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Abstract. In this paper, we suggest using an English Auction Protocol 
for a procurement multi-attribute auction in which the item for sale is 
defined by several attributes, the buyer agent is the auctioneer, and the 
seller agents are the bidders. Such domains include auctions on task al-
location, services, or compound products. At the beginning of the auc-
tion the buyer agent announces the required properties of the item, and 
then various seller agents propose bids, which are composed of specific 
configurations that match its request. Each proposed bid should be bet-
ter for the buyer agent than the previous bid, w.r.t. the announced re-
quirements of the buyer agent. Finally, the last suggested bid will win, 
and the seller agent that suggested this bid will be committed to it. We 
consider two utility function models for the English auction protocols 
and provide the optimal bidding strategies for the seller agents and the 
optimal auction design for the buyer agents regarding both models.  

1   Introduction 

Auctions are important mechanisms for allocating resources and services among 
agents [13,14,17].  English auctions are widely used in markets of services (such as 
cargo deliveries), or unique items, and in on-line auction houses, such as eBay, etc., 
and it may be very useful in solving resource allocation problems. The widespread 
research on automated English auctions deals mostly with models where price is the 
unique strategic dimension [16]. However, in many situations, it is necessary to con-
duct negotiations on multiple attributes of a deal. For example, in task allocation, the 
attributes of a deal include the size of a task, starting time, ending deadline, accuracy 
level, etc. A service can be characterized by its quality, supply time, and the risk 
involved. English auctions protocols can also be used when the issue to be considered 
is multi attributed. Several difficulties arise when trying to implement the traditional 
single-attribute auction protocols for multi-attribute items. In this paper, we provide 
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the automated agents (the buyer and the seller agents) that participate in a multi-
attribute English auction with stable and efficient strategies to be used in the auction. 

We focus on markets in which an agent that wants to buy an item becomes the auc-
tioneer of an auction process and the seller agents are the bidders. At the beginning of 
the auction, the buyer agent announces the required properties of the item, and then 
various seller agents propose bids, which are composed of specific configurations that 
match its request. Each proposed bid should be better for the buyer agent than the 
previous bid, w.r.t. the announced requirements of the buyer agent. Finally, the last 
suggested bid will win, and the seller agent that suggested this bid will be committed 
to it. Such markets appear in several situations, and currently there is no automated 
mechanism to deal with them. For example, telephone service providers and Internet 
portals, as well as video-on-demand suppliers, would like to rent extra storage capac-
ity from suppliers over the Internet. The attributes of the required item in this domain 
are the storage capacity, the access rates to the data, the availability time and dead-
line, the level of security, etc. 

There are several problematic aspects when considering a multi-attribute English 
auction. Consider a seller participating in a multi-attribute English auction. Preparing 
a bid that matches the bidder’s requirements, which is better than the previous pro-
posed bid and also maximizes the seller agent’s utility is a sophisticated task. Another 
question that the seller faces, is should the composed bid be influenced by the specific 
values of the proposed bids. If it should, then how should the previous proposed bid 
influence the next proposed bid? 

Some other problematic aspects relate to the buyer, which is the auctioneer in 
such an auction. For example, what should the announced requirements be in order to 
achieve the best agreement? Should they be the exact requirements or should certain 
modifications of the announced requirements be permitted in order to achieve better 
results. 

Another interesting issue concerning the auctioneer and bidders is the multi-
attribute offer evaluation process. Calculating the contribution/cost of each attribute’s 
value, accumulating all of these contributions/costs for one value in order to be able 
to compare the various bids and choosing the best one are certainly not trivial tasks. 
In this paper, we address these various issues and propose ways to handle them. 

In our work, we consider two models for a multi-attribute English auction proto-
col that differs in the seller agents’ utility functions. For both models, we suggest the 
optimal strategies for the automated agents that participate in such auctions. These 
results extend our previous work [7] that focused mainly on the multi-attribute sealed 
bid auction. In [7] we also considered the English auction protocol, and defined four 
variations of an English auction used for the general case of multi-attribute auctions. 
We proved under some assumptions that the four variations converge to the same 
result. However, no optimal strategies were proposed. In this work, we consider one 
of the English auction’s variations, called the sequential full-information-revelation 
auction, for a case where the four variations of the English auction converge to the 
same result. We provide optimal strategies for agents participating in this auction, and 
reveal the auction outcome, given the environmental parameters. 



