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Abstract. An agent operating in the real world must often choose
from among alternatives in incomplete information environments, and
frequently it can obtain additional information about them. Obtaining
information can result in a better decision, but the agent may incur ex-
penses for obtaining each unit of information. The problem of finding an
optimal strategy for obtaining information appears in many domains. For
example, in ecommerce when choosing a seller, and in solving program-
ming problems when choosing heuristics. We focus on cases where the
agent has to decide in advance on how much information to obtain about
each alternative. In addition, each unit of information about an alterna-
tive gives the agent only partial information about the alternative, and
the range of each information unit is continues. We first formalize the
problem of deciding how many information units to obtain about each
alternative, and we specify the expected utility function of the agent,
given a combination of information units. This function should be maxi-
mized by choosing the optimal number of information units. We proceed
by suggesting methods for finding the optimal allocation of information
units between the different alternatives.

1 Introduction

An agent which has to choose from among alternatives in an incomplete infor-
mation environment, would like to obtain information about them. The informa-
tion about an alternative may enable the agent to compute its expected utility
from choosing this alternative, and also the risk associated with this alternative.
Given this knowledge, the agent will be able to make a better choice between
the available alternatives.

Often, there is an expense associated with obtaining information. This ex-
pense may be for the time used to seek on-line information, the time spent
talking to friends, the cost of buying relevant journals or the cost of searching a
commercial database. We focus on situations where the information obtained is
only partial. A unit of information about an alternative means one observation
of the result due to the choice of this alternative. Thus, as the agent increases
the number of information units about an alternative, it has better knowledge
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about the average value of this alternative. For example, an information unit in
the ecommerce domain may be an impression of one customer from a product it
bought. In choosing between heuristics, an information unit may be a result of
one simulation. When using a remote information agent, one information unit
may be a result of one query to an external database, etc.. The agent should
evaluate its utility from additional information units about each alternative, in
order to decide which information to obtain before making a decision.

This problem appears in ecommerce. A customer in an electronic market
often has to choose between several suppliers of a product or a service. In ecom-
merce, the customer cannot view the product before buying it, and cannot form
a personal impression of the supplier. Moreover, the price of the product cannot
identify its quality, as shown in [4]. Thus, the customers have to collect infor-
mation about the suppliers in order to learn about the quality of their products.
The quality of the goods in ecommerce is measured by its properties, such as
supply time, life time of the product, customer support, etc. The utility of the
customer given a particular item depends on the item’s quality and its price, and
the customer should choose the supplier that will maximize its expected utility.

Another domain where information is crucial is in choosing between heuristics
when developing a software or hardware product. Each heuristic can be tested a
priory by simulations, but testing requires time and resources. Once a heuristic
is chosen, it will be implemented in the product, and provided to the customers.
The agent should determine the optimal number of trials to run on each heuristic
in order to decide which heuristic will be integrated in the commercial product.
Suppose the programmer has to decide how many simulations to run during
the night for each heuristic. The problem can be formalized as a decision about
allocation of information units, since each simulation result can be considered
an information unit. Running a simulation has costs of computational power,
and there is a limit on the total simulations that could be run in a given time
period. In this case, there is a limit on the total number of information units,
but not on the number of units for each alternative. Obviously, obtaining more
information will improve the agent’s knowledge about the different alternatives
and will improve its decision making process. Since obtaining information incurs
costs of time, communication and other resources, the agent should determine
the optimal number of units of information to be obtained about each alternative,
in order to optimize its utility from the final decision.

We assume that the agent should decide in advance on how many information
units to obtain about each alternative, and it cannot change its decision during
the information obtaining process. This assumption holds in different situations.
For example, consider an agent that interacts with a search engine. The agent
should specify how many answers it would like to obtain about each alternative.
It cannot ask for additional answers from the search engine, since the answers will
overlap with the previous ones. Thus, the agent should decide how many answers
it wants. Another situation where the number of trials should be determined in
advance is in sending queries or jobs to multiple machines. Consider, for example,
the heuristics domain. Suppose the tester has M machines where he can test its



heuristics, but he has to decide how many machines should be allocated to
each heuristic. Again, the decision should be taken in advance, and it cannot
be changed after observing part of the results, since the results are obtained
simultaneously from all the machines.

A similar problem can be found in running a survey. Suppose an agent wants
to ask clients of different companies about their satisfaction. The agent sends
email to the clients of the different companies, and waits for answers. The agent
should decide how many emails to send, assuming that there is a cost of sending
emails. (time, communication, etc.) Also in this domain, the decision on the
number of information units to be obtained on each alternative is made before
answers are obtained.

