Agents dealing with Time and Uncertainty

*
Jirgen Dix
The University of Manchester
Dept. of CS, Oxford Road
Manchester M13 9PL, UK

dix@cs.man.ac.uk

ABSTRACT

Situated agents in the real world need to handle the fact that
events occur frequently, as well as the fact that the agent
typically has uncertain knowledge about what is true in the
world. The ability to reason about both time and uncer-
tainty is therefore very important. In this paper, we develop
a formal theory of agents that can reason about both time
and uncertainty. The theory extends the notion of agents
described in [10, 21] and proposes the notion of temporal
probabilistic (or TP) agents. A formal semantics for TP-
agents is proposed - this semantics is described via struc-
tures called feasible TP-status interpretations (FTPSI’s).
TP-agents continuously evaluate changes (in the state of
the environment they are situated in) and compute appro-
priate FTPSI’s. For a class of TP-agents called positive
TP-agents, we develop a provably sound and complete pro-
cedure to compute FTPSI’s.

Categories and Subject Descriptors

1.2.12 [Artificial Intelligence]: Distributed AI—Intelli-
gent Agents

Keywords

Formalisms and logics: logic programming, Theories of agency
Probabilistic/uncertain reasoning, Temporal reasoning

1. INTRODUCTION

*Responsible Author. The author gratefully acknowledges
support from EPSRC grant GR/R57843/01 Optimizations
of MAS.

TThe author gratefully acknowledges support from NSF
grant # 11S9907482.

iThis work was supported by the Army Research Labora-
tory under contract number DAAD190010484 and by an
NSF Young Investigator award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 02, July 15-19, 2002, Bologna, Italy.

Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Sarit KrausT
Dept. of CS/UMIACS
Bar-llan/College Park

Israel/USA

sarit@cs.macs.biu.ac.il

VS Subrahmanianjt
University of Maryland
Dept. of CS
College Park, MD 20752, USA

vs@cs.umd.edu

There are numerous applications where agents situated
in the real world need to reason about both time and un-
certainty. For example, an agent monitoring temperature
readings at a manufacturing plant may need to make pre-
dictions about future expected temperatures based on re-
gression techniques. This agent may need to take different
actions based on when the temperature is expected to reach
a certain value and with what probability. Likewise, an
agent built on top of a legacy stock market model that pre-
dicts what stock prices might be in he future, may wish to
execute trades at the “right” time based on the some appro-
priate temporal-probabilistic analysis.

It is well known that logics to reason simultaneously about
both time and probabilities are complex [11, 12]. Hence
methods to build agents that not only reason about time and
probabilities, but also take actions based on such reasoning,
is even more complex. A further complication arises when
such agents are built on top of legacy pieces of software code
that already exist. For example, building agents that decide
what trades to make and when to make them in the stock
market example referenced above can be quite complex.

In this paper, we develop the concept of a temporal prob-
abilistic (TP) agent which is built on top of legacy software
code or legacy data sources. Methods to build agents on
top of legacy code have been studied in [21]. The state
of an agent at a given point in time is the set of all ob-
jects residing in the data structures of the code on top of
which the agent is built. Our primary technical contribu-
tions are the following: first, we develop a formal syntax for
TP-agent programs and then provide a formal declarative
semantics for such TP-agents. The declarative semantics
is given in terms of certain structures called feasible tem-
poral probabilistic status interpretations (FTPSI for short).
Agents continuously engage in the following computational
cycle: identify changes to state — compute FTPSI — take
actions prescribed by FTPSI — identify changes to state
— Thus, the computation of FTPSI’s is a continu-
ous ongoing process. We present an algorithm to compute
FTPSI’s. This algorithm is provably sound and complete
for a large class of TP agents called positive TP agents.

1.1 Motivating (Stock) Example

Consider a very simple agent that tracks stocks and exe-
cutes trades automatically for clients. A specific client may
wish to trade stocks based on some simple rules. For ex-
ample, if a prediction program predicts that a given stock
is going to go up to $50 per share with a high probability
(e.g. 80% or more) sometime during the next 10-20 days

and the user already owns this stock, then she may want
to buy the stock sometime in the next 9 days. However, if
the user does not own this stock (and if it is consistent with
the user’s diversified investment strategy) then the user may
want a 90% (or more) probability that the stock will go up
to $50 in order to buy it.

Throughout this paper, we will use this simple example
to motivate the need for taking actions automatically dur-
ing the presence of temporal uncertainty. As will become
clear, our notion of temporal probabilistic agents can be
easily used to write far more sophisticated agents with more
complex rules than those described above. However, due to
space constraints, we are unable to do so here.