2   Related Work 

An auction is an efficient protocol for reaching agreements among agents [8, 13, 14, 
17]. There are several types of auctions, which are used, including the English auc-
tion, first price sealed-bid auction, second-price sealed-bid (Vickery) auction, and the 
Dutch auction [14]. In this paper, we focus on the English auction. In the English 
auction, during the bidding process, each bidder can suggest a bid better than or equal 
to the last bid, and when no more bids are suggested, the last placed bid wins. In real 
world situations, each auction has its advantages and drawbacks. 

Auctions can also be used when the issue to be considered includes more than one 
attribute. Researchers discuss auctions where a bid is composed of several details, but 
mostly in the context of a special type of auction, called combinatorial auctions [5, 6, 
9, 10, 12, 15]. In this model, a set of available goods is given. Each bidder specifies 
bundles of goods and the prices it is willing to pay for each specified bundle. The 
problem that arises is how to determine which agents will obtain the bundles they ask 
for, since the number of available goods is limited. Although in combinatorial auc-
tions each bid is composed of multiple details, the problems that appear in our model 
are completely different, since, the auction discussed in our model includes one buyer 
of one multi-attribute item and several competing sellers. This diversity causes com-
pletely different problems when trying to automate the auction mechanism. In this 
paper, we address these problems, and suggest how to design and implement auto-
mated auctions for multi-attribute items. We also provide the automated auctioneer 
and bidders with stable and efficient strategies to be used in this type of auction 

Gimenez-Funes et al. [8] developed trading agents for electronic auctions of multi-
attribute items where the seller suggested a given item for sale, and the buyers com-
pete by sending bids that are composed of the price of the item. They suggest the 
agent apply the Case-Based Decision theory in order to decide which strategy to use 
in the auction. In this paper, we consider an auction where the buyer is the auctioneer, 
and the sellers suggest items with multiple attributes. We develop static and stable 
agent bidding strategies that are based on their beliefs on the environment  

Bichler [2] has made an experimental analysis of multi-attribute auctions. He 
found out that the utility scores achieved in multi-attribute auctions were significantly 
higher than those of single attribute auctions. The single-attribute auction he refers to 
is actually a multi-attribute auction in which all the attributes’ values were fixed and 
the bidders actually competed only on one-dimension bids.  

Very little theoretical work has been done on multi-attribute auctions. Che [4] con-
siders an auction protocol where a bid is composed of a price and a quality. In addi-
tion he assumes that each seller is characterized by only one private cost parameter. 
In his paper, he proposed a design for first score and second score sealed bid auc-
tions, which are based on the announced scoring rule. A scoring rule is used to define 
and describe the required item and it associates a score with each possible bid. . In 
particular the optimal auction design that Che proposed considers a distortion of the 
scoring rule which is additive. That is, he defines the optimal value of a component 
that should be reduced from the real score. However, in our model the scoring rule is 
defined in a way that accumulates the weighted contributions of the various attrib-
utes’ values. When we developed the optimal auction design, we actually looked for a 



way to calculate the optimal announced weights that yield the maximum utility for the 
buyer. In addition, we extended his work by considering more complex models in 
which the sellers may be characterized by more than one private cost parameter. Also, 
we consider the English auction protocol, which was not considered by Che [4]. 

Branco [3] extended the work of Che by assuming that the costs of the 
firms/bidders are correlated. He considers a governmental procurement auction in 
which the main goal is to maximize the virtual welfare, which takes into account the 
private rents that will be given to the firms. Branco uses a method similar to Che’s to 
design the optimal auction considering his model assumptions. In contrast to 
Branco’s work, we assume that the costs of the bidders are independent. In addition, 
we design the optimal auction from the buyer’s point of view and not from the stand-
point of the population's welfare. 

 

3  The English Auction with One Cost Parameter per Each Seller 

The auction model consists of one buyer, which is the auctioneer, and a fixed number 
of n sellers, which are the bidders. The English auction protocol is a very useful 
mechanism in real world decisions about suppliers of services, and in government 
decision-making processes. In particular, we refer to a version of an English auction 
called the full-information revelation protocol. In this protocol, the buyer agent an-
nounces (1) a full scoring-rule function that describes the required item, (2) the clos-
ing interval, which is the length of the time interval, where if no new bid is made, the 
auction is closed. The buyer’s scoring rule associates a score with each proposed 
offer and the auction protocol dictates the winner (best scored bid) based on this scor-
ing rule. Each participating seller agent receives a serial number that defines the order 
of bidding among the agents. In each step, the seller whose turn it is to bid may place 
a bid, which is better than the previous proposed bid by at least the minimal incre-
ment D w.r.t the scoring rule function. In addition, in each step that a bid is proposed 
any seller agent that wants to bid a bid, which yields the same score, can do so at a 
predefined interval of time. The buyer chooses one of the bids that yield the same 
score randomly. The buyer agent tries to derive a scoring rule that maximizes its 
expected utility in a given auction protocol. Each participant knows its own utility 
function, and time and bidding are not costly. The auctioneer must be committed to 
its scoring rule, and the winner agent is required to provide an item with the exact 
values of the bid it offered (e.g., the exact price, quality, delivery date, etc.). 