Our problem is different from the k-armed bandit problem [5], since no costs
or benefits are associated with the result of an observation, whereas in the bandit
problem, the utility of the agent is composed of the results of the observations.
In addition, in our problem, after the sampling process is over, the agent decides
about the alternative to be used, while in the k-armed bandit problem, an item
is chosen repeatedly, and the decision on the chosen item may be changed over
time, according to the observed results. In ecommerce, a bandit problem arises
when the agent has to choose repeatedly which item to buy, while our problem
of optimal amount of information arises when the item is bought only once, but
information can be collected from other entities prior to the buying event.

Furthermore, our problem can be distinguished from classical value of in-
formation literature [17, 7]. In the latter, it is usually assumed that a piece of
information means an exact evidence about the value of some random variable,
while in our case, each observation gives only partial information about a given
alternative. In addition, in our situations, there is an infinite number of possibili-
ties of information units, since the value of the mean of each alternative, and the
value of each observation has a continuous distribution. The assumption about
a continuous set of possible answers seems to be more realistic in real world do-
mains. For example, in ecommerce, the quality of an item can be a real number
(such as weight, lifetime, etc.) and also an evidence of the quality of a particular
item can be, again, a real number. Also in the heuristic domain, the time or the
quality of the result can, again, obtain any real number in a given interval. Thus,
different methods than those used in the classical literature should be used to
solve the current problem.

In this paper, we first present relevant related work. We proceed by describing
the case of deciding between two alternatives, and then we consider the general
case of deciding between multiple alternatives. For both cases, we introduce a
formal model of the problem and identify the utility from obtaining a given
combination of information units for each alternative. We suggest how to decide
on the optimal combination of information units to be obtained, in order to
optimize the agent’s expected utility. We also propose some heuristics for the case
where there are multiple alternatives and a large possible number of information
units for each of them. Finally, we conclude and propose directions for future
work.



2 Related Work

In this section we describe research related to the information acquiring problem
in Al and in statistics. Some work in AI has considered the decision about
acquiring information, during the process of planning or decision making in
incomplete information environments.

The problem of value of information was widely discussed in Artificial Intelli-
gence, e.g., [8, 17, 7, 6]. However, as specified by Russel and Norvig, *Usually, we
assume that exact evidence is obtained about the value of some random variable.’
In this paper, we consider the case where the acquired data gives only partial
information, as described in Section 1. In particular, each unit of information
about a particular alternative includes one evidence about the alternative.

Grass and Zilberstein [6] developed a decision theoretic approach that uses an
explicit representation of the user’s decision model in order to plan and execute
information gathering actions. However, their system is based on information
sources that return perfect information about the asked query. Similarly, Dean
and Wellman [2] studied the problem of decision making on information acqui-
sition to improve planning, but consider only cases where the answers consist of
complete knowledge about the questions asked. In our paper, the information
obtained about an alternative consists of a sample of this alternative, but does
not provide a complete answer on the value of the given alternative.

Lesser et al. [11, 10] developed BIG, which is a sophisticated information
gathering agent that retrieves and processes on-line information to support de-
cision making. They supplied BIG with a design-to-criteria scheduler in order to
control the following three factors: (a) the money spent on acquiring informa-
tion from sites that charge a fee for accessing their information; (b) the balance
between the coverage of information gathered and the precision of the results;
and (c) the time of the overall process of information gathering. The design-to-
criteria scheduler analyzes the agent’s set of problem solving actions and chooses
a course of actions for the agent. Lesser et al. consider the overall process of deci-
sions about information gathering, but do not provide a formal model for optimal
information acquisition, considering the precision of the results, and the time of
the overall process.

Some ongoing research considers also the case of partial evidence about the
missing information (the hypothesis) [7, 18]. Tseng and Gmytrasiewicz [18] con-
sidered sampled answers, but they assume that the number of possible answers
for a query in the information gathering process is finite while in this paper
we consider a continuous set of possible answers. Moreover, Tseng and Gmy-
trasiewicz consider a myopic sequential procedure for the information gathering
process. Thus, their solution is not optimal: they only consider the nearest step
of information gathering, assuming that in each step the agent can decide about
the next information to be obtained. However, in our case the combination of in-
formation units to be obtained should be decided in advance and we are looking
for optimal solutions.

