
Quantifying the Expected Utility of Information

in Multi-Agent Scheduling Tasks

Avi Rosenfeld1,2, Sarit Kraus2, and Charlie Ortiz3

1 Department of Industrial Engineering
Jerusalem College of Technology, Jerusalem, Israel

2 Department of Computer Science Bar Ilan University, Ramat Gan, Israel
3 SRI International, 333 Ravenswood Avenue Menlo Park, CA 94025-3493, USA

Email: {rosenfa, sarit}@cs.biu.ac.il, ortiz@ai.sri.com

Abstract. In this paper we investigate methods for analyzing the ex-
pected value of adding information in distributed task scheduling prob-
lems. As scheduling problems are NP-complete, no polynomial algo-
rithms exist for evaluating the impact a certain constraint, or relaxing
the same constraint, will have on the global problem. We present a gen-
eral approach where local agents can estimate their problem tightness,
or how constrained their local subproblem is. This allows these agents to
immediately identify many problems which are not constrained, and will
not benefit from sending or receiving further information. Next, agents
use traditional machine learning methods based on their specific local
problem attributes to attempt to identify which of the constrained prob-
lems will most benefit from human attention. We evaluated this ap-
proach within a distributed cTAEMS scheduling domain and found this
approach was overall quite effective.

1 Introduction

Effectively harnessing the relative strengths of mixed human agent groups can
be critical for performing a variety of complex scheduling tasks. The importance
of effective coordination has been demonstrated in scheduling and planning do-
mains such as hazardous cleanup, emergency first-response, and military conflicts
[12]. Agents can quickly compute possible group compositions and assess group
behavior even in dynamic and time sensitive environments [5, 11, 14]. This ability
can be invaluable in focusing a person’s attention to the most critical decisions
in these environments [12].

We present the challenge of how agents can best coordinate their support de-
cisions with people as the “Coordination Autonomy” (CA) problem. While using
computer agents in these tasks can be beneficial, they are subject to several key
limitations. First, we assume agents have only a partial view of the global con-
straints and the utility that could potentially be achieved through fulfilling these
tasks. Because of this, it is impossible for agents to compute the group’s utility



2

exclusively based on their local information [5, 11]. Second, we also assume there
is cost associated with sending or receiving constraint information. These costs
may stem from agent communication costs, or costs associated with interrupting
the human operator [12]. As has been previously observed, coordinating deci-
sions involving incomplete information and communication costs significantly
increases the problem’s complexity [9].

In the CA system under consideration, human operators are assumed to have
access to more complete knowledge about task uncertainty because they have
updated information or expert knowledge. This information can be critical in
improving the group’s utility by relaxing agents’ rigid constraint information
[12]. Specifically, we focus on how this information may affect decisions where
uncertainty exists in task quality and duration. For example, a human operator
in an emergency response environment may have updated information about
domain weather conditions, or acquired knowledge from years of experience.
Without this information, agents must plan for the worse-case scenario, e.g., that
tasks with uncertainty in quality will yield the lesser utility amount, and tasks
with uncertainty in duration will take the longest time. However, the user may
know what task outcomes will actually be, allowing for more or higher quality
tasks to be scheduled. On the one hand, this information can be invaluable
in increasing the group’s productivity. On the other hand, a person’s time is
valuable, and thus the person should only be consulted if the agent believes that
the current scheduling problem is such that additional information will help.

Effectively measuring the expected value from a teammates’ information is
critical to the success of these types of systems [12]. Similar issues have arisen in
the Information Gain measure that has been put forward by the machine learn-
ing community [6]. Information gain is typically used to learn the effectiveness
of a certain attribute in classifying data, or how much additional information is
gained by partitioning examples according to a given attribute. Thus, one ap-
proach may be to query the system with and without a given piece of information
and build the CA application based on the resulting Information Gain.

However, there are several reasons why basic machine learning measures such
as Information Gain cannot be applied to this type of problem. First, we assume
there is a cost involved with agents exchanging constraint information. As a
result, the cost in computing the Information Gain for a given problem may
outweigh its benefit. Second, since there are a potentially large number of tasks
to schedule, the size of the learning space will be very large. Sending “what
if” queries for each task to a local scheduler can become resource intensive,
leading to delays. Finally, sending too much constraint information can result
in a lower group quality: we have previously found that in highly constrained
problems, sending additional information can prevent agents from finding the
optimal solution [8].