The utility functions of the agents are similar to the ones we considered in [7]. We 
recall some of the details here and explain the differences. Each buyer agent and each 
seller agent is characterized by a utility function that describes its preferences and 
they use it to evaluate the utility from each given bid. The multi-attribute utility-
functions we refer to are based on the Simple Additive Weighting (SAW) method 
[18], i.e., a utility is obtained by adding the contributions from each attribute. Other 
methods exist for a multi-attribute utility function (e.g. multiplying the contributions 
of the various attributes), but the SAW method suits the example of renting storage 
capacity and the other examples, we consider.  



In our model, each seller agent has private information about the costs of improv-
ing the quality of the product it sells, or its performance. Each seller agent iS  (bidder) 
assumes to be characterized by a cost parameter θi, which is its private information. 
As θi increases the cost of the seller to produce an item of a higher quality also in-
creases, i.e., the seller is weaker. The buyer (auctioneer) only knows the distribution 
function of the other sellers’ cost parameters, but has no information about the par-
ticular value of θi for each seller. Similar to the model described by Che [4] and in 
[7], we assume that the private type θi is independently and identically distributed 
over ],[ θθ  ( ∞<<< θθ0 ) according to a distribution function F for which a positive, 

consciously differentiable density f exists.  In section 4 we will also consider an ex-
tended model, which was not considered in [4,7], where each seller is characterized 
by two private type parameters.  

As in [7], for simplicity, we analyze a concrete model, which includes three attrib-
utes: the price p of the item, and two quality factors, q1 and q2 for which the prefer-
ences of the buyer and the sellers conflict. In contrast to the model considered in [7], 
we assume that as qi increases, the quality of the item increases, for both q1 and q2. 
For example, if the announced item is providing a machine, then q1 can denote the 
speed of the machine and q2 can denote its accuracy, or the warranty period for this 
machine. If the announced service is a video-on-demand supply, then q1 can denote 
the storage capacity and q2 can denote the access rate. There are also quality attrib-
utes that denote a higher quality item as the attribute is lower. For example, in a ser-
vice like a transportation of a cargo, the attributes are the availability time and the 
path length. As the availability time of the item is shorter, and as the path length is 
shorter, the service quality is higher. In such domains, we can denote q1 to be 
1/(availability-time), and q2 to be 1/(path-length), in order to have a positive relation 
between the quality attributes q1,q2 and the quality of the item. 

Using the above influence of q1 and q2, we can conclude that as q1 or q2 increase, 
the costs of the seller will become higher, since it is more difficult for it to provide a 
higher quality item, while the utility of the buyer from the provided item will in-
crease. For example, the seller’s cost increases if he provides a more accurate ma-
chine, but the buyer’s utility is higher if it obtains such a machine. 

Consider the cost function of the sellers. As in [7], we start by assuming that there 
are fixed coefficients for each of the quality dimensions, which are identical for all 
the sellers. Namely, ‘a’ is the coefficient of 1q , and ’b’ is the coefficient of 2q . The 
seller’s utility function, is:  

)()( 21 qbqapU is ⋅+⋅−= θθ . (1) 

where a,b>0. Notice that, the utility function of the seller is the difference between 
the payment (profit) and the costs, and as the payment it obtains increases, the utility 
increases. The influence of q1 and q2 is assumed to be independent and linear: as q1 
increases by one unit, the cost of the seller will increase by θa, and as q2 increases by 
one unit, the cost will increase by θb. In Section 4 we will consider a more complex 
utility function, where the cost of the seller depends on two private cost parameters.  

The utility function of the buyer agent (the auctioneer) from the item or service is:  
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where 1W  and 2W  are the weights the buyer assigns to 1q  and 2q , respectively. 
In fact, as the price decreases the buyer's utility increases. It is clear that as q1 and q2 
increase, the utility of the buyer increases. We assume that the influence of q1 and q2 
is independent, but, in contrast to the model of [7], we consider a non-linear influ-
ence: as q1 increases, the influence of one additional unit of qi becomes smaller. This 
assumption is valid in many domains. For example, enlarging the speed of a machine 
from 100 Mhz to 200 Mhz will have a higher influence than enlarging the speed from 
200 Mhz to 300 Mhz. The effect of q1 and q2 is weighted by 1W  and 2W , respec-
tively, where Wi can be smaller or larger than 1. As Wi increases, the importance of 
attribute qi increases w.r.t. the price and the second attribute. The price is not 
weighted since we assume that the function is normalized by the weight of the price 
and it is easy to extend it to the case in which the price is weighted. 