Heckerman et al. [7] consider the case of partial information obtained about
a hypothesis, but they consider a simplified model where there is one binary



hypothesis, and the data that can be learned is based on binary evidences about
several unknown variables. They suggest to consider all possible sets of results,
in order to choose the next data item to obtain. In a case of a large number
of binary variables, they suggest to use a normal approximation. The problem
addressed in this paper is different, since each data item has a continuous set of
possible values, so different computation techniques should be used. Moreover,
the decision in this paper is which alternative to choose out of N possibilities,
and not just to accept or reject a particular hypothesis. Thus, our problem is
more complex than that of Heckerman et al.

Poh and Horvitz [16] consider a situation where the information obtained due
to the model refinement is only partial, and it can have continuous probability
distribution. They consider several types of model refinements, and they also
consider the problem of which refinement to choose, when there are different al-
ternative refinement steps. They consider the case where after each refinement,
a new decision is made about the next refinement to do, and they suggest a
greedy-myopic algorithm for the decision about the next refinement to be per-
formed in each step. In this paper, we consider the problem of how to decide
optimally about the sample allocation, in cases where the decision should be
taken in advance.

A set of problems related to ours is the family of the bandit problems [1, 5]. In
this kind of problems, the agent has to choose sequentially between alternatives.
Each alternative when observed produces a result, and the agent’s utility is based
on a weighted sum of the results obtained over time. Our problem is different
from the bandit problem since costs or benefits are associated with the result of
each observation. However, in our problem the utility of the agent is composed
only of the outcome of the final decision . In addition, in our problem, after the
sampling process is over, the agent decides about the alternative to be used. In
the k-armed bandit problem an item is chosen repeatedly, and the chosen item
can be replaced over time, according to the observed results. For example, in the
heuristics domain, if the final software includes a mechanism that can choose
which heuristic to use in each step, and can change its decision using the results
of the previous steps, then the problem will be similar to the k-armed bandit
problem, since the result of each step is important. But, if there is a trial step,
where all alternatives are tested, and only the winner is implemented in the final
software, then there is a problem of the value of information: the agent does not
care about the results of the sampling tests, and is only concerned with the final
decision and the cost of performing the tests.

Most of the work done in statistical research in the context of determining
the size of a sample, considers a criteria of reaching a required accuracy of the
result of the sample units [13, 9]. Few researches deal with trying to maximize
future benefits. Dunnett [3] considers the problem of determining the number
of samples to be taken when deciding among multiple alternatives. However,
he considers only the case of an equal number of samples to be taken about
each alternative. Moreover, he assumes equal standard deviation of the different
alternatives. Based on these assumptions, the optimal number of samples can be



found analytically, at least for the case of two alternatives. However, in reality,
the standard deviation of the different alternatives can be different, and there is
also no reason for the number of samples to be the same for all the alternatives.
Thus, the general case is much more complex and an analytical solution can not
be found in most of the cases.

Lindley [12] describes a full Bayesian treatment for the problem of sample
size determination, and compares it to other approaches. However, he considers
a decision regarding whether to accept or reject a particular hypothesis, while
in our research, the final decision is a choice between several alternatives.

Pezeshk and Gittins [15] consider the problem of sample size determining in
the context of medical trials. They suggest how to choose the optimal number
of trials to perform on a new medicine, in order to maximize the social benefits,
or to maximize the benefits of the medical company. They also consider only a
decision about accepting or rejecting one alternative, where the decision to be
made is whether or not to accept the alternative.

In this paper, we consider the problem of sample size determination, where
an agent that has to decide between several different alternatives by sampling
them. Similar to the statistical research, we consider a continuous distribution
of the values of each alternative. However, we suggest procedures for choosing
from multiple alternatives, while current research in statistics mostly considers
the decision of whether to accept or reject a particular hypothesis.

3 Environment Description

Consider a risk neutral agent that has to choose from among k alternatives. After
choosing alternative 7, the agent will obtain a value of z;, which is unknown in
advance. z; has a particular distribution, but the distribution is unknown to
the agent. In particular, we assume that for each alternative 7, z; is normally
distributed, with an unknown mean p;, and a known standard deviation ;. The
agent does not know p;, but it has some prior beliefs about its distribution. The
agent believes that the mean p; for each alternative 7 is normally distributed,
with mean (; and standard deviation 7;. Formally, z; ~ N(p;,7;) and p; ~
N((;,7:). The prior beliefs are based on the knowledge of the agent about the
world. For example, its knowledge about the average quality of an item, etc.,
but its prior beliefs may be inaccurate.