Towards addressing this problem, this paper presents an approach where
agents can estimate the value of information without the resource intensive
queries used in other works [12]. Our first contribution is a general, non domain-
specific constraint “tightness” measure in which agents can locally measure how



3

constrained a task is. A constraint tightness of less than one indicates that a
task is underconstrained and will not benefit from any additional information.
This allows agents to locally and immediately identify that the expected utility
from added information in such cases will be zero. A tightness measure of greater
than one indicates that the problem may be affected by other constraints, and
thus information may be of importance. However, we found the problem of de-
termining how constrained the problem is exclusively from local information to
be quite challenging. In addressing this challenge, we present a solution where
agents can offline apply machine learning techniques to identify which of the
remaining tasks are likely to have the highest expected utility from information.

Our next section provides the background and motivation for this work. In
Section 3 we briefly describe the cTAEMS language used in quantifying the
distributed scheduling tasks we studied. In Section 4 we present the domain in-
dependent constraint “tightness” measure for locally assessing what the utility
of added information will be. Section 5 present how we quantified this value of
information through machine learning regression and decision tree models. Sec-
tion 6 provides experimental results. In Section 7, we provide a discussion about
the general applicability of these results, as well as provide several directions for
future research. Section 8 concludes.

2 Related Work

The goal of this paper is to quantify the expected utility to be gained from added
information in distributed scheduling problems. This information can then be
used to help agents decide what constraints should be forwarded to a human
user for further information. Thus, this paper is linked to previous research in
the field of agent-human interactions, as well as previous distributed scheduling
research.

The adjustable autonomy challenge as described by Scerri et al. [13] refers
to how agents can vary their level of autonomy, particularly in dealing with
other types of entities such as people. They proposed a framework where agents
can explicitly reason about the potential costs and gains from interacting with
other agents and people to coordinate decisions. A key issue to applying their
model within new domains is effectively quantifying the utility of information
the entities can provide – a challenge we address in this paper.

Distributed scheduling problems belong to a more general category of distrib-
uted constraint optimization problems (DCOP) [11], and a variety of algorithms
have been proposed for solving these problems [5, 11, 14]. In these problems,
inter-agent constraints must be coordinated to find the solution that satisfies as
many of these constraints as possible. However, these problem are known to be
NP-complete, even if agents freely share all information at their disposal [5, 9].
As such, no polynomial algorithms exist for checking how a scheduling problem’s
utility is affected by a given piece of information.

This paper presents a process through which agents are able to success-
fully quantify inter-agent interactions, such as the expected utility of sending or



4

receiving information, exclusively with the local agent’s information. Previous
approaches have considered all possible group interactions, potentially creating
a need to generate very large numbers of “what if” queries to obtain this in-
formation [9, 12]. Our approach is significant in that agents locally estimate the
utility of additional information without additional data, allowing them to rea-
son about a limited number of interactions. This reduction allows for tractable
solutions in estimating the value of information without using any queries during
task execution.

In creating our approach, we draw upon previous studies that found that
different categories of problem complexity exist, even within NP-complete prob-
lems [2, 7]. Many instances of NP-complete problems can still be quickly solved,
while other similar instances of problems from the same domain cannot. These
studies have introduced the concept of a phase transition to differentiate classes
of “easy” and “hard” instances of a problem [7]. Based on that body of work, we
attempt to locally identify tasks which are underconstrained, or represent “easy”
interactions that can be locally solved without any additional information, as
well as the “hard” interactions that can potentially benefit from additional in-
formation.

However, finding such phase transitions within real-world domains is far from
trivial due to the varied types of possible agent interactions [1, 9]. In the theo-
retical graph coloring problems previously studied, phase transitions were found
that were associated with the ratio of constraint clauses per variable [7]. Unfortu-
nately, these graph coloring problems are relatively simple in that all constraints
typically have equal weighting and every agent has equal numbers of constraints
(edges). Thus, discovering phase transitions in experiments can be accomplished
only through variation of a single parameter – the ratio of graph edges to nodes.
In contrast, as we now describe, many real-world domains, such as the cTAEMS
scheduling domain we have focused on, are far more complex. Novel measures
are needed to quantify inter-agent actions in this and similar domains.