The buyer is required to announce a scoring rule function at the beginning of an 
auction, which is used for choosing among the bids. The scoring rule published by the 
buyer can be different than its real utility function in a sense that the published 
weights 21,ww may be different than the actual weights 1W , 2W . In particular, the 
scoring rule is of the form 

221121 ),,( qwqwpqqpS ⋅+⋅+−=  

 

(3) 

In the following, we will analyze the above model.  We first present the optimal 
bids to be suggested by each bidder, and then we prove which bidder will win, and 
what will be its winning bid. We proceed by analyzing the expected revenue of the 
auctioneer and its optimal scoring rule. 

3.1   Optimal Bidders' Strategies  

One may believe that by announcing the scoring rule at the beginning of the auction 
the problem of the multi-attribute case reduces to the case of a single attribute auction 
in which the bidders compete only over the score. Also, each bidder maps the score 
using his cost functions for the qualities' value, which maximizes its utility. However, 
in the following Lemma, we show that the bidders decide about the qualities that 
maximize their utility independently of the exact score they want to achieve, but only 
with regard to the announced scoring rule. Thus, only the price is calculated with 
respect to the desired score and the predefined qualities' values. Namely, the bidder 
saves much computation effort since only the price should be recalculated in each 
step. In addition, we show that this is the optimal strategy and that every bidder 
would have no interest in using a different strategy. Another important issue is that by 
knowing the bidding strategy the auctioneer may estimate its expected revenue from 
the auction and may decide about the scoring rule, as explained in section 3.2. We 
begin by considering the optimal bid to be offered by each bidder in each step. We 



show that the qualities q1,q2 will be chosen independently of the current selected bid, 
and we find the optimal price to be offered in each step of the auction, given the bid-
der‘s properties and given the current selected bid, that is denoted by selected. Calcu-
lating the price is different from [4,7] because of the English protocol that is applied. 
For space reasons we do not present the proofs here. 

Lemma 1 
Given the scoring rule and the seller’s utility functions, in a sequential full-

information revelation English auction, and given the last selected bid, the seller’s 
best strategy is to bid 
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Sketch of proof:  Suppose to the contrary an equilibrium bid (p,q1,q2) in which, 
q1≠q1* or/and q2 ≠q2*  at least for one seller with θθ < . A contradiction is derived 
by showing that the bid is dominated by an alternative bid (p1,q1’,q2’) where 
q1’=q1*, q2’=q2*, and p’ is chosen in a way that the scores of the two bids, (p,q1,q2) 
and (p’,q1’,q2’), are equal. We can show that the utility of the seller for the alterna-
tive bid is higher than in  (p,q1,q2). It remains to find the optimal p* to be offered, 
given the current selected bid. According to the defined protocol the next bid must be 
better than the selected bid in terms of the scoring value at least in an increment of D. 
That is: S(p*,q1*,q2*)=S(selected)+D. By substituting the values of q1* and q2*, we 
can find the value of p* for which the above equation holds. ■ 

Lemma 1 specifies the details of the next bid to be announced by a seller. Notice 
that in the sequential full-information-revelation English auction the strategy of 
choosing the price to offer does not include the seller’s beliefs about the types of the 
other sellers. In the sequential full-information-revelation auction, the price depends 
on the bidder’s type and on the previous best bid.  The qualities offered in the bid are 
chosen independently of the price. As the bidder’s efficiency decreases (has a higher 
θ), the price it requires decreases, in order to be able to compete in the auction. 

The next question is, given the auction participants utility functions, the range of 
the sellers types (i.e., ],[ θθ ), the announced scoring rule, and the sellers optimal 
bidding strategy, can the buyer agent estimate which of the sellers will win and can it 
estimate its expected revenue? We will answer these questions in the next section. 



3.2   Auction Results 

In Lemma 2 we will show that the winning seller is the seller with the lowest type 
θ. The intuition behind this is that for any bid that another seller offers the seller with 
the lowest type can offer a better bid from the buyer’s point of view, which yields a 
higher score. This means that it can overcome any of the other sellers along the se-
quential full-information revelation (English) auction process. 