The agent has some available information about each alternative. For each
alternative 7, it has n; > 0 units of information, with an average value of z; per
unit. The agent is able to obtain additional information units about the different
alternatives, but this operation is costly. Collecting each unit of information takes
one time period, and the agent has a discount factor of 0 < § < 1 for each time
delay. Suppose also that asking a query has a direct cost of ¢ > 0. This may be

3 In order to simplify the model, we assume a known standard deviation. If the stan-
dard deviation is unknown by the agent, then we can use the student (t) distribution,
and analyze it accordingly.



the payment to the answering agent, the cost of a phone call, or other expenses
associated with the query process.

Using the above parameters, the posterior distribution of z; can be calcu-
lated, and used to calculate the value of information. We suggest that the final
decision about the winner alternative be made only according to the collected
information, and the prior distribution of z; be considered, since this distribu-
tion is based on beliefs that are inaccurate. Dunnett [3] refers to this type of
procedure as Procedure Dy. Therefore, the parameters z; and n;, which are used
both for the calculation of posterior beliefs and for the final decision, and the
parameters (; and 7;, which are used only for the calculation of posterior beliefs
should be considered in a different manner.

Given the cost of time, 4, and the direct cost ¢, and given the list of al-
ternatives, and the parameters (o, (;, 7i, z;,n;) for each of the alternatives, the
agent should decide how much information to obtain about each alternative. We
denote by m; the number of information units to be obtained about alternative
1. Thus, the agent should choose the combination (mi,ms,..,my,). We assume
that m; € {0,.., M — 1}, i.e., the maximum number of information units for each
alternative is M — 1. Thus, there are M possibilities for the number of units
to be obtained about each alternative. There are also situations where the total
number of samples is limited, i.e., Y, m; < M. For example, this is the case in
the heuristics domain when there are M machines and the agent has to decide
how to divide its trials among them. In this case, there is only a limit on the
total number of samples, which is supposed to be at most M — 1.

In the following example, we present a particular ecommerce problem where
there are two alternative suppliers and the agent has to choose between them.
This example will be used in order to illustrate the evaluation process and the
algorithm to determine the optimal amount of information to obtain.

Ezxzample 1. Suppose a customer has to buy a particular item, that can be sold
by two different suppliers, A and B. Suppose the price of the item is the same for
both suppliers, but the quality of the item cannot be observed in advance. The
average quality of supplier A is p4 and the average quality of supplier B is pup,
but the customer does not know the values of 14 and pp. However, the customer
can collect information from friends or from the Web about these suppliers, in
order to be able to decide between them. Since the prices of the suppliers are
equal, the expected utility of the buyer depends on 4 and pp. Obviously, the
customer would like to choose the better supplier, but first it has to decide how
much information to obtain about each of the suppliers.

We consider a case where the customer does not have specific beliefs about
the suppliers A and B, but has prior beliefs about the distribution of y; for any
unknown supplier ¢ (suppose these are the average and standard deviations of
the item given any arbitrary supplier). In particular, the customer believes that
pa~ N(Ca=50,74 =50) and ug ~ N({p = 50,78 = 50). Suppose also that
o4 and op are equal and known to be 50. Finally, suppose that the discount
factor of the agent is § = 0.9 and the cost is ¢ = 0.

Suppose that the agent was able to obtain available information about both



suppliers from some external sources (such as a free search engine), and it has
collected 10 units of information about each alternative, with the results T4 =
49,Tp = 47. Given this available information, it is clear that without additional
information, the agent will choose to buy the product from supplier A. However,
the agent is able to collect additional information about each supplier, from some
information source (for example, from another search engine, but reading each
answer takes time, so a discount factor exists).

The agent should decide how much additional information to collect about
each supplier. It should decide in advance how many units it wants for each
alternative: it cannot ask for additional answers from the search engine, since
the answers will overlap with the previous ones. Formally, we would like to find
the optimal numbers M4, Mg, where M 4 is the number of information units to
be obtained about supplier A, and Mp is the number of information units to be
collected about supplier B.

In the following section we show how the agent should decide on the number of
information units to obtain about each alternative i, given its prior beliefs about
1, and given T; and o;.

4 Choosing between Two Alternatives

Suppose the agent has to decide between alternatives A and B. Currently,
T4 > Tp. Since the agent is risk neutral, and since the decision is made accord-
ing to the collected information, alternative A will be chosen if no additional
information is obtained. If additional information will be acquired the decision
may be changed either because of additional negative information about A, or
because of additional positive information about B. Thus, we should evaluate
the expected utility resulting from the additional information.