3 Domain Background and Description

cTAEMS is a robust, task independent language used by many researchers for
studying multiagent task scheduling problems [12] based on the TAEMS lan-
guage standard [4]. The cTAEMS language is composed of methods, tasks and
subtasks that define a coordination problem in a Hierarchical Task Network
(HTN) structure. Methods represent the most basic action an agent can per-
form and have associated with them a list of one or more potential outcomes.
This outcome list describes what the quality (Q), duration (D) and cost (C)
distributions will be for each possible result associated with the execution of
that method. Tasks represent a higher level abstraction and describe the pos-
sible interrelationship between actions through what is referred to as a quality
accumulation function (QAF), that indicates how the expected quality of sub-
tasks will contribute to the overall quality of a (group) task. QAF’s are of three
forms: min, max or sum. In a min QAF, the total added quality is taken to be



5

the minimum of all subtasks – it could be thought of as a logical AND relation
between tasks. In a max QAF, the quality is the maximum value (or the logi-
cal OR), whereas in a sum QAF the quality is the sum of the expected quality
of all subtasks. These subtasks can then be further subdivided into additional
levels of subtask children, each potentially with their own QAF relationship.
Finally, hard constraints between tasks or methods can be modeled in terms of
what are referred to as non-local effects (NLE’s) constraints between tasks, using
the primitives enable or disable. Soft constraints are modeled through facilitates

or hinders relationships. For example, assuming one task must occur before an-
other, one could represent this constraint in terms of an enables relation between
those two tasks. Assuming two tasks (or subtasks) cannot both be performed
can be modeled in terms of a disables relation between the two tasks. System dy-
namics are modeled through probabilistic values for quality and duration within
the HTN’s tasks and subtasks. For example, a given task could have a duration
of 10 with 50% probability, a duration of 4 with 25% probability, and a duration
of 20 with 25% probability.

Fig. 1. A sample cTAEMS Scheduling Problem (global view middle) with 3 agents (3
subjective views on bottom).

The CA system we propose takes as its input the system’s distributed con-
straints, formulated in cTAEMS, and outputs the constraints a person should
focus on. For example, Figure 1 is an example of a scheduling problem instance,



6

described in cTAEMS. In this example, three agents, A, B, and C must coor-
dinate their actions to find the optimal schedule for a global task T. Task T
has three subtasks (A, B, and C) and these tasks are joined by a sum relation-
ship. There are enable relationships between these tasks and thus they must be
executed sequentially. In this example, an optimal schedule would be for A to
schedule method A1, B to schedule B2, and C to schedule C1. However, assum-
ing only 70 time units exist for all three tasks, there is insufficient time for A to
schedule A1, for B to schedule method B1, and for C to schedule C1. As such,
one of the agents must sacrifice scheduling its method with the highest quality
so the group’s quality will be maximized. The group will lose 15 units of quality
if A does not schedule A1, 10 units of quality if B does not schedule B1, and 20
units of quality if C does not schedule C1. Thus, B chooses B2 so the A1 and
C1 can be scheduled.

Changing the cTAEMS structure, even slightly, can greatly affect the inter-
agent constraints. We particularly focus on the impact uncertainty in task quality
and duration will have on decisions. If a given task has a distribution of possi-
ble durations, agents supporting the automated scheduling process assume the
worst-case scenario must be planned for (e.g. we must assume the task will have
the smallest possible quality, or the task will take the longest possible time).
Adding more precise information, such as eliminating certain duration possibil-
ities, or identifying which outcome will definitely occur, can also greatly impact
inter-agent constraints. For example, if a human operator could provide infor-
mation that task B1 will take less than 15 units of time (instead of the current
20) this task could be scheduled and the group’s utility will be raised. As a re-
sult, the CA system should identify task B1 as being the first task worthy of the
person’s attention. Novel mechanisms are required to generally find which types
of constraints are most worthy of further information.