2. TEMPORAL PROBABILISTIC CC'S

To perform logical reasoning on top of third party data
structures (which are part of the agent’s state) and code,
the agent must have a language within which it can reason
about the agent state. In [10], we introduced the concept of
a code call, which is the basic syntactic object used to access
multiple heterogeneous data sources. In this section, we are
extending this notion to incorporate time and uncertainty:
temporal probabilistic code call (TPcc).

Definition 2.1 (Code Call (cc)) Suppose S =aief (Ts, Fs)
is some software code, f € Fs is a predefined function with n
arguments, and di,...,d, are objects or variables such that
each d; respects the type requirements of the i’th argument
of f. Then, S:f(di,...,da) is a code call. A code call is
ground if all the d;’s are objects.

We often identify software code S with the agent that is
buslt by it.

A code call executes an API function and returns as output
a set of objects of the appropriate output type.

The situation changes drastically when there is uncer-
tainty about the state. In this case, we cannot assume that a
code call returns a complete answer — rather, it may return
a set of random variables [6].

Definition 2.2 (Coherent set of RV’s of type 7) Aran-

dom variable RV of type 7 is a pair RV = (0bj, p) where
Obj is a finite set of elements of type T and p is a probability
distribution over Obj that assigns real numbers in the unit
interval [0, 1] to members of RV such that Yoc op;p(0) < 1.

A set S of random wvariables of type T is coherent iff
whenever we consider two distinct (0Obj,, p1), (0bj,, p2) €
S, it is the case that Obj, N Obj, = 0.

This allows us to introduce the concept of a TP code call.

Definition 2.3 (Temporal probabilistic cc (TPcc))

A temporal probabilistic code call based on cc , denoted
cc™, returns a mapping from natural numbers to coherent
sets of random variables of type 7.

Suppose we have a code call stock : over(C,P) which ordinar-
ily returns as output, a member of {true, false} indicating
whether the company C’s stock price is P or more. A TPccC
based on this code call would return a mapping as output.
This mapping would associate with each time point t, a set
of random variables. For example, at time 1 it may return
only one random variable, ({true, false}, d.,) saying that at

time 1 there is a 50% probability of the stock being greater
than or equal to P (i.e., &, is the uniform distribution func-
tion). At time 2, it may return the same set, but with the
distribution p(true) = 0.8, p(false) = 0.2 indicating that
there is now an 80% probability of C’s stock exceeding $50.
In the rest of this paper, we will often write cc to both de-
note ordinary code calls as well as TPcc’s. The intended
meaning should be clear from context.

It is well known that even if we know the exact probabil-
ities of two events ey, ez, it is not always easy to obtain a
precise point probability for the conjunction or disjunction
of these events, though it is possible to obtain a “tightest”
possible interval for these probabilities (cf. Boole[2], Fa-
gin et. al.[12]). In general, depending upon exactly what
is known about the two events, the probabilities of their
conjunction and disjunction can be computed in many dif-
ferent ways. The following definition (due to Lakshmanan
et. al. [18]) proposes the notion of a probabilistic conjunc-
tion/disjunction strategy which provides an abstract view of
how to obtain probabilities of conjunctive/disjunctive events.

Given two probability intervals [Li,U:] and [La, Uz], we
say that [Ll,Ul] S [LQ, U2] ’Lﬁ L1 S L2 and U1 S UQ.

Definition 2.4 (Probabilistic conj/disj strategy) Let
events e1, ez be associated probabilistic intervals [L1,U1] and
[L2, U2] respectively. Then a probabilistic conjunction strat-
egy (probabilistic disjunction strategy) is a binary operation
® (@) which uses this information to compute the proba-
bilistic interval [L, U] for event “e1 Aex” (“e1Vez”). When
the events involved are clear from contezt, we use [L,U] =
[L1,U1]®[L2, Us] to denote (e1 Aez, [L,U]) = (e1,[L1,U1]) ®
(e2,[L2,U2]) and we use [L,U] = [L1,U1] @ [L2,Us] to de-
note (e1 V ez, [L,U]) = (e1,[L1,U1]) @ (e2, [L2, Uz2]). Every
strategy must conform to the following postulates:

Generic postulates (x € {®,D})

1. Commutativity | ([L1, U1] * [L2, Ua]) = ([L2, Ua] * [L1, U1])

2. Associativity (([L1,U1] * [L2, Us]) * [L3, Us]) =
([L1,U1] * ([L2,U2]) % [L3, U3]))

3. Monotonicity ([L1,U1] * [L2, U2]) < ([L1,U1] * [L3, Us])

if [L2,Us] < [L3, Us]

[Probabilisiic Congunction postulates

4. a. Bottomline ([Ll, U1] ® [Lz, U2])

[min(Ly, L2), min(Uy, Us)]

6.a. Annihilator Li,U1]®[0,0]) =[0,0]