Suppose that it is possible to obtain m 4 additional units of information about
alternative A and mp additional units of information about alternative B. De-
note by 7 4 and T g the average value of these additional units, for alternative
A and B, respectively. We start by calculating the value of the information from
obtaining these additional units.

The agent has to evaluate its utility from obtaining additional information
about the alternatives. In order to do so he has to evaluate the probability that
the additional information will change his decision. We denote this probability
by Fchange(pia,iug,04,08,Ta,n4,ma, T, nE, mp). In the following lemma,
we find the value of Fchange, as a function of its arguments.

Lemma1l. Calculating Fchange

The value of Fchange, is as follows:
Fchange(pa,piB,04,0B,TA. 1A, MA, TB, N, MB) = Pr(Z > Z,)
where Z is a random variable, having the standard normal distribution (see [13]),
Pr(Z > Z,) is the probability that the random variable Z will take a value greater



than Z,, and

A pama(mptnp)—ppmp(matna)
@ \/mi_l(m3+n3)2-oa+7_n23(mA+nA)2-a%
n4Zs(mp+np)—npTp(matny)
\/mZA(mB+nB)2-U?4 +m2B ('mA+'nA)2-0']2B

Sketch of proof: Given the additional m 4, mp units of information, the new
average quality of A will be (m 42 a+naTa)/(ma+na), and the new average of
B will be (mp @ p+npTp)/(mp+ng). In order for the average of B to outper-
form the average of A, the following should hold: (mp @ p+npZp)/(mp+ng) >
(MAT 4 +n4T4)/(ma+na). Manipulating the above formula, the above condi-
tion is 737n3(1nA+nA) — ?AmA(mB +np) >naTa(mp+ng)—ngTe(ma+
ny). Denote e4 = ma(mp +np) and eg = mp(ma +na). Then we prove that
ep - ?B — €A " ?A ~ N(eB *HUB — €4 HA, \/834 . Ji/mA +62B . JzB/mB). Based
on this,

eg-Tp—ea-Ta—(ep-pp—e€a-pra)

Vs oh/ma+teh-op/mp
Using the above, we find the value of Z,, such that

~ N(0,1).

naTa(mp +np) —npTp(ma+na) —(ep-pp—ea-pha)

Za= 2 . 2 2 . 2
\/eA o4/ma+ey-op/mp

and the probability for a change is the probability of a normal variable to be
more then Z,,. O

In the following example we will calculate Fchange for different combinations
of m4 and mp, in the suppliers examples, and show how Fchange will be affected
by changing m 4 or mp.

Ezample 2. We return to the case of Example 1. Recall that the data collected
before the decision should be made includes 10 units of information about each
alternative, where T4 = 49 and Tp = 47. In order to calculate the values of
Fchange for different combinations of m4 and mp, we should consider all pos-
sible values of mean value p4 and mean value pp. Intuitively, the influence of
ma and mp on Fchange depends on the values of 4 and pp.

For example, suppose that T4 = 49, and additional units are obtained only
about alternative B. In this case, the additional units may cause a change if
the combined average, which includes Zp and Z p, will be above 49 (since the
average quality of alternative B is 49). Whenever ug > 49, the probability of
a new example to have a value higher than 49 is greater than the probability
of it to have a lower value. Thus, as we collect more data about alternative B,
the probability for a change increases, since more often the collected data will
be higher than 49, and will push the combined average above 49. Whenever this
value will be over 49, alternative B will win (since the average of alternative A
is 49). But, if pp < 49, then obtaining additional information units about B will
more often cause the average of alternative B to remain less than the average
of alternative A, so a change will occur more rarely. The global influence on
Fchange depends on the probability for each value of 4 and pp.



In the following table, we display the different values of Fchange. The values
of Fchange for mag = 0, and mp = 0,..,5 are presented in the second column.
We see that the positive influence of enlarging mp is higher than the negative
one, i.e., as mp increases, the probability of a change increases too. The third
column presents the influence of enlarging m4 when mp = 0. Again, the total
positive effect is higher than the negative effect: as m 4 increases, the probability
of a change increases.

m|Fchange Fchange
(ma =0,mp =m)|(ma =m,mp =0)
1 {.41543 41055
2 1.43648 42998
3 |.44536 43784
4 1.45041 44217
5 (.45371 44492

The next evaluation step is the calculation of the gains due to the additional
information. We should consider all possible pairs p4,pup, and for each pair,
calculate the expected benefits from m s and mp additional information units,
and multiply this by the probability for p4,pup being the actual mean values.