Lemma 2 
Denote by Si the seller with the lowest value of θ, and by Sj the seller with the second 
lowest θ. In the sequential full-information revelation English auction protocol, seller 
Si will be the winner of the auction whenever 

)22()( 21 ijwbwaD θθ −⋅⋅+⋅≤ . (6) 

Sketch of proof:  Denote the best bid that seller js can offer by 
(p(θj),q1(θj),q2(θj)). In order to suggest a higher bid, the scoring value of the bid 
(p(θi),q1(θi),q2(θi))  of seller Si should be at least (p(θj),q1(θj),q2(θj))+D.  We 
proceed by substituting the values of the best bid of seller Sj with the optimal q1 and 
q2, and with the lowest p for which the utility of Sj is non-negative, and then we find 
the scoring rule of this bid. Similarly, we find the scoring rule of the best bid seller Si 
can make. In order to enable seller Si to make a bid after the best one of seller Sj, D 
should be less or equal to the difference between the scoring rule of the best bids of 
Si and Sj. ■ 

The next question to address is what should the winning bid be? In other words, 
the question is, at which price will the seller win since the qualities are determined 
independently of the other sellers’ types and bids following Lemma 1? The assump-
tion in an English auction is that a seller bids while its profit is positive. Suppose that 
seller is  is the seller with the lowest type iθ , and seller js  is the seller with type jθ  
that is the second lowest type among the set of bidders. Then, seller is  actually com-
petes with seller js , which is its strongest competitor. Therefore, the prices that seller 

is  will offer will decrease until seller js  quits the auction and this happens when its 
utility becomes non-positive. From this point, seller is  has to reduce the price in such 
a way that will increase its score in D which is the minimal increment allowed in the 
auction protocol we discuss. In Lemma 3 we define the winning bid considering these 
assumptions. 

Lemma 3 
Given a sequential full-information revelation auction protocol, assuming the 

model described in section 3, if seller is  has the lowest type iθ , seller js  has the 
second lowest type jθ , and equation (6) holds, then the winning bid is: 
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Sketch of proof:  Suppose seller is  has the lowest type θi, and seller Sj has the 
second lowest type θj. The qualities q1(θj) and q2(θj) are calculated using lemma 1. 
p(θj) is the minimal value that j can suggest while its utility is still non negative. 
Given that the last possible bid of seller Sj is (q1(θj),q2(θj), p(θj)),  by lemma 2, the 
winning bidder will be θi, and the qualities of its bid are determined by lemma 1. The 
price p of the winning bid should cause the scoring of the winning bid to exceed 
S(q1(θj),q2(θj), p(θj)) by D. Solving the above equation, we obtain the value of p. ■ 

The qualities of the winning bid are defined following Lemma 1. However, the 
price depends implicitly on the cost function of the second best seller, denoted by j. In 
particular, as the expenses of the second best seller increase, i.e., jθ  increases, the 
winning price offered by seller i increases, but as the expenses of the winning seller 
increases, its winning price decreases. Intuitively, the reason for this result is that as 

iθ  increases, the qualities q1, q2 decrease, so the seller should compensate this by 
suggesting a lower price, in order to compete with the other bidders. In addition, as 

jθ  decreases, the second best bidder is stronger, that is, its type is higher, and seller 
is  should suggest a more competitive price in order to win against agent j, and thus, 

the winning price decreases. 
Given the information about the auction, we can try to analyze it from the auction-

eer’s (buyer’s) point of view. That is, to calculate the buyer’s expected revenue given 
the environment details. In order to estimate the buyer’s expected revenue, we actu-
ally have to estimate the best bid and in which probability the buyer may receive it. 
This brings us to the following theorem that explicitly calculates the buyer’s expected 
revenue ERE (Expected Revenue for the version of an English auction). 

Theorem 1 
In a sequential full-information revelation auction protocol of one buyer and n 

sellers with types independently and identically distributed over ],[ θθ , given equa-
tion (6), and given the real weights 1W , 2W  of the buyer’s utility and the published 
weights 1w , 2w  of the scoring, the buyer’s expected revenue ERE  is: 
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Sketch of proof:  The expected revenue is calculated by: 

( ) ijj
n

buyer ddnnifjfFbidwiningU
i

θθθθθ
θ

θ

θ

θ
∫ ∫












−⋅⋅⋅⋅−⋅

−
)1()()())(1()_(

2
 

The expected revenue actually describes the average utility of the buyer from each 
possible winning bid weighted by the probability of this winning bid, where the win-
ning bid is the bid calculated in Lemma 3. In this double integral, we run all the prob-
abilities of the lowest type iθ and all the probabilities of the second lowest type θj, 
multiplying by the buyer’s utility from the best bid in the given types. The probability 
of a certain lowest type θi and second lowest type θj is actually the probability that all 
the other n-2 sellers have higher types than jθ , multiplied by the probability of hav-
ing one seller with type jθ  and having one seller with type iθ , and this probability is 
f(θi)*f(θj)*n*(n-1). By substituting all the explicit functions and simplifying them, 
we receive the required formula. ■ 

Notice that the only information that the buyer should get is the sellers’ types 
range and the number of sellers, in order to estimate its expected revenue. It is inter-
esting to notice that if we multiply θ and θ  by a given value, and we divide a and b 
by the same value, the result of ERE remains the same. This means that the expected 
revenue does not depend on the exact values of the parameters, but only on the rela-
tions between them.  