4 Locally Quantifying Scheduling Constraints

While we used the cTAEMS language to quantify scheduling constraints, the
solution we are developing is meant to be as general as possible. Towards this
goal, we have developed a tightness measure which we use to identify which
subtasks are not constrained, and therefore cannot possibly benefit from any
additional information. Our hypothesis is that general types of interactions can
be quantified, similar to the phase shifts found within simpler graph coloring
optimization problems previously studied [2, 7]. However, novel measures of in-
teraction difficulty are needed to help quantify interactions so phase shifts can
be discovered.

Towards this goal, we present a “tightness” measure to quantify how much
overlap exists between constraints. In referring to these constraints, let G =
{A1, A2 . . . , AN} be a group of N agents trying to maximize their group’s col-
lective scheduling utility. Each agent has a set of m tasks, T = {T1, . . . , Tm} that
can be performed by that agent. Each Task, Ti, has a time Window within which
the task can be performed, a Quality as the utility that the task will add to the



7

group upon its successful completion, and a Duration as the length of time the
task requires to be completed. We assume that task quality and duration often
have uncertainty, while task windows are typically based on the problem’s struc-
ture. We model Wi as the fixed Window length for task Ti, {Qi1, Qi2, . . . , Qij}
as the possible quality outcomes for Ti, and {Ri1, Ri2, . . . , Rij} as the possible
duration lengths of Ti.

Based on these definitions, we model an agent’s quality tightness as:

Tightness-Quality(Ti) = Qualitymax(Ti)
Quality(Window(Ti))

where Qualitymax(Ti) returns the maximal quality from {Qi1, Qi2, . . . , Qij}, and
Quality(Window(Ti)) returns the maximal expected quality of all other sub-
tasks that share the task window of (Ti). Note that if quality uncertainty exists
in these other tasks, we again assume the worse case, and the lowest quality
value must be considered in computing the value of Quality(Window(Ti)) . The
measure of Tightness-Quality(Ti) can then be used to quantify what potential
overlap exist between Ti and other local constraints within Ti’s task window.
For example, assume TA can be fulfilled by methods A1 and A2 with A1 having
a quality distribution between 10 and 20, and A2 having a quality distribu-
tion of 15 and 25. It is possible that asking the user for input about the actual
quality of A1 is worthwhile as these quality distributions overlap and A1 may
have a higher quality than A2 (say 20 for A1 and 15 for A2). In this example,
Tightness-Quality(A1) = 1.33 indicating the quality distributions of these tasks
overlap and information may be beneficial. However, a tightness under one would
indicate no possible quality overlap, and thus no possible gain from information.

Similarly, we model an agent’s duration tightness as:

Tightness-Duration(Ti) = Durationmax(Ti)
Duration(Window(Ti))

where Durationmax(Ti) returns the maximal duration from {Ri1, Ri2, . . . , Rij},
and Duration(Window(Ti)) refers to the time allotted for completing task Ti.
Note that within the cTAEMS problems we studied, no uncertainty existed
within the time window for the tasks sharing a given window (Window(Ti))
so uncertainty in this value need not be considered.

As was the case within the quality tightness measure, a value of more than
one indicates an overlap between Ti and other task constraints, while a value
less than one indicates no possible overlap. For example, assume task TA may
last for either 10, 20, or 40 time units to be completed within a time win-
dow, Window(TA) of 25 units. According to the tightness definition, tightness
Tightness(TA) is 40/25 of 1.6. Without any additional information, we must as-
sume that this subtask task will take the maximal time, potentially preventing
that agent from performing other tasks. However, assuming information can be
provided regarding the task’s duration, say that TA will only last for 10 or 20
units, the value of Tightness(TA) drops below 1.

The tightness measures we present have two important properties: First, they
are locally measurable. Agents can measure its quality or duration tightness
without any additional input from other task agents or the human operators
within the group. Second, they can effectively quantify the impact making a
local decision will have. By definition, a tightness of 1.0 or less means that the



8

problem is not constrained, as no task option overlaps with others options sharing
that task. In such cases, agents will not obtain additional utility from more
information, and the agent should not prompt the human operator for additional
data. After this measure exceeds 1.0, a phase shift occurs when information may
be helpful. However, further solutions are still needed to quantify how much the
group’s utility is expected to increase if this constraint is relaxed.