The expected benefits from obtaining additional m 4 units of information on
A and mp units on B, is Fchange - (up — j44), since obtaining these additional
units can cause the final decision to be changed from choosing A to choosing B
with a probability of Fchange, and in this case, the expected utility of choosing
B instead of Ais pup—p 4. In order to compute the probability for each particular
assignment of p4 and pup, we evaluate their posterior distribution, using their
prior distributions, and the collected information n4,np, T4 and T 4.

The following lemma provides the expected benefits from obtaining addi-
tional information about each alternative, by considering all possible distri-
butions of both alternatives, i.e., by considering each possible pair pa,pp. In
this lemma, we use the following notations. Denote by f(ui|(;, 7i, 04,14, 04, Ti)
the probability for alternative i to have a mean of pu;, given the prior belief
i ~ N({;, 1), given o, and given a sample with n; units, and average Z;. De-
note by f(u; = pilu; ~ N(u(i),0(7)) the probability of the variable u; to have
the value p;, given that w; is normally distributed, with mean p(¢) and standard
deviation o(%).

Lemma 2. Calculating the benefits The benefits due to obtaining m 4 units
of information about A and mp units of information about B are as follows

benefits(ma,mp) =
[ [ Fchange(pia,1tB,04,08,T4,n A, A, TB, "B, MB)
(b —pa) - f(palCas7a,04,m4,T4) - f(1B|(B,7B,0B, 7B, TB)dpadpp =

= fjooo ffooo Fch(].ﬂ,ge(lu,A’/j,B,o—A’O-B,TA’”A,m'A’EB’
np,mp) - (g — pa)  flua = pafua ~ N(u(4),0(4)))
f(up = pplus ~ N(u(B),o(B)))dpadpus



where

2 2— 2.2

. 0;C + 1T T o o;T;

)= > (1) = —2>—. 1
p(i) a;" +n,-7'i2 (i) a;f’ + n,-*ri2 (1)

Sketch of proof: We should consider all the possible pairs of pa,up, and
for each pair, to evaluate the expected value of additional m 4 and mp units of
information, given the pair p4,pp, multiplied by the probability for this pair.
The expected value of the additional units is equal to the probability of a change,
multiplied by the gains yp—p 4 due to a change. The probability for each value p;
is evaluated, by calculating its posterior distribution, by the Bayesian estimation
[13]. O

Finally, we will also consider the various costs involved in obtaining m 4 +mp
units of information and present the agent’s utility. Recall that there is a discount
factor of 0 < § < 1 on the utility of the agent, and a direct cost of ¢ for each
unit. Given § and ¢, the expected utility of the agent from obtaining a utility
of z; from the alternative chosen, after collecting m units of information, is
(z;)6™ — EZZEI c - 8. The explicit value is z;6™ — c(%4=5L). Considering all
possible values of z;, we obtain the following theorem. The proof is immediate
from lemma 2 and from the cost of each data unit.

Theorem 3. The ezpected utility from obtaining ma and mp additional in-
formation units about alternative A and B, respectively, is utility(ma,mp) =

benefits(ma,mp) - ™AT™E — C‘WA;_#

If there is no discount factor, then § = 1. In this case, the utility of the agent is
benefits(ma,mp)—cm. If there are no direct costs, then ¢ = 0, and in this case,
the utility of the agent is bene fits(m 4, mp)d™. Based on the above theorem, we
proceed by presenting an algorithm that computes the optimal number of units
to obtain for each alternative. The agent’s goal is to find the pair m4 and mp,
that yields the highest value of utility(ma, mp), i.e., we should find the values
M4 and Mp such that, (M4, Mpg) = a'rg'ma.mmmmButility(mA,mB).

We suggest to consider all possible combinations of information units about
A and B, and choose the optimal combination. Since there are only two alterna-
tives, this process is polynomial. We proceed by implementing the above process
on a particular problem, and then we generalize the problem and consider £ > 2
alternatives to choose from. In the following suppliers example, we show how the
values of m4 and mp should be determined.