We proceed by finding the optimal scoring rule to be announced by the auctioneer. 
The ability of predicting the buyer’s expected revenue leads to the most interesting 
phase of the auction design, which is searching for the optimal scoring rule that will 
maximize the buyer’s expected revenue. In other words, finding the optimal weights 

1w  and 2w  to be announced. These optimal values of the scoring function can be 
found by differentiating the expected revenue function once by 1w  and once by 2w . 

Theorem 2 
Suppose a sequential full-information revelation auction protocol of one buyer and 

n sellers with types independently and identically distributed over ],[ θθ , and equa-
tion (6) holds. The optimal values of the weights w1 and w2 included in the scoring 
rule given the real weights  W1 and W2, of the buyer’s utility function, are: 
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Sketch of proof:  In order to find the weight 1w  of the scoring rule that maxi-

mizes the buyer’s expected revenue ERE, we differentiate the function ERE by 1w .  
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By comparing the differentiation of ERE to zero the maximum value of 1w  is identi-
fied. Then, we differentiate this function by 2w  in a similar manner since the weights 

1w  and 2w  are independent. ■ 
Given the above results, we can check the influence of different parameters on the 

ratio w1/W1, and symmetrically, on w2/W2. First, it can be shown from the formula 
of w1/W1 that the ratio depends on the ratio θθ /  and on n, and no other factors 

influence this ratio. That is, if θ  andθ  are multiplied by the same number, the an-

nounced weight will remain unchanged. Notice that the relation θθ / actually defines 
the relative distribution of the sellers’ types. Namely, if the relative distribution is 
very low the sellers are more or less of the same type, namely, they are homogenous. 
However if the relative distribution is high the sellers are heterogeneous. 

 
Figure 1 shows the influence of the number of bidders n (2..20) on w1/W1, given 

θ =0.5,θ =1 (circles), and given θ =0.2,θ =1 (line). We can see that the announced 
weight is lower than the real weight of the utility function, but as n increases, the 
announced weight approaches the real one. However, as the ratio between 

θθ /  increases, the initial ratio of w1/W1 is lower, and its convergence is slower. This 
is shown by comparing the circles graph, where the ratio θθ /  is 2, with the lined 
graph, where the ratio θθ /  is 5. Finally, Figure 2 shows that as the ratio 

θθ /  increases, given a particular n, the announced weights decrease, and their differ-
ence from the real weights increase. 

 



 
Fig. 1. The influence of n on w1/W1. Circles: θ =0.5,  θ =1. Line: θ =0.2,  θ =1 

 

Fig. 2. The influence of θθ /  on w1/W1, where n=4 

These two results can be explained as follows. First, it is clear that as n increases, 
the bidders' natural competition is higher, and thus the revenue of the auctioneer is 
higher. (This can be inferred from the expected revenue formulas.) Thus, as n in-
creases, the gains of the auctioneer become higher and the additional gains expected 
from manipulating the scoring rule decrease, so the optimal weights it publishes are 
closer to the real ones. Second, we should explain why increasing the ratio θθ / , 
which is the relative distribution of the sellers’ types, causes the announced weight to 
decrease. As the relative distribution increases, the sellers become more and more 
heterogeneous. That is the competition among the sellers decreases and therefore the 
natural revenue for the auctioneer/buyer decreases. In this case manipulating the 
scoring rule can increase the expected revenue. As shown in Figure 2 as the relative 
distribution increases the auctioneer will be motivated to publish weights with a lar-
ger deviation from the real ones. 

  
In an ongoing research, we have been comparing the expected revenue of the auc-

tioneer when using the English auction with its expected revenue in the first price 
auction that was presented in [7]. We revealed that a constant difference of D exists 
between the expected revenue of the auctioneer when using the English auction and 
when using the first price sealed bid auction. We also found that the announced 



weights are the same for both models. For space reasons we do not present these 
results here.  

4   The English Auction with Two Cost Parameters per Each Seller 

In this section, we consider an extension of the model discussed in Section 3. In par-
ticular, we consider a model where the cost of the seller depends differently on q1 and 
q2, and there are two private cost parameters per each seller. This extension is very 
interesting since another dimension of uncertainty is added to the model which the 
bidders and the auctioneer should take it into consideration in order to behave opti-
mally in such an auction.  