<

5.a. Identity ([L1,U1] ® [1,1]) = [L1, Un]
(
(

7.a. Ignorance L1, U1]® L2,U2]) -
[max(0, L1 + Lo — 1), min(U1, U2)]

[Probabilistic Disjunction postulates

4.b. Bottomline ([Ll, U1] (&) [Lz, Uz]) >

[max(L1, L2), max(U1, Us)]

5.b. Identity L1, U1] ® [0,0]) =[L1, Ui]

(

6.b. Annihilator ([Li, U] @ [1,1]) =[1,1]
7.b. Ignorance ([L1,U1] ® [L2,U2]) C
[max(L1, L2), min(1, Uy + Us)]

A detailed explanation of why these axioms are reasonable
axioms for probabilistic reasoning is given in [18]. Due to
space reasons we are unable to go into it here.

Each agent has a set of actions that the agent is capable
of executing. Actions change the state of the agent. An
action has five components: (1) a name a(X1, ..., X,,) where
the X;’s are variables, (2) a precondition, (3) an add list,
(4) a delete list, all three of which consist of a set of code
calls and temporal probabilistic code calls, and (5) an action
code which is a body of code that executes the action. Each

agent has a notion of concurrency specifying how to com-
bine a set of actions into a single action, and a set of action
constraints that define the circumstances under which cer-
tain actions may be concurrently executed. A formal model
of such agents (with no time and no uncertainty) is given in
[10]. For simplicity, we assume (in this paper) that an ac-
tion has no duration (see [5] for how to handle actions with
durations).

Definition 2.5 (Status conjunction, Status set) If(f)
is an action, and Op belongs to {P,F, W,Do, 0}, then
Opa(f) is called a status atom. If Aq,..., A, are status
atoms, then (A1 A ... AN Ayp) is a status conjunction. A
status set is a finite set of ground status atoms.

Intuitively, Pa means « is permitted. Fa means « is for-
bidden. Doa means « is actually done. Oa means a is
obliged, and Wa means that the obligation to perform « is
waived.

3. SYNTAX OF TP AGENT PROGRAMS

Our main aim in this section is to define temporal prob-
abilistic agents. A first step is to extend ccc’s and status
conjunctions (Definition 2.5) to annotated versions of them
(Definition 3.6). We start with the notion of a temporal
expression which may be used to denote time points.

Definition 3.1 (Temporal expression) (1) Every inte-
ger is a temporal expression. (2) Xnow s a temporal expres-
sion. (8) Iftei,tea are temporal expressions, then (te1+tez)
is a temporal expression.

For example, 5, Xnow +3 and Xnow + Xnow + 13 are all temporal
expressions. We will assume that there is an oracle that
automatically assigns a value to Xnow (in an implementation,
this could be done by looking at the system clock). Hence,
a temporal expression can always be evaluated to a value.
We now define temporal constraints.

Definition 3.2 (Temporal constraint (tc), Sol(tc))
If te1,tea are temporal expressions, then ter <t <tes is an
atomic temporal constraint, denoted tc, with free variable t.
(1) Every atomic temporal constraint is a temporal con-
straint. (2) If tci, tca are temporal constraints with the same
free variable t, then tc1 A tca is a temporal constraint (with
free variable t).
For each temporal constraint tc we denote by Sol(tc) the
set of all solutions of tc (timepoints).

For example, Xnow+2 < t < Xnow+7 is a temporal constraint.
However, Xnow +2 < t1 < Xnow + 7 A Xnow < t2 < Xnow + 2 is
not a temporal constraint because it contains two distinct
temporal variables. Intuitively, temporal constraints specify
(implicitly) a set of integer time points, viz. the integer
solutions of the temporal constraints. For space reasons, we
will not formally define solutions of a temporal constraint,
but appeal to the reader’s intuition, and note that we are
only interested in integer solutions of temporal constraints.

!Note that due to our simplified example, only the Do
modality will be used in the sequel. We also focus on ex-
plaining the temporal-probabilistic aspects, and not the de-
ontic subtleties associated with the modalities (these are
explained in detail in [21]).

Thus, if Xnow = 3, then the solutions of Xnew +2 < t < Xnow +7
are {5,6,7,8,9,10}.

We assume the existence of a special set of variables called
probabilistic variables and denoted by X;, that range over
real values in the unit interval [0,1]. We also assume the
existence of some set of function symbols, each with an as-
sociated arity—these function symbols are pre-interpreted
and map [0,1]* to [0, 1] for appropriate arities a.

Definition 3.3 (Probabilistic item ¢) (1) Every real num-

ber in the unit interval [0,1] is a probabilistic item. (2) Ev-
ery probabilistic variable X; is a probabilistic item. (3) If
l1,..., Ly are probabilistic items and f is a n-ary probabilis-
tic function symbol, then f(£1,...,£n) 18 a probabilistic item.