Ezample 3. We return to the situation of Examples 1-2. One may hypothesis
that as m4 and mp increase, the benefits due to the additional information
increase, since the additional information results in more knowledge about the
alternative, and a better decision. However, an increase of m 4 and mp also has
a negative effect, due to the cost of time. The following table, that describes
Utility(ma,mp) for each pair ma, mp, shows that there is a peak level for the
optimal values of m4 and mp, and an additional increment of them can only
reduce the expected utility of the agents.



mg|0 1 2 3 4 5

0 |0 2.0241|2.5998 |2.7867|2.795(2.711
1 |1.7951]2.6685|2.9528 (2.9959|2.920(2.784
2 [2.3551|2.8884|3.0344(3.0055|2.889(2.729
3 ]2.5547(2.9113|2.9794 |2.9118|2.776|2.609
4 12.5831(2.8319(2.8529 |2.7647|2.622|2.455
5 ]2.5205(2.6982|2.6899 [2.5915|2.449|2.287

In the above example, the optimal combination of m4 and mp is my =
2,mp = 2, which gives a utility of 3.0344. As the number of units about alter-
native A or B decreases or increases, the utility decreases. Note that if there are
at most 5 available information units for both alternatives, i.e., when M = 6,
then we should consider only the part of the table from the main diagonal and
up, while m4 + mp < 6, but the same result will be obtained in our case, since
the pair mg = 2, mp = 2 is valid also in the case of a total of M — 1 units.

There are cases where the optimal M4 and Mp can be found by analytically
finding the optimal value of utility(m 4, mp), as done by [3] for a simpler case.
This calculation can be performed in simple situations. For example, if 14 and
pp have a uniform distribution. But, in more complex situations, analytical
derivation of the optimal values of M 4 and Mp becomes hard or even impossible.

In the above example, we could simply use a greedy algorithm in order to
find the optimal allocation of samples. The algorithm should choose in each step
the most beneficial sample to add, and it should stop when there is no additional
sample that increases the expected utility. However, in the following lemma, we
show that the greedy algorithm is not optimal. The reason being that there
may be situations where obtaining one unit of information about a particular
alternative is not worthwhile, but obtaining two and more may be worthwhile
to the agent, as stated in the following lemma.

Lemmad4. (1) There are situations where obtaining one unit of information
about a given alternative is not beneficial, but obtaining more than one is benefi-
cial. (2) There are situations where obtaining information about one alternative
18 not beneficial, while obtaining information about two or more is beneficial.

Proof. Both claims will be proven by examples. In order to show claim (1),
consider a case where prior beliefs of the user are: g ~ N((a = 10,74 =
27),uB ~ N({(p = 10,75 = 76), and g4 = 34, o = 50. Suppose that the
discount factor is ¢ := 0.968, and the cost is ¢ = 0. Suppose that there are
ten collected information units about alternative A and only two units about
B, with the results T4 = 9.5, = 12.9. In this case, utility(ma = 1,mp =
0) = —.02551, while utility(ma = 2,mp = 0) = .63431. Thus, although it is
not worthwhile to obtain one unit of information about alternative A, it may be
worthwhile to obtain 2 units of information about this alternative.

We proceed by an example to show claim (2). Suppose the prior beliefs of the
agent are pa ~ N(Ca = 27,74 = 72),up ~ N((g = 27,75 = 72). Suppose also
that z4 ~ N(p4,89) and zp ~ N(mup, 67). The discount factor is § := 0.991,



and the cost of time is ¢ = 0.03. Eight units of information were collected about
each alternative, A and B, with the results T4 = 31.05 and Tp = 34.83. In
this case, utility(ma = 1,mp = 0) = —0.85096, utility(ma = 0,mp = 1) =
—0.62808, but utility(ma = 1,mp = 1) = 0.86613. This means that although it
is not worthwhile to obtain one unit of information about alternative A or B, it
becomes beneficial to obtain one unit about each of these two alternatives. 0O

5 Choosing from Multiple Alternatives

We proceed by considering a general case, where there are k£ > 2 alternatives, and
the agent can obtain up to M —1 units of information about each of them. Thus,
there are M* possible combinations of information units that can be obtained
by the agent, and if there are a total of M — 1 units to be used, then there
are (M + k)!/((M — 1)!'- (k 4+ 1)!) possible combinations (Each sample can be
allocated to a particular alternative or not be allocated at all). In the following,
we describe the agent utility function given a combination of information units.

In order to calculate the value of each combination of information units, we
should know the prior beliefs (;, 7; about each alternative ¢, and also the value
of z; for the k; information units that were already obtained. In the case of two
alternatives, we presented the expected utility to be the additional utility due to
replacing alternative A with alternative B. In this section, for simplicity reasons,
we calculate the absolute utility from each alternative, without comparing it to
the previous winner. Of course, given the utility from each alternative, the new
winner could be identified.

