S ; S )

A minimum s 2 t cut is an s 2 t cut of minimum total capacity.
Consider a minimum s 2 t cut in NN. Let P be the positive weight vertices whose

edges to the sink t are not in the min-cut. It can be shown that the union of the set P and
its predecessors is a maximum-weight closed subset of G. For a proof, see Ahuja et al.
(1993).
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Fig. 4. The relevant network of the graph in Fig. 2.

Note that the minimum s 2 t cut can be found by a single max flow computation
(Even, 1979).

Example. Consider the graph G shown in Fig. 2 and the relevant network in Fig. 4. Next
to each edge e, c(e) is written.

S 5 hs, t , t j defines a minimum cut. Since P is the positive weight vertices whose6 5

edges to the sink t are not in the min-cut, then P 5 ht , t j. The union of P and its1 3

predecessors is a maximum-weight closed subset, and therefore N9 5 ht , t , t , t j.1 2 3 4
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