 
The cost function of each seller is:  

21
1

21
212 ),,,( qqpqqU iiiis ⋅⋅ −−= θθθθ  (10) 

We assume that both 1
iθ and 2

iθ  of seller i are unknown by the other participating 
sellers in the auction. Since there are two private cost parameters, the buyer should 
consider both when evaluating its expected utility and when deciding about its opti-
mal scoring function. The idea behind this model is that different sellers may have 
different abilities in producing items: it can be easier for one seller to provide a higher 
quality of attribute 1, while it is easier for another seller to increase the second quality 
attribute. For example, in task allocation, suppose that each bid is composed of the 
time when the task will be completed and the accuracy level of the task performance. 
Then, it may be easier for one machine to perform the task earlier, while it may be 
easier for another machine to return a higher accuracy result. In the service domain, 
suppose each bid includes the service quality and its supply time, and again, different 
companies may have different abilities regarding these properties. Thus, it seems to 
be more reasonable to assume that the cost to supply a bid is based on different pri-
vate cost parameters.  

The utility function of the buyer remains as in the previous section, and the format 
of the scoring rule published by the buyer also remains the same. In the following, we 
will reveal the optimal strategies to be used by the sellers given their types. Based on 
these strategies, we will show the expected revenue of the auctioneer, and then we 
will be able to describe how the auctioneer will find the optimal scoring rule to be 
published at the beginning of the auction. Similarly to the model presented in Section 
3, we start by considering the optimal bid to be made by each bidder at each step of 
the auction, given the announced scoring rule, and given the private cost parameters 

1
iθ and 2

iθ . 
 
 
Lemma 5 

Suppose that there are n sellers including seller i, and j, where i is the seller 
that can offer the best bid from the scoring function’s point of view without a loss, 



and seller j is the seller that can offer the second best bid after seller i, without a 
loss. Then the winning bid is: 
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Sketch of proof:  Similarly to Lemma 1, we calculate the last bid of seller j, which 
includes the lowest possible price that seller j can bid without a loss. Then, we find 
the winning bid, which is offered by seller i. We first show that the optimal qualities 
q1 and q2 of the winning bid are determined independent of the price and the current 
bid, and we find their optimal values. In order to be able to offer the winning bid, its 
score should be higher than the score of seller j’s last bid by D, Thus, the price of the 
winning bid is determined as the value for which the score of the bid is higher by D 
than the score achieved by the last bid of seller j. ■ 

The optimal bid is similar to that of Lemma 1, but instead of considering the cost 
coefficients aθ and bθ,  as in the one θ model, we consider the cost coefficients of the 
2-θ  model, namely, θ1 and θ2. Note that each optimal quality attributes q1 and q2 
depends only on the private cost parameters 1

iθ and 2
iθ  and on the announced weights 

w1 and w2, respectively. This makes it easy to generalize the model in order to also 
consider more than two quality attributes, since the values of the attributes are se-
lected only with regard to their coefficients in both the sellers’ utility function and in 
the buyer’s scoring function. The optimal price to be offered in each step of the auc-
tion depends on the last proposed bid, since it must be better than the previous bid by 
at least D.  

Given the optimal bid to be offered in each step of the auction, it is possible to find 
the best two sellers, given their private information types, and given the best two 
sellers, it is easy to calculate the winning bid. To find the winner seller, we calculate 
for each seller the price p for which its utility becomes 0, and we calculate the scoring 
function for the bid including price p for which the seller utility is 0, and qualities q1* 
and q2*, as evaluated by Lemma 5. The seller that is able to suggest a bid with the 
highest score is the strongest seller, since no other seller is able to suggest a better bid 
regarding the scoring function, without losing. Similarly, the second-highest seller 
can be found, by choosing the seller that achieves the second highest scoring value 
when suggesting the lowest p for which it does not lose.  

Assume that seller i is the strongest seller, and seller j is the second best seller, 
with regard to the announced scoring function. Then, we can compute exactly what 
the utility of the winning bid suggested by seller i, is using the fact that seller i’s bid 
comes after the best bid that seller j could suggest. We denote this utility by Ubuyer. 
Using Ubuyer, we can calculate the expected revenue from the auction, by consider-
ing all possible cost parameters for both best sellers, seller i and seller j. 

