Exchanging and Combining Temporal
Information in a Cooperative Environment*

Meirav Hadad! and Sarit Kraus!

Department of Mathematics and Computer Science
Bar Ilan University Ramat Gan 52900, Israel
{hadad, sarit}@macs.biu.ac.il

1 Introduction

This paper considers the problem of exchanging and combining temporal infor-
mation by collaborative agents who act in a dynamic environment. In order to
carry out their cooperative activity the agents perform collaborative planning [2]
while interleaving planning and execution. In a former paper [3] we presented a
mechanism for cooperative planning agents to determine the timetable of the ac-
tions that are required to perform their joint activity. In this paper we expand our
former work and compare different methods of reasoning and combining tempo-
ral information in a team. Determining the time of the actions in a collaborative
environment is complex because of the need to coordinate actions of different
agents, the partiality of the plans, the partial knowledge on other agents’ activ-
ities and on the environment and temporal constraints. Our mechanism focuses
on temporal scheduling. Thus, for simplification purposes, the agents do not take
into consideration preconditions and effects during their planning process.

One of the main questions in a multi-agent environment is at what stage
should an agent commit to a timetable for performing a joint action, and inform
the rest of the team of his commitment. If the individual agent commits to a
specific timetable early and announces this commitment to the other agents, it
may need to negotiate with the others if it needs to change its timetable later.
Alternatively, a commitment made and announced as late as possible, e.g., only
when requested by other team members, may delay the planning and action of
other team members. Another question arises regarding the strategy the team
members should use in planning the subactions of their joint activity. If we
force all the team members to plan their activity using identical strategies, the
flexibility of the individuals is decreased. However, using different strategies may
delay the plan of some members of the group. This delay might occur when some
member needs certain information about a specific action that it wants to plan,
but finds that the other team members chose to delay the plan of this action to
some later time. In our work we study these questions by implementing different
methods in a simulation environment and by conducting experiments. We also
compare the performance of our distributed method with a method in which a
team leader is responsible for solving the problem centrally (e.g., [5]).

* This work is supported in part by NSF under Grant No. I1S-9907482. The second
author is also affiliated with UMIACS.

2 Meirav Hadad and Sarit Kraus

2 Exchanging and Combining Temporal Information

This section briefly describes the major constituents of the exchanging and com-
bining temporal information mechanism; it is based on former works [4, 3].

In order to carry out their cooperative activity the agents perform collab-
orative planning, which includes processes that are responsible for identifying
recipes, assigning actions to agents and determining the time of the actions [2].
A recipe for an action consists of subactions which may be either basic actions or
complez actions. Basic actions are executable at will if appropriate situational
and temporal conditions hold. A complex action can be either a single-agent
action or a multi-agent action. In order to perform a complex action the agents
have to identify a recipe and there may be several known recipes for an action.
A recipe may include temporal constraints and precedence relations between
its subactions. The general situation of team members A; and A, performing
a joint action «, considering the actions without the associated constraints, is
illustrated in figures 1(A) and 1(B), respectively. The leaves of the tree of agent
A (k = 1,2) represent either basic actions or actions in which Ay does not
participate. We refer to this tree as agent Ax’s “complete recipe tree for a”.
The trees of the team members differ with respect to individual actions but are
identical with respect to the first level of the multi-agent actions.