For example, if X is a probabilistic variable, then £+L is an

2
example of a probabilistic item.

Definition 3.4 (Probability distribution function)
Suppose S is a nonempty set of random variables. A prob-
ability distribution function (pdf) w.r.t. S is a mapping o
from S to [0,1] such that Xsesd(s) = 1.

We are now putting all these ingredients together. They
constitute the temporal probabilistic information that is not
available in the original basic framework of code calls.

Definition 3.5 (Annotation) An annotation is a 5-tuple
[®, tc, £, €', 8] where ® is a probabilistic conjunction strategy,
tc is a temporal constraint, £,€ are probabilistic items, and
d is a pdf over Sol(tc). It is ground if £,€ are ground.

For example, [®ig, Xnow + 2 < t < Xnow + 7, X, %, du] is an
annotation where @®;, represents the “ignorance” conjunc-
tion strategy and 4, represents the uniform distribution.
This annotation is not ground due to the presence of the
variable X. However, [®ig, Xnow+2 < t < Xnow+7,0.3,0.5, 84]
is ground (despite the occurrence of t in it).

We are now ready to define a temporal probabilistic code
call condition. We also define an extension of status con-
junctions (which are just conjunctions of status atoms) to
the temporal, probabilistic case.

Definition 3.6 (Annotated —ccc, ASC) Ify is a (ground)
code call condition, (A1 A...A A,) is a (ground) status con-
Junction, and [®, tc,l,u,d] is a (ground) annotation, then
X : [®,tc, £, ¢, 8] is a (ground) annotated code call condition,
and (A1 AN... N\ Ap) 1 [®, tc,4,u,d] is a (ground) annotated
status conjunction (ASC).

in(c,d:f(a,b)) : [Dig,Xnow +2 < t < Xnow + 7, X, %,Ju]
is an annotated code call condition. It says that there is a
probability in the interval [X, 2+1] that at some time point
between Xnow + 2 and Xnow + 7, the code call d: f(a,b) will
return ¢ in its output. Furthermore, for any specific time
point in this time interval, the specific probability that ¢
will be returned is uniformly distributed. Similarly,

(Do buy(ibm) A
Do sell(lucent)): [Big, Xnow + 2 < t < Xnow + 7, X, XL, /]

is an annotated status conjunction. It says that there is a
probability in the interval [X, 2+1] that at some time point
between Xnow + 2 and Xnow + 7, the agent will both buy IBM

stock and sell Lucent stock. Furthermore, the probability

of both events occurring is computed from their individual
probabilities by using the conjunction strategy of ignorance.

Annotated ccc’s and annotated status conjunctions are
the main ingredients to formalize conditions as to which ac-
tions should be executed given the current state of the world.
The rules of a program determine under which conditions a
particular status is given to an action. The overall semantics
of TP-agents (to be defined in the next section) determines
which set of actions should be executed in the current state.

Definition 3.7 (TP-rule) A (ground) temporal probabilis-
tic (TP) rule is an ezpression of the form SAg « accc1 A
...ANaceen, Aascr A. . .Aascn, where SAg is a (ground) anno-
tated status conjunction containing only one status atom in
it, accel, . .. ,accem are (ground) annotated code call condi-
tions and asci, .. .,ascy, are (ground) annotated status con-
junctions (ASC).

A temporal probabilistic (TP) rule is positive if any an-
notation that appears in the rule and is associated with o
status atom is of the form [®, tc, 1,1, 4].

Note that the restriction to the intervall [1,1] above is only
imposed on status atoms, and not on annotated ccc’s. This
is to make sure that there is no uncertainty in the actions
to be computed but only in the state.

Definition 3.8 (TP Agent Program (TPP) A tempo-
ral probabilistic agent program (TPP for short) is a finite
set of TP rules. It is positive if all its rules are positive.

Example 3.9 (Stock example revisited) The following
two rules encode the simple stock example described earlier.
Do buy(X) : [Big, Xnow < t < Xpow +5,1,1,8,]
in(X, stock: myportfolio())) : [@ig;Xnow,1,1,84] A
in("yes", stock: over(X,50)) : [Big,Xnow +10 < t
< Xnow +20,0.8,1, 8,]
Do buy(X) : [Big, Xnow < t < Xpow +3,1,1,£]
(in("no", stock : myportfolio()) A
in("ok", stock: diversify(X))): [Big, Xnow, 1,1,€] A
in("yes", stock: over(X, 50)) : [Big, Xnow +10 < t
< Xnow + 20,0.9, 1, 6,]
The first rule says that if stock X 1is in my current portfolio
and it 1s expected (with 80% probability or more) to go over $
50 per share sometime between day 10 and 20 from now, then
buy this stock in the next 5 days. The second rule says that
if the stock is not in my current portfolio and acquiring it is
consistent with the goal to maintain a diversified portfolio,
then we should buy the stock in the next 3 days as long as
there is an over 90% probability of its going up to $ 50 per
share.