Let comb = (my,ma2, ...,m}) denote a combination of m; units of information
about alternative 7, and total M the total number of information units obtained
about all the alternatives, i.e., totalM = Ele mj. Also Z; will denote the
average of the m; information units about alternative ¢. Finally, let R,,; =
m;/(m; + n;) and R,; = n;/(m; + n;). The following theorem expresses the
utility of the agent, given the information units combination comb, the prior
beliefs about each alternative and the prior average value of each of them.

Theorem 5. Suppose that given T; and n;, alternative 1 will be chosen. The
utility from obtaining m; additional information units about each alternative © is

Util(comb) = Y8 (72 fa, ) - [T f(1, ) - (i — pa)-

gtotalM—1
C

f(wins;|ps, pi1, comb)dpidpl - §00M — O

where ’ -
f(wmsz‘wzl}ulacomb) = [ oo [Tl i)
(fi?omi'.’ljz+Rm-.z,-7R"1-m1)/Rm1 f(7)1|,u1)d71'

(Brmi Ty +Rni @i —Rnj Tj) [ Renj —p(7) .
L0 F( NCITOr )dZ ;
where f(i, ;) = f(u; = pi|lu; ~ N(u(i),0(:)) as defined in equation 1, f(7;|p;) =
flz = 2|z ~ N(u;,0://m;)) and finally, F(z) is the standard normal density

of the random variable z.



Sketch of proof: Given comb, for each alternative ¢ we consider the probability
for it to win, and the expected utility in this case, and we also consider the cost
of obtaining the combination comb of information units. Thus, we run all the
values of p; and pq, which is the default alternative to be chosen. For each pair,
we calculate the probability for this pair, and the utility from the additional
information, which is p; — 1 (since we changed the decision from alternative 1
to alternative 7). We multiply the above by f(wins;|u;, pt1,comb), the probability
for alternative 7 to win.

In order to evaluate f(wins;|p;, p1,comb), we run each possible value of
7 ;, and calculate its probability to win, i.e., we require that for each j # 1,
(nj-T+mj-T;)/(mj+n;) < (n; - T+m;-T;)/(m; +n;). So, the maximum
value of JTJ) should be (Rp; T+ Rppi - T4 — R.; " T)/Rum;.

The distribution of the average of alternative 7 > 1,7 # 4 depends on pu;.
Denote M' = (Rpi T+ Ropi* @i — Ryj *T)/Rm;. Then, calculate ffooo TR

fi\l f(#|p;). Manipulating the above formula, and using integration rules of
oo . . . .
the normal distribution from [14], we reveal that the above formula is equal to

F (\/%) Finally, we consider the cost of obtaining the additional informa-

StotalM— 1

tion: we multiply the expected utility by , and subtract c>———. O

Given the ability to evaluate the expected utility from a particular combi-
nation of additional information units, we are also able to calculate a beneficial
combination, in order to maximize its expected utility. There are two methods
for finding the optimal combination. First, this can be done analytically, by find-
ing the derivation of the expected utility according to the my, .., mg, and finding
the values of my,..,my for which the derivation is equal to 0. This method was
performed by Dunnett [3] for the case of equal standard deviation o for the dif-
ferent populations, and equal sample sizes k. In cases of multiple my,..,m; and
01, ..,0%, the calculation becomes very complex, or even analytically impossible.
In such cases, we consider different combinations of m,..,my, and choose the
combination that maximizes Util.

We can suggest an optimal algorithm that considers all possible pairs of
my..my, but this algorithm is clearly exponential in the number of alternatives.
Different heuristics for the choosing problem can be used such as greedy-myopic
heuristic [16], or a local search technique. In future work we intend to compare
the different heuristics by simulations, and to compare their results with the
optimal solution.

étotalM

6 Conclusion

In this paper, we consider the problem faced by an agent that has to choose
from alternatives, and is able to acquire additional information about them.
We consider situations where the agent should decide in advance how much
information it would like to obtain about each alternative, before it obtains
any answer. We describe the expected utility of the agent due to the acquired
information units, and we provide an optimal and polynomial decision procedure



for the case of choosing between two alternatives, and demonstrate it with a
particular example. We proceed by considering the case of choosing from multiple
alternatives, and we describe the expected utility of the agent given this case. We
suggest an optimal algorithm for this case, which has an exponential complexity,
and suggest how sub-optimal solutions can be found.
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