The main structure that is used by each agent Ay in the team, when the team
members identify the time parameters of their joint activity «, is the temporal
constraints graph. The temporal constraints graph is associated with a multi-
agent action a and maintains information about the temporal constraints of the
actions that constitute the performance of @ and the precedence relations among
them. Formally, a temporal constraints graph, Grt = (V¥ E¥) of agent Ay,
where V¥ = {saasﬁw" 'asﬁnvfaafﬁn' o 7f5n} U {Saplan} and {avﬁla"' 7ﬂﬂ}a
represents actions that the agents intend to perform in order to execute the
highest level action a (see figures 1(C), 1(D)). The variables s, and f, represent
the time points at which the execution of an action y € {a, 31, -, 3, } can start
and must finish, respectively. Some of the vertices may be fixed, i.e., these vertices
denote a known time which cannot be modified. The vertex s, ,,,, represents the
time point at which agent Ay, starts to plan the action «; it is a fixed vertex. Other
fixed vertices may be initiated, for example, by a request from a collaborator.
The activity of action y is represented by a directed edge between s, and f,, that
is labeled by the time duration required for the execution of action y. A directed
edge from the finish time point of action y to the start time point of another
action z € {a, 1, -,Bn} denotes that the execution of z cannot start until the
execution of y is completed. The interval associated with this edge indicates the
possible delay between these actions. A metric constraint a; ; < (v; —v;) < b;j
between two different time points v;,v; € V is represented by the metric edge
(vi,v;) that is labeled [a; j,b; j]. The form of this graph is an extension of Simple
Temporal Networks [1].

In addition to the temporal information, a temporal constraints graph main-
tains additional information on each of the graph’s actions: (a) whether the
action is basic or complex; (b) whether the complex action is a multi-agent or

Exchanging and Combining Temporal Information 3

a single agent action; (c) whether a plan for the action has been completed;
(d) whether the action has already been executed by the agent(s), and (e) the
agent(s) that is (are) assigned to perform the action. We denote the agent(s) that
is (are) assigned to perform an action 3 by Agg. This information is determined
incrementally by the algorithm which also expands the graph. Each single agent
Aj, in the system runs the algorithm independently in order to build its temporal
constraints graph Gr*. The graphs of individual agents may be different with
respect to individual actions, but similar regarding the first level of multi-agent
actions. To keep track of the progress of the expansion of the agents’ graphs all
the vertices in Grk, of each agent Ay, begin as unezplored (UE). The status of
both vertices sg and fg is changed from unexplored to ezplored (EXP) during the
performance of the algorithm by Aj. One of the main purposes of the following
mechanism is to determine the values of sg and fg.

During the agents’ planning process, each agent Aj selects a UE vertex sg
which is associated with action 3, from its GrX. A UE vertex s is selected by Ay,
only if the vertices which precede sg in the graph are explored. For this selected
vertex, Ay checks which of the following conditions is satisfied and performs its

Nz Mot

n..'..n ,
s 31p Nans

T Ny Ny n 2 N Moy Msiz

(© (D)

O exp

{(A1A2} Oue

Oexe

Fig. 1. (A-B) Examples of recipe trees of team members A; and Az, respectively; (C-
D) Examples of temporal constraints graphs, Grl and Gr2, respectively. The dashed
edges represent individual plans.

4 Meirav Hadad and Sarit Kraus

activities accordingly:
(1) B is associated with a multi (or single) action, where A; does not
belong to the group (or is not the agent) which has to perform the
action (i.e., Ay ¢ Agp):

(1.1) If the values of 3 are unknown, Aj, leaves this vertex until it receives

B’s values from the agent(s) who is (are) a member(s) in Agg.

(1.2) If the values of 3 are known to Ay, Ay changes the status of

the vertices sg and fsz from UE to EXP.
(2) B is a multi-agents action and A participates in performing 8 (i.e.,
Ay, € Agp and |Agg| > 1): Agp reaches a consensus with the other participants
on how they are going to perform the action and who is going to plan this action;
after reaching a consensus’ each agent in Agg adds the new information to its
temporal graph and determines the new values of its graph’s vertices (see [3]).
Also, each of them changes the status of sg and fg from UE to EXP.
(3) Ay is the sole performer (i.e., Agg = {Ax}): Ay develops 3 and de-
termines the new temporal values of the vertices in Gr® as in the individual
case (see [4]). Also, it changes the status of sg and fs from UE to EXP. After
completing the development of 3’s plan, Ay checks whether 3 is a subaction in
a recipe of a multi-agent action, or if as a result of completing the plan of 3 its
individual plan for a higher level action ﬂ’ is completed, where ,BI is a subaction
in a recipe of a multi-agent action. If so, it saves the relevant information in
order to inform this to the appropriate team members as discussed below.