 
Theorem 3 



Given the utility of the buyer from the winning bid  
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and given the probability of an arbitrary seller to be lower than seller j, 
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The expected revenue of the buyer agent from this 
auction is:  
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Sketch of proof:  We run all the possible types of seller i and seller j, and for each 
pair, we calculate the probability for such a pair to exist, and to be the best sellers, 
multiplied by the utility of the buyer in this case.  The utility Ubuyer is calculated by 
substituting the values p*,q1* and q2* of the winning bid of seller i, as calculated in 
Lemma 5, given seller i and seller j, in the formula of the buyer’s utility. The prob-
ability for the pair, seller i and seller j, to be the best bidders is equal to the probabil-
ity of all the other n-2 sellers to be “weaker”, w.r.t. the scoring function.  

We denote the probability for one arbitrary seller to be weaker than agent j (and 
thus, weaker also than agent i) by F(θj

1, θ j
2).  In order for a given seller a to be less 

efficient than seller j, it should hold that the score of the best bid seller a can suggest 
will be lower than the score of the best bid of seller j. The best bid a seller can sug-
gest is evaluated by assigning the optimal qualities values from lemma 5, and finding 
the lowest possible price by comparing the utility of the seller to 0.  We obtain the 
following condition: w1

2/(4θj
1)+w2

2/(4θj
2)>w1

2/(4θa
1)+w2

2/(4θa
2), and using this 

equation, we can find the condition of θa
2 as a function of θj

1,θj
2 and θa

1.  
We will now to explain the expected revenue formula. We should consider the 

values of θ1 and θ2for both seller i and seller j. For this purpose, we run all possible 
values of θ1 and θ2 of both, and thus we need 4 levels of integration. Since the winner 
seller is i, seller j should be weaker than seller i. Thus, θ j 2 runs only from a particular 



value, which depends on the scoring function, on the θ  values of seller i, and on θj
1. 

The particular limit for the value of θ j
 2 is found similarly to the limit for θa

2, inside 
the formula F(θj

1, θ j
2).  ■ 

In the model of one cost parameter, it was simple to find out the probability of an 
arbitrary seller to be worse than seller j, since it only requires t that θ of this seller 
will be higher than θj. In this model, the strength of a seller depends on θ1 and θ2, 
and also on the announced scoring function, since only given the scoring function, we 
can evaluate which seller can make a better bid without losing. Thus, also calculating 
the probability for a seller to be weaker than some other sellers becomes more com-
plex, as we stated in the last theorem. Consider the possible values for θ j

2 for which j 
is still “weaker” than i. Intuitively, we can see that as θ j

1 decreases, there are more 
possible values of θ j

2 for which seller j is still “weaker” than seller i. Whenever θi
1 or 

θi
2 increase, i.e., agent i is weaker, agent j must also be weaker, i.e., θj

2 starts from a 
higher limit. Finally, as w1 increases w.r.t. w2, q1 becomes more important, so θj

2 
should be smaller in order for j to be weaker. 

Given the expected revenue of the buyer, the buyer agent is now able to calculate 
the optimal values of w1 and w2, in order to maximize its expected revenue. These 
values can be found by differentiating the expected revenue formula according to w1 
and w2, and by finding when the differentiation is equal to zero. The optimal values 
of w1 and w2 will be used by the buyer when publicizing its optimal scoring func-
tion.  Differentiating the optimal scoring function is difficult in general, but given a 
particular auction, with known values of n and the utility function, and given the 
buyer’s beliefs about the seller’s distribution, it becomes easier for the buyer to dif-
ferentiate the optimal w1 and w2 to be announced. 

5.   Conclusion 

In this paper, we consider a version of the English auction protocol that suits the 
case of multi-attribute auctions, where the auctioneer is the buyer of an item or a 
service, and various sellers bid and offer diverse configurations of the item or service 
they were asked for, and we suggest stable and beneficial strategies for the buyer 
agent and for the seller agents participating in the auction. We also consider a situa-
tion where two private cost parameters, θ and  θ2, are associated with each seller. We 
show how to analyze this model and suggest how to derive the optimal scoring func-
tion. The optimal scoring rule ensures that the buyer will maximize its expected reve-
nue assuming the sellers’ types range. We show that as the number of sellers in-
creases, the buyer has no motivation to manipulate since the natural competition 
among the sellers will achieve the maximum gain for the buyer. However, in case of 
small number of sellers we show that the buyer is motivated to manipulates the scor-
ing rule in such a way that he announces weights will be lower than the real weights, 
in order to achieve the best result.   

In future work, we intend to consider more general utility functions and the distri-
bution function, and check how it will influence the auction results. The extension to 



more than two attributes can follow the same steps we took to extend from one attrib-
ute to two attributes.  We also intend to consider various English auction formats 
under the constraints of a time deadline, and to suggest stable and efficient strategies 
for this case. 
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