5 Learning the Value of Information

As the tightness measure only addresses which tasks will definitely not benefit
from additional information, the next step in our approach is a machine learning
model to suggest which tasks will show an increase in utility as a result of addi-
tional information. In addressing this challenge, we built two machine learning
models: a regression based model where agents predict a numeric value for added
information from the human operator, and a classification model where agents
classify a given task as potentially benefitting or not benefiting from additional
information. Alternatively, within the classification model, qualitative categories
can be created, such as High, Low, and Zero impact categories instead of binary
Yes and No categories.

The human-agent interface within the Coordination Autonomy (CA) appli-
cation we propose will be affected by the learning model chosen. Within the
regression model, the CA front-end will present the human operator a numeric
field for the expected value of information that can potentially be added through
the user’s attention. Assuming a classification model is trained, we propose that
the CA’s front-end color code various tasks to represent how much information
can potentially help the group. For example, referring back to Figure 1, subtasks
would be colored green if information was categorized as less important while
subtasks of high importance would be colored red. We believe this interface can
most effectively focus the user’s attention.

The procedure we adopted for training the machine learning model is out-
lined in algorithm 1. We used a problem generator created by Global Infotech
Inc. (GITI) for the purpose of generating cTAEMs problems within the frame-
work of the COORDINATORS DARPA program4. We created two sets of 50
problems (the value for X in the algorithm) where cTAEMS parameters (such as
the number of tasks to be scheduled, the hierarchical structure of the tasks, the
number of agents able to perform each task, the number of NLE relationships be-
tween tasks, task duration, and average task quality) were randomly generated.
In the first set of problems, we generated problems with uncertainty in quality
distributions, while keeping other parameters deterministic. In the second set
of problems, we created problems with uncertain durations, while keeping other
parameters constant. Note that these 100 total problems represent a small frac-
tion of the total number of the thousands of problem permutations the GITI
scenario generator could create. Additionally, each of these base problems had

4 http://www.darpa.mil/ipto/programs/coordinators/



9

many possible permutations – these 100 total cTAEMS problems contained over
5000 subtasks where constraint information could be added.

The goal for creating these test cases was to study how user information
about quality and duration uncertainty affected the group’s utility. We used a
previously tested cTAEMS centralized scheduler [8] to first compute the group’s
utility under the assumption that uncertainty in problems would result in the
lowest probabilistic outcome. Thus, in the first set of problems, we assumed tasks
would have the lowest quality, and in the second problem set the tasks would take
the maximal time (line 3). We then computed what the group’s utility would
be if we could relax that assumption, and the user could provide information
that task would have the highest possible quality, or take the shortest time (line
4). Next, we stored this information into a table along with a vector of the
problem’s specific parameters (e.g. problem parameters such as tightness, local
NLE’s, maximal duration, quality, etc.) and entered this information into the
table, Table (line 5). This problem information would then be used for offline
training of the machine learning model.

In computing the value of added information, we adopted a highly optimistic
approach for the value of Utility(Problemk,j) that makes several assumptions:
a) the person being contacted actually has information about the subtask j,
b) the person will have information that will help the group in the maximal
possible way by informing the agents that the task will have the highest quality
or take the shortest duration, and c) this information can be provided without
cost. Despite this oversimplification, the approach was useful for identifying the
maximal upper bound for the potential utility that could be gained through
added information.

Algorithm 1 Training the Information Model(Problem Set of Size X)

1: for k = 1 to X do

2: Without ⇐ Utility(Problemk)
3: for j = 1 to Num(Subtasks(Problemk)) do

4: With ⇐ Utility(Problemk,j)
5: Table[k][j] ⇐ (With) - (Without)
6: end for

7: end for

Interestingly, we found that only a small percentage of subtasks had any
benefit from adding this type of constraint information. While each problem, k,
contained at least one subtask that did benefit from added information, only 1022
subtasks, or roughly 20% of the total entries within the training data, benefited
from any additional information. Thus, finding these subtasks is akin to “finding
a needle in a haystack”. Clearly, naive methods that query every subtasks are
not appropriate, especially if there is a cost associated with generating queries or
if the human is not able or willing, for whatever reason, to provide information.