2.1 Exchanging temporal information and planning in a team

The development of a shared plan [2] by the agents requires information ex-
change. Consider the case of two agents, A; and A;, that intend to perform a
joint activity a. They will exchange information in the following cases: (1) When
they identify a recipe for their joint action or for any joint subaction in their
plan. (2) When agent A; completes the plan of a subaction in a recipe of a joint
action with A;, it informs A; that the plan for this action has been completed.
(3) Agent A; may inform agent A; about the time values that it identified for
its individual actions f1,..., 3, when B1,..., 3, delay the planning of action
and v has to be performed by A;. We assert that 3; ... 3, delay the planning of
v if they directly precede . (4) If A; already sent information to A; about some
action (3, but A; failed to perform 3, then A; backtracks and informs A; about
the failure of 3 or about new properties of their plan that were determined as a
result of its backtracking.

A;’s message about completing its individual plans, in case (2) above, does
not include temporal information and other details of A;’s individual plans. The
goal of this message is to enable the agents to know the status of their joint
plan. The sole case in which the agents send temporal information to each other
is in case (3) above. Sending the time values of 31,...,8,, by A4; to A; (in case

! We focus on time scheduling and therefore do not discuss the planning processes for
selection agents and recipes.

Exchanging and Combining Temporal Information 5

(3)) causes A; to commit to these values. Thus, one of the main problems in a
cooperative environment is at what stage should A; commit to a timetable for
performing 3i,..., 3, and inform A; about this timetable.

One possibility is that when A; completes the planning of all its actions that
directly precede an action v, which has to be performed by A;, it commits to
their performance times and sends the appropriate values to A;. This method
enables A; to begin the plan of 4 immediately when the planning of all the
actions which precede action vy have been completed. Furthermore, A; does not
need to ask A; for the relevant times since A; informs A; about them as soon
as it is possible. However, since A; has to commit to these times, A; has less
flexibility in determining the time performance for its other actions. If it decides
to change the announced timetable it will need to negotiate with A;. Thus, we
also consider an alternative mechanism. Following this approach A; plans its
individual actions until it is not able to continue its plan since it depends on
A;’s activity. In such a case A; sends a message to A; asking for the appropriate
time values. When A; completes the planning of the relevant actions, it sends the
appropriate values to A;. In this manner, the commitment is left to the latest
possible time, but, it may delay the planning of the agent waiting for an answer
and it requires additional message exchange. In our terminology the first method
is called provide-time and the second is called ask-time.

An additional problem in a collaborative environment involves the order in
which the members of the group should plan their activities. As described above,
during the planning process, each agent Ay in the group selects a vertex sg from
its Grk to be expanded. Vertex sg is selected by Ay only if it satisfies certain
conditions. However, since in most cases there is more than one vertex that
satisfies all the required conditions, the agent has to decide which of them to
select in order to complete its plan. There are several possible selection methods.
In the environment that we consider, the order of the vertices selection may affect
Ap’s decision regarding the time scheduling of its activities. Furthermore, in a
joint activity a selection of a specific vertex by an individual agent may influence
the activity of the entire team.

In this work we consider three methods for the planning order of the indi-
vidual in the team. The first is called random-order, where Ay randomly selects
one of the several actions that can be developed. In the second, called dfs-order,
Ay, selects the action according to the depth-first search order of its GrE. The
third is called bfs-order. According to this method Ay selects one of the actions
according to the breadth-first search order of its Gr¥. In the first method the
planning order of the team members differ. In the two latter methods all the
agents in the team plan their actions in the same order. In the dfs-order, the
agent selects an action from the lowest levels of its recipe tree. Thus, it devel-
ops a subaction until it reaches the basic action level and then it continues to
the next subaction. In the bfs-order, the agent tries to complete the plans of
the highest level actions in each stage of the planning process of its recipe tree.
Our simulation results, presented in the following section, demonstrate that the
planning order influences the success rate of the agents.