4. SEMANTICSOF TP AGENTS

Though the reader may be tempted to infer that the rules
given above are read in terms of usual logical inference, it
will soon be clear that things are somewhat more complex.

4.1 Satisfaction of annotated ccc's

Definition 4.1 (Possible answer situations) Consider an

agent state O, a code call cc, a set T of time points, and an
object o whose type is the same as cc’s output type. The
possible answer situations of cc w.r.t. T and o, denoted

pas(cc,0,T) is the set {(t, 0bj,d0) |t € T and (Obj,d) €
cc™ (t) and o € Obj}.

It is easy to see that when T is a singleton, because of the
coherence requirement on TPCC’s, pas(cc, 0, T) is either the
empty set or a singleton.

Definition 4.2 (Answer time probabilities) Consider an
agent state O, a code call cc, a time point t, and an object o
whose type is the same as cc’s output type. The probability
that o is in the answer of cc at time t, denoted prob(o, cc, t),
s given by:

prob(o, cc, t) = { 6(0) if pas(cc, 0, {t}) = {(t, Obj,d)}

0 otherwise.

The probability with which a state O satisfies a code call
condition x at time t under conjunction strategy ®, denoted
prob(x, O,t) is given by ®in(o, ccyexProb(o, cc,t), where ® is
the conjunction strategy associated with x.

However, when we look at a ground annotated code call
of the form in(o, cc) : [®,tc, £, ¢, 48], we may need to con-
sider multiple time points. For example, tc may have two
solutions, t = t; and t = t2. The probability that o is in
the answer returned by cc is the probability that o is in the
answer returned by cc at time t; (event e1) or at time to
(event e2). However, we have no information about depen-
dencies between these two events. Are they independent?
Is there some kind of correlation between these events? Are
we completely ignorant about the relationship between these
two events? In general, we are attempting to evaluate the
probability of a disjunction of two events, given information
about the probability of the individual events involved. To
do this, we assume that every agent has an arbitrary but
fixed probabilistic disjunction strategy @ that it uses.

Definition 4.3 (Satisfaction of ASC’s) Suppose O is an
agent state and @ is a fized probabilistic disjunction strategy.

1. O satisfies a ground annotated code call condition
X : [®,tc, £, £ ,5], denoted O = x : [®, tc, £, £, 0]
iff £ < @{prob(x, O,t) |t € Sol(tc)} < ¢,
2. O satisfies a ground annotated code call condition
X : [®, tc, £, £, 8] with respect to toow and the past, de-
noted O E"" x : [®, tc, £, £, 4]
Zﬁe S @{pFOb(X, O:t) | te SOI(tC):t S tﬂOW} S e;
3. O satisfies accer Nacces iff O = accer and O |= acces.

4. O satisfies (Vx)F iff O = Flx/c] where ¢ is a con-
stant of the same type as x and F[z/c] denotes the
replacement of all free? occurrences of x in F by c.

The definition of the last two cases for =" is similar to

that of |=.
4.2 TP status models

We now define the formal semantics of TP-agents.

Definition 4.4 (TP-status interpretation (TPSI))
A TP-status interpretation (‘TPSI for short) is a mapping
p that maps natural numbers to status sets.

2Due to space restrictions, we do not formally define free oc-
currences here but refer the reader to the standard definition
which may be readily adapted to our case.

Thus, given any time point t, p(t) is a status set. We now
define what it means for a TP status interpretation to satisfy
an annotated status conjunction.

Definition 4.5 (Satisfaction of annotated status conj.)
Suppose p is a TP-status interpretation. The probability
with which p satisfies a status atom Opa at time t is

1 if Opa € p(t
Pr°b(OPa7l)7 t) = { 0 ofthe':“wzsep()

The probability with which p satisfies a status conjunction
o = (A1, A... Ay) w.rt. a given conjunction strategy ®
and at a given time t, denoted probg (o, p,t) is given by:

prob(A1, p,t) ® prob(Az, p,t) ® - - - ® prob(Aq, p, t).

Let (A1 A... N Ay) 1 [®,tc, 4,0, 8] be a status conjunction.
p satisfies (A1 A ... A Ap) 1 [®,tc, £, €, 8] at time t w.r.t. &
iff £ < @{probg (A1 A... A An,p,t) |t € Sol(tc)} < £

Note that for status atoms, a TPSI either satisfies it (prob-
ability 1) or not (probability 0). For status conjunctions
however, other probabilities can arise as well. Due to space
restrictions, we do not consider the case when a TPSI as-
signs other probabilities to status atoms.