10

6 Experimental Results

We found strong support for the usefulness of the quality and duration tightness
measures in identifying the cases where information definitely did not help. Of
the 2490 cases where a tightness value was less than 1, only 38 (1.5%) cases ben-
efited from additional information. Next, we used the Weka machine learning
package [10] to train and evaluate what the value of information would be in
the remaining cases. We present the results from training and evaluating three
decision tree models: a regression model based on the M5P algorithm and C45
decision trees (J48 within the Weka implementation) to create classifier mod-
els based on 2 information categories (Yes / No impact of information) and a
3 category information classification task (High, Low, and Zero impact). Note
that while we present results from decision trees learning approaches, other pos-
sibilities exist. We did, in fact, train models based on Bayes Networks, Neural
Networks, and SVM models and found the results to be nearly identical with
those we present. In all cases, we performed 10-fold cross validation to evaluate
the results.

First, we trained and evaluated the regression based model. The results from
this experiment are found in Table 1. The first two rows present the results from
the problem set with quality uncertainty, and the last two rows present the results
from the corresponding problem set with duration uncertainty. Note that this
model yielded an average correlation of 0.56 and 0.46. In comparison, we present
the Naive approach which assumes all instances belong to the majority class, and
information adds zero quality. While these results are certainly significant (0.56
and 0.46 being much larger than the Null hypothesis of 0.05), they do leave room
for improvement as even with the tightness measure these results are far from
the optimal correlation of 1.0.

Table 1. Comparing the accuracy and Mean Absolute error in regression trained
model.

Learned Model Naive (Majority)

Quality Correlation 0.56 -0.06

Quality Mean Absolute Error 1.27 2.61

Duration Correlation 0.46 -0.04

Duration Mean Absolute Error 1.67 2.00

Next, we trained a two category classification model (Yes/No categories) to
find instances where information does or does not help. Table 2 presents the
results. Note that the larger class (information did not help) represents over
80% of the subtasks in both problem sets, and thus even naively categorizing all
subtasks within this category results in a relatively high accuracy of the model.
However, as the goal is to effectively find all subtasks where information will
help, this approach will find none of the desired instances. In both problem sets,
the trained model had better accuracy than the naive baseline (both slightly over



11

84%) while still finding many of the instances where added information would
help (55.20% of the instances in the quality set, 19.03% in the duration set).

Table 2. Comparing the overall accuracy and number of high information instances
found within a 2 category decision tree model.

Learned Model Naive (Majority)

Accuracy (Quality) 85.04% 81.95%

Instances Found (Quality) 55.20% 0%

Accuracy (Duration) 84.13% 83.45%

Instances Found (Duration) 19.03% 0%

Finally, we studied the three category classification task. Here, we divided
the training data into a High category where information helped 10 or more
units, a Low category where information helped less than 10 units, and a Zero
category where information did not help. The results of this experiments from
the quality set are found in Table 3, and those from the duration experiments
are in Table 4.

Within these tables, we present the classification confusion matrix, often pre-
sented in multi-category classification problems. We plot the number of instances
found within a given category (the diagonal of table) as well as the number of in-
stances misclassified per category. Not all misclassification errors are necessarily
equally important. For example, misclassifying a High problem or Low, or a Low
problem as High is likely to be less problematic that classifying a High problem
as Zero. For example, within the quality experiments, only 22 of 66 High in-
stances were classified as High, but another 22 of these instances were classified
as Low. This distinction can be quite significant. The recall of the High category
alone (High classified as High) is only 0.33, however, if we view classifying High
either as High or Low as being acceptable, the recall jumps to 0.67.

Table 3. Comparing the accuracy and number of high information instances found in
a 3 category decision tree model with quality uncertainty.

Classified as High Classified as Low Classified As Zero Recall Ave. Accuracy

High 22 22 24 0.32 82.53%

Low 15 100 170 0.35 82.53%

Zero 18 86 1465 0.93 82.53%

Table 4. Comparing the accuracy and number of high information instances found in
a 3 category decision tree model with duration uncertainty.