6 Meirav Hadad and Sarit Kraus

3 Experimental Results

We developed a simulation environment comprising two agents to evaluate the
success rate of the system. In our experiments, we made the simplifying assump-
tion that all the time constraints on an agent’s action are associated either with
the action-type or with the appropriate recipe. We ran the algorithm on several
different recipe libraries which were created randomly. Each recipe library in-
cluded at least one possible solution to the joint activity. For each case we ran
120 experiments with randomly generated parameters from ranges with high
success rates of one agent [4].

We tested the provide-time method and the ask-time method when the
agents used the random-order method, the dfs-order method and the bfs-order
method. The combined methods are called random-provide, dfs-provide, bfs-
provide, random-ask, dfs-ask and bfs-ask, respectively. We tested the success
rate of each method in a given range of multi-precedence constraints. Our goal
was to answer the following questions: (1) Does the planning order affect the per-
formance of the system? If so, what is the best method for the planning order
in the team? Our hypothesis was that the order in which the agent chooses to
plan the actions with the multi-precedence constraints affects the performance.
If such actions are selected early, the commitment by the agents will be done at
an early stage, and it will reduce their flexibility. However, because the examples

provide-time method ask-time method
1 1 = A A
=>=random- - "a L —&—random-
. ¢ \ / provide A N ., ask
2 £ o9 Chll >
4 L4 .
2 087 —H—dfs- g A - M- dfs-ask
g provide] A .
3 308 =
\\ —O—Dbfs- b - A= bfs-ask
08 provide o7
0 1-2 34 56 Q 12 34 56
No. of Precedence Constraints No. of Precedence Constraints
bfs-order method central-planer vs bfs-ask
4
- ~ -
éf: :" < 7 - ™ |- A= bfs-ask
o \~ e - A= bfs-ask Ogsll N\ P
A" .
@ ‘
3 o
4 ® e
208 \/ —O—Dbfs- ° A * clentral—
8 .
& provide| || 8 / \ planner
(?J g 0.8
07 @
y S

o 12 34 56 075
0 12 34 56

No. of Precedence Constraints
No. of Precedence Constraints

Fig. 2. Comparison between planning order methods when the agents use provide-time
(the top left graph) and ask-time (the top right graph); comparison between ask-time
and provide-time methods when the agents use bfs-order (the bottom left graph); and
comparison between the performance of our distributed method and the central-planner
(the bottom right graph).

Exchanging and Combining Temporal Information 7

were drawn randomly, in certain examples using a specific method will cause the
agent to select such actions early and in other examples using the same method
will cause the agent to select such actions at a late stage. Thus, we assumed
that there is not one method that is always the best. (2) At what stage should
the agent commit to a timetable for performing joint actions? Is the ask-time
method better than the provide-time method? Our hypothesis was that if the
commitment is made as late as possible, the flexibility of the agents is higher,
thus the performance of the system will be better. (3) Does the number of multi-
precedence constraints between complex subactions affect the performance of the
system? Our hypothesis was that a high number of multi-precedence constraints
would allow the agents less flexibility in deciding the performance time of their
activities. Thus, it would reduce the success rate of the system.

The top of figure 2 compares the success rate of the different planning order
methods for a given range of multi-precedence constraints, when the agents use
provide-time and ask-time methods, respectively. As shown in the right graph
bfs-ask (90% — 100% success rate) is better than random-ask (86% — 96% success
rate) and dfs-ask (75% — 95%). Also, in the left graph the method with almost
always the best results is bfs-provide, with a success rate between 80% — 100%.
The success rate of random-provide was between 64% — 92% and of dfs-provide
was between 64% — 92%. The only case where random-provide is better than
bfs-provide is in the case of 3 — 4 constraints. However, the gap between these
methods is very small. Thus, in contrast to our hypothesis for the first question,
we can conclude that bfs-order on average is the best planning method for our
system. However, as predicted by our hypothesis after carefully examining all
the cases, dfs-order succeeded in specific examples where bfs-order failed. We
assume that the random order, which is a random combination of bfs-order and
dfs-order, drew the wrong order in some examples, which caused it to fail more
than the dfs-order. But, in other cases, it drew the best order for the specific
example and this is the reason for its good results in certain cases.