Definition 4.6 Suppose SAg < accci A...Aaccen, Aascr A
...\ ascy s a ground TP-rule, p s a TP-status interpre-
tation and O is the current agent state.

p satisfies the above ground rule in state O iff either:

1. O does not satisfy accci A ... A\ accen, with respect to
now and the past, or

2. p does not satisfy asc1 A ... A asc, or
3. p satisfies SAo.

p satisfies TP, where TP is a TPP, iff for each temporal
probabilistic agent rule r € TP: p satisfies r.

An agent may record the actions it took (or was obliged to
take, forbidden from taking etc.) in the past. This leads to
the notion of an action history.

Definition 4.7 (Action History acthist) An action his-
tory acthist for an agent is a partial function from N to sta-
tus sets satisfying acthist(t) =0 for all t > to for a to € N.

Intuitively, an action history specifies not only what the
agent has done in the past, but also what an agent is obliged /-
permitted to or forbidden from doing in the future. As action
histories are partial (rather than total) functions, the agent
developer has the flexibility to choose to store none, some
or all status atoms associated with the agent’s past.

An action history and a TP-status interpretation both
make statements about action status atoms. Therefore they
need to be compatible.

Definition 4.8 (History-Compatible TPSI) Suppose the
current time is tnow and acthist(-) denotes the action history
of an agent, and suppose p is a TPSI. p is said to be ac-
tion history-compatible at time tnow iff for all t < tnow,
if acthist(t) is defined, then p(t) = acthist(t), and for all
t > tnow, if acthist(t) is defined, then acthist(t) C p(t).

In other words, for a TPSI to be compatible with an action
history, it must be consistent with the past history of actions
taken by the agent and with commitments to do things in
the future that were made in the past by the agent.

4.3 Feasible Temporal Probabilistic Interpr.

Let us consider an agent a that uses a TP-interpretation p
to determine what actions it should take, and when it should
take these actions. Not all such interpretations make sense.
For example we must impose conditions that ensure an ac-
tion is not both permitted and forbidden at the same time
(deontic conditions as formalized in Definitions 4.11, 4.10).
And such an interpretation p must be closed under the rules
of the TP program. The main results of this section are
Definition 4.13, which states the conditions we need, and
Theorem 4.14, which determines the complexity of verifying
them for a given TP-interpretation.

We also have to make sure that actions scheduled for the
future can be executed. To this end, we have to have a
model about the expected states in the future.

Definition 4.9 (Expected States at time t: £0(t))
Suppose the current time is thow, O is the agent state and

p is a TP-status interpretation. The agent’s expected states
are defined as follows: EO(tnow) = O,

e For all time points t > tnow, EO(t) is the result of
concurrently ezecuting {a | Doa € p(t — 1)} in state

£O(t —1).

The expected states are used in the next definition (last
condition) to ensure actions can be executed.

Given a set S of status atoms, let D-CI(S) be the smallest
superset S’ of S such that Oa € S — Pa € S’. Likewise,
let A-CI1(S) be the smallest superset S* of S such that (i)
Oa € S* - Doa € S§* and (ii) Doa € S* —» Pa € S*. We
say that set S is deontically closed iff S = D-C1(S) and
action closed iff S = A-CI1(S).

Definition 4.10 (TP Deontic Consistency)

Suppose O is the agent state. A TP-status interpretation p
s said to be TP deontically consistent at time tnow iff it
satisfies the following conditions for all time points t (in the
following, Pre(c) stands for the preconditions of the action

):

(1) Oa € p(t) = Wa ¢ p(t);
(2) Pa € p(t) = Fa ¢ p(t);

if t < tnow, Pa € p(t), then prob(Pre(a),0,t) =1,
if t > tnow, Pa € p(t), then prob(Pre(a),EO(t),t) = 1.

Thus, if p(4) = {Do a, Fa}, then p cannot be TP-deontically
consistent. The following definition explains what it means
for a TP-status interpretation to be closed under the deontic
modalities and under actions.

Definition 4.11 (TP Deontic/Action Closure) p is said
to be TP deontically closed at time tnow iff for all time
points t: D-Cl(p(t)) = p(t). p is said to be TP action closed
at time toow iff for all time points t: A-Cl(p(t)) = p(t).

For a temporal status set to be feasible, it must satisfy the
additional requirement of TP-state consistency. We assume

that an agent has a set of integrity constraints ZC of the
form: 1 = x where 9 is a code call condition, and yx is
an atomic code call. These constraints are evaluated in the
state. They say that an agent must never transition to a
state that violates any of these constraints. 2

Definition 4.12 (TP State Consistency) p is said to be
TP-state consistent at time tnow iff for each integrity con-
straint ¥ = x in ZC for all t < tnow for every legal assign-
ment of objects from O to the variables of ¢ and x either
prob(v, O, 1) # 1 or prob(x, O,t) =1

A feasible TPSI is like a model of a classical logic theory.