Classified as High Classified as Low Classified As Zero Recall Ave. Accuracy

High 13 14 19 0.28 82.54%

Low 9 83 277 0.23 82.54%

Zero 10 109 1974 0.94 82.54%



12

As the machine learning models never achieved a recall near 100%, we consid-
ered creating models which were biased towards categorizing a task as benefitting
from information. While this bias will result in a higher recall of this category,
it will come at a cost of false positives that will lower the overall accuracy of
the model. This type of approach would likely be useful if the human user is
able to be prompted Q times to add information, when Q is greater than the
actual number of tasks that can benefit from added information. Alternatively,
this approach will also be useful if the known cost from interrupting the user
is relatively low. For example, if the cost of prompting the user is 1 unit, we
should be willing to ask several queries for information so additional High in-
stances (each worth 10 units) can be found. To train this model, we followed the
previous developed MetaCost approach [3] and refer the reader to their work for
additional details in how the cost bias is created.

We did find that the MetaCost approach was extremely effective in increasing
the recall of the desired system categories, albeit at a cost of false positives that
reduced the overall accuracy. To explore this point, we used the MetaCost func-
tion to apply different weights for falsely classifying a subtask where information
was useful (Yes) as belonging to the non-useful category (No). The base weights,
or unbiased classification, will have equal weighting for these categories (1 to 1
weight). We found that as we increased these weights, we obtained progressively
higher recall from the desired Yes category, but at an expense in overall reduc-
tion of model accuracy. We present the results of this approach from the quality
experiment in a two category classification model in Table 5. For example, a
5 to 1 bias towards the Yes category found 566 of the 607 instances (or 0.93
recall). However it had a higher rate of false positives (0.32) and lower accuracy
(72.61%) from the baseline (1 to 1 weights). We also applied this approach to
the two category duration problem set, as well as the quality and duration 3 cat-
egory classification models. As expected, in all cases the cost bias was effective
in increasing the recall of the categories where information helped, albeit at a
cost of more false positives.

Table 5. Exploring the tradeoff between higher recall of desired results (Yes instances
found), and false positives and negatives within a 2 category decision tree model with
quality uncertainty.

Weight Total Accuracy Found Not Found Recall False Reject False Accept

1 to 1 85.04% 335 272 0.55 0.45 0.08

2 to 1 82.46% 435 172 0.72 0.28 0.15

5 to 1 72.61% 566 41 0.93 0.07 0.32

10 to 1 70.95% 584 23 0.96 0.04 0.35

7 Discussion and Future Directions

In general, we found that the tightness measure was extremely effective in finding
which subtasks would not benefit from adding information. By locally filtering



13

out which tasks were not constrained we were able to focus on determining
whether adding information would help in the remaining subtasks. However,
several key directions are possible to expand upon this work.

First, we found decision trees were overall very effective in quantifying the
expected impact of adding information, and thus were helpful in recommending
if the user should be contacted for additional information. In contrast, previ-
ous work on adjustable autonomy [13] found decision trees were ineffective in
enabling agents to make autonomous decisions. It seems that the difference of re-
sults stems from the very different tasks considered. The previous work used the
learned policy from decision trees to enable agents to act independently of peo-
ple within their group. As a result, their scheduler system made several critical
errors (such as canceling group meetings and volunteering people against their
will for group activities) by overgeneralizing decision tree rules. In contrast, our
support system never tries to make autonomous decisions, and instead took the
support role of recommending what constraint(s) a person should focus on. This
distinction may suggest the need to create different types of learning models for
different agent-human tasks. We hope to further explore this point in the future.

Also, further work is necessary to identify general attributes where infor-
mation definitively does add utility. Our hypothesis is that local information
is sufficient for guaranteeing that a given problem is not constrained, and thus
information will not help. However, the disadvantage to the exclusively local
approach we present is that agents are less able to consider the full extent of all
constraints within the problem. Because of this, we believe this approach was
less affective in finding the cases where information would definitely help.

We have begun to study several of these directions in parallel to the work we
present here. Along these lines we have studied how the tightness measure can
guide agents if they should communicate all of their constraints to a centralized
Constraint Optimization Problem (COP) solver [8]. The COP solver would then
attempt to centrally solve the constraint problem after receiving all constraints
from all agents. To address what agents should communicate, each agent viewed
all of its constraints as belonging to only one task window, with all subtasks
falling within this window. We found that the resulting tightness measure created
three classic clusters of constraint interactions: under-constrained, constrained,
and over-constrained with a clear communication policy emerging based on this
measure. Under-constrained problems had low tightness and could locally be
solved without sending any constraints to the COP solver. Constrained problems
had a medium tightness value, and most benefited from having every agent send
all of its constraints. Problems with the highest tightness value were the most
constrained. In fact, these problems had so many constraints that agents sending
all constraints flooded the COP solver, which was not able to find the optimal
solution. In these problems, agents were again best selecting communication
approaches that sent fewer constraints.