We also compared the ask-time method with the provide-time method when
the agents use bfs, dfs and the random planning order methods. As we hypoth-
esized, we conclude that in general, the ask-time method is better than the
provide-time method (see also the bottom left graph). Thus, when the agents
make their commitments as late as possible their performance on average is bet-
ter. This is also the reason that the success rate of the dfs-provide method is
a linear function of the number of the multi-precedence constraints. In the dfs
order method the agent tries to complete the entire plan of a selected action
before it continues to plan another action. Thus, the planning of certain actions
are completed, and the agent provides their timetable and commits to it, at an
early stage. As the number of multi-precedence constraints increases, more early
commitments are made. In the other methods the success rate does not change
monotonically as a function of the number of the multi-precedence constraints.
We hypothesize that the reason for this non monotonic behavior results from the
fact that a high number of multi-precedence constraints provides more knowl-
edge about the subaction slots. As a result, the precedence constraints lead the

8 Meirav Hadad and Sarit Kraus

scheduler and the other team members to the correct solution (which always ex-
ists in our examples). On the other hand, multi-precedence constraints decrease
the flexibility of the individuals in the team since they cause them to make more
commitments in their timetable. The low flexibility leads to a lower success rate
in cases of 3-4 multi-precedence constraints.

We ran an additional set of experiments with the above examples. The goal
of this set of experiments was to compare the performance of our distributed
method with the alternative method, where a team leader is responsible for
solving the multi-agent planning problem centrally. Accordingly, we built a sys-
tem with a central planner that planned all the actions centrally by using the
bfs-order planning method. We can conclude, from the bottom right graph in
figure 2, that the success rate of the distributed method (90% — 100%) is al-
most always better than the central-planner (between 80% — 100%), except for
one case where they perform equally well. We can see that when the joint ac-
tion does not consist of any multi-precedence constraints, the success rate of the
central-planner is low. The success rate of the central-planner is highest when the
number of multi-precedence constraints is between 1 — 2, whereas a high number
of multi-precedence constraints reduces the success rate. We believe that the
case of zero multi-precedence constraints is identical to the single agent case [4].
The high planning time (of more than 100 basic actions) leads to a delay in
sending the basic actions for execution and causes certain basic actions to miss
their deadline. This low success rate can be improved by increasing the idle time
as in the single agent case. We hypothesize that 1 — 2 multi-precedence con-
straints increases the success rate of the system because these constraints force
the central-planner to first complete the plans of the actions with the earliest
deadlines. This is in contrast to the case of zero multi-precedence constraints,
where the partial knowledge of the planner in its uncertain environment does
not enable it to predict which actions it has to plan first. However, since the
central-planner must plan the actions of all the group members, a high number
of multi-precedence constraints causes the central-planner to ask the agents to
make more commitments in their schedule. Consequently, these commitments
reduce the flexibility of the scheduling process.

References

1. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. AIJ, 49:61-95,
1991.

2. B. J. Grosz and S. Kraus. Collaborative plans for complex group action. AILJ,
86(2):269 357, 1996.

3. M. Hadad and S. Kraus. A mechanism for temporal reasoning by collaborative
agents. In CIA-01, pages 229-234, 2001.

4. M. Hadad, S. Kraus, Y. Gal, and R. Lin. Time reasoning for a collaborative plan-
ning agent in a dynamic environment. Annals of Math. and AI, 2002. (In press)
www.cs.biu.ac.il/ sarit/articles.html.

5. N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. AIJ, 75(2):1 46, 1995.