Definition 4.13 (Feasible TPSI (FTPSI)) Suppose the
current time S thow, TP is a TPP, O is an agent state,
acthist is an action history and ZC is a set of integrity con-
straints. A TP-status interpretation p satisfying p(i) # 0
for only finitely many i is said to be feasible with respect to
the above parameters, denoted by FTPSI, iff

(1) p satisfies all rules in TP,

(2) p is TP deontically consistent at time tnow,

(8) p is TP deontically and action closed at time tnow,
(4) p is TP-state consistent at time tnow,

(5) p is history compatible at time tnow.

The idea behind FTPSI’s is that whenever a state change
occurs (e.g. when the agent receives a message, or when the
clock ticks, or when an update is made), the agent computes
a feasible TPSI p and concurrently executes all actions
such that Do« € p(tnow). An agent may have zero, one, or
many FTPSDI’s in a given state.

Theorem 4.14 (Complexity) Suppose the current time
1S thow, TP is a TPP, O is an agent state, acthist is an
action history and ZC is a set of integrity constraints. The
problem of checking whether a given TPSI p is feasible or
not, s NP-complete.

5. TPSI COMPUTATION

The preceding section defines a formal semantics based on
the concept of a feasible TP-status interpretation. We now
show how FTPSI’s can be constructed for finite positive
TPP’s.

Since we are considering only positive rules, for simplicity,
we assume that an annotation associated with a status con-
junction is of the form [tc] where tc is a temporal constraint.
In addition, if Sol(tc) is a singleton {t}, we will use the anno-
tation [t]. We will refer to status atoms of the form Op(a)[tc]
as simple annotated status atoms and to status atoms of the
form Op(a)[t], where t is an integer, as singleton annotated
status atoms. It is straightforward to construct a TP-status
interpretation from a set of singleton annotated status atoms
sa-T S: Op(a) € p(t) if Op(a)t] € sa-T'S. In this case, p
and sa-7'S are compatible.

3[10] also allows agents to have a set, possibly empty, of
action constraints. It has been shown [21] that action con-
straints can be expressed as integrity constraints, and hence,
we do not consider them in this paper.

Furthermore, we will say that sa-7 S has a given property,
e.g., it is feasible, iff its compatible p is feasible. Thus,
given a TPP, TP, an agent state, O, and an action history
acthist, our goal is to construct a feasible sa-7'S. We will
use sa-7 S and its corresponding p exchangely.

However, if sa-7'S is a general simple annotated status
atoms set, there are several TP-status interpretations that
can be constructed based on it and the notion of compati-
bility is defined as follows.

Definition 5.1 (TPSI Compatible with sa-7S) A TP-
status interpretation p is compatible with sa-7'S iff for ev-
ery Opaltc] in sa-T'S, there is a solution t = i of tc such
that Opa € p(1).

There are an infinite number of TP-status interpretations
that are compatible with this sa-7'S. On the other hand,
there are infinitely many general simple annotated status
atoms sets that are compatible with a given p. We de-
note the subset of the singleton status atoms of sa-7'S by
Singl(sa-TS).

5.1 TheFixed point operator

The main difficulty is to ensure that the FTPSI to be
constructed is closed under the rules of 7P. This is because
when a rule causes atoms to be added to p(i), for some
1 > tnow, it may cause other rules to fire, which may cause
other atoms to be added to p(i), for some i > tnow. This in
turn may cause additional rules to fire.

This difficulty suggests taking advantage of well-known
methods from logic programming [20], namely to construct
a suitable monotone fixpoint operator and to relate its least
fixpoint D7p 1% with feasible TP-status interpretations.
Thus, we first define a fixpoint operator. The definition
uses the notion of modalities implying modalities which is
defined as: O implies both Do and P, Do implies P and
all modalities imply themselves.

Definition 5.2 (Operator Drp) Let TP be a« TPP, O
a state and sa-T S a set of simple annotated status atoms.
Then we define Drp(sa-T'S) to be the set

{Op' dtd]| Opa:[tc] + accci A...A accen
Aor:[ta] Ao A om : [tem]
is a ground instance of a rule in TP and
(I) for all 1 <i<mn: OE" acce; and
(II) for all 1 <i < m:
If o= Op;o
then there exists Opjay, [tc)] in sa-T'S s. t.:
(1) Op), implies Op;,
(2) Sol(tc;) C Sol(tc;) and
If o0 =0p,ai A...NOp; a;,
then there ezist t; € Sol(tc;)
and for 1 < j < k: Opj a[ti] in sa-T'S
5. t. Op;j implies Op;;.and
(III) tic=[tc At > tnow] and Op implies Op’. }

In order to find a fixed point we need to iterate the op-
erator. However, we do not start the operator at (: this
is because part of the TP-status interpretation we want to
construct is already determined by acthist. Therefore we
define sa-7 Sstars to include the set of singleton annotated
status atoms that corresponds to acthist. In some situations

we will add to sa-7 Sstart Status atoms that may belong to
the feasible TP-status interpretation.