Finally, it is important to note that these research directions are comple-
mentary. We foresee applications where different tightness measures are applied
to filter and predict different characteristics. Say, for example, a domain exists



14

where agents could send constraint information freely. As we have previously
found, sending too much information can prevent centralized problem solvers
from finding the optimal solution [8]. One solution might be to apply the local
tightness measure we present here to filter cases where information definitely
will not help, and then have agents send all remaining constraints. This more
limited set of constraints might be most manageable than the original set. We
are hopeful that this work will lead to additional advances in this challenging
field.

8 Conclusion

In this paper we presented an approach to quantifying the expected utility
change from adding information to agents within distributed scheduling prob-
lems. Agents exclusively used local information about their constraints to predict
whether adding information will help the group increase its utility. The signif-
icance of this work is its ability to enable agents to find which constraints will
most benefit from additional human information, without using resource inten-
sive queries required in other approaches [12]. Towards achieving this goal, we
defined and used a general tightness measure and domain specific information
from the cTAEMS distributed scheduling domain to train a regression based
learning model for numerically quantifying the value of this information, as well
as classifier models to identify if a given subtask should be categorized as benefit-
ing from information or not. In general, we found that the non problem-specific
tightness measures was extremely effective in finding where addition information
about constraints would not be helpful. Domain specific cTAEMS information
was moderately useful in identifying where information would be helpful. Fi-
nally, we presented several possible future direction of study in this challenging
problem.

References

1. Sven A. Brueckner and H. Van Dyke Parunak. Resource-aware exploration of the
emergent dynamics of simulated systems. In AAMAS ’03: Proceedings of the second
international joint conference on Autonomous agents and multiagent systems, pages
781–788, New York, NY, USA, 2003. ACM Press.

2. Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really Hard
Problems Are. In Proceedings of the Twelfth International Joint Conference on Ar-
tificial Intelligence, IJCAI-91, Sidney, Australia, pages 331–337, 1991.

3. Pedro Domingos. Metacost: a general method for making classifiers cost-sensitive.
In KDD ’99: Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 155–164, New York, NY, USA, 1999.
ACM Press.

4. V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman,
R. Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang.
Evolution of the GPGP/TAEMS Domain-Independent Coordination Framework. Au-
tonomous Agents and Multi-Agent Systems, 9(1):87–143, July 2004.



15

5. Roger Mailler and Victor Lesser. Solving distributed constraint optimization prob-
lems using cooperative mediation. In AAMAS ’04: Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pages
438–445, Washington, DC, USA, 2004. IEEE Computer Society.

6. Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
7. Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror

Troyansky. Determining computational complexity from characteristic “phase tran-
sitions”. Nature, 400(6740):133–137, 1999.

8. Avi Rosenfeld. A study of dynamic coordination mechanisms. Ph.D. Dissertation,
Bar Ilan University, 2007.

9. Jiaying Shen, Raphen Becker, and Victor Lesser. Agent Interaction in Distributed
MDPs and its Implications on Complexity. In Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 529–536,
Japan, 2006. ACM.

10. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann, June 2005.

11. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham.
Taking dcop to the real world: Efficient complete solutions for distributed multi-event
scheduling. In AAMAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 310–317, Washington, DC,
USA, 2004. IEEE Computer Society.

12. D. Sarne and B. Grosz. Estimating Information Value in Collaborative Multi-Agent
Planning Systems. In AAMAS’07, (to appear), 2007.

13. Paul Scerri, David V. Pynadath, and Milind Tambe. Towards adjustable autonomy
for the real world. In JAIR volume 17, pages 171–228, 2002.

14. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The
distributed constraint satisfaction problem: Formalization and algorithms. Knowledge
and Data Engineering, 10(5):673–685, 1998.