Definition 5.3 (Iterations of Dyp) Let TP be a positive
TPP, and O be an agent state. The iterations of Drp are
defined as follows:

Dyp TO = 5a-T Sstart.
Drp 1% = Drp(Drp).
Drp1* = (Dt

J

When sa-7 Sstart 1S not clear from the context, we will use
the notation D7p 1% (sa-T Sstart) to explicitly specify it.

Theorem 5.4 Drp is a monotone and continuous opera-
tor. Hence, Dyp 1 is its least fizpoint.

We are now ready to show that D7p 1 has the properties of
TP deontic and action closure, and also that all feasible tem-
poral status sets must be compatible with Dyp 1“. These
properties will later help us in computing feasible temporal
status sets.

Theorem 5.5 Let TP be a positive TPP, O a state.

1. There is a TPSI p compatible with Drp 1 which is
TP deontically closed and temporally action closed.

2. If p is a feasible TPSI, then it is compatible with Dyrp 1.

Given the above theorem, it seems that a TPSI that is com-
patible with D7p 1 is a good candidate for constructing a
feasible TP-status interpretation. This is particularly true
if D 1¥ is a set of singleton annotated status atoms. How-
ever, D7p 1“ may be only a set of simple annotated status
atoms and we will need to choose one of the TPSI’s that
are compatible with it. For a precise description of how to
make such a choice, let us introduce the concept of a TP
hitting set.

Definition 5.6 (TP Hitting Set) Suppose sa-T S is a set
of simple annotated status atoms. A TP hitting set, H, for
sa-T S is a minimal set of singleton ground annotated status
atoms of the form Opali] such that:

For every simple annotated status atom Opa[tc| €
sa-T S, there is an annotated atom of the form
Opali] in H such that i is a solution of tc, and
if © < tnow, then Opa € acthist(i).

We use chs(sa-T S) to denote the set of all TP hitting sets
for sa-T'S.

We will use a subroutine called find_member_chs(sa-T S)
which finds a member of chs(sa-7'S) that is not a subset of
sa-T S. If no such element exists, it returns “No.” We do
not specify the implementation of this algorithm as it can
be easily implemented (using standard hitting set algorithms
[3]). Before presenting our algorithm, we need an additional
definition.

Definition 5.7 (Solution Closed) A set F of simple an-
notated status atoms is said to be solution-closed iff

for all simple annotated status atoms Opaftc] € F,
the following holds: tc has a solution i and Opa[i] € F

5.2 Feasible Temporal Status Set Algorithm

Given a finite set of singleton annotated status atoms
sa-7 S that is closed under the program rules of 7P, it is
possible to check whether it is feasible. We will assume that
there is a FeasTPI algorithm that checks

1. for all 4 < tnow, for all status atoms Opa[i] in sa-7'S
where Op € {P,0,Do }: prob(Pre(a),0,i) =1,

2. for all ¢ > tnow, for all status atoms Opali] in sa-TS
where Op € {P, 0, Do }: prob(Pre(a),£0(3),) =1,

3. temporal deontic consistency for sa-7'S.

It returns true if all these requirements are met—otherwise
it returns false. It is possible to develop such algorithm since
we require TPSI’s to be finite. Thus, we only need to check
these conditions for finitely many 4.

Our main procedure for computing FTPSI’s is recursive.
It takes three arguments: a set of simple annotated atoms
sa-T Sstart, @ TPP TP and the agent state, O. In the first
invocation of this procedures, sa-7 Sstart i the set corre-
sponding to acthist, i.e.,

Sa-TSstart = U

{i s.t. acthist(¢) is defined}

{Opa]i] | Opa € acthist(z)}.

As the procedure is recursively invoked, new simple anno-
tated status atoms may be added to sa-7 Sstart-

Algorithm 5.8 ComputeTPI(sa-T Sstart, TP, O)
1. 5a-T Snew = Drp 1 (sa-T Sstart)-
2. If sa-T Snew 15 solution closed then

(a) if FeasTPI(Singl(sa-T Spew), O)
then return Singl(sa-T Snpew)-

(b) else return false.
3. Else HS = find_member_chs(sa-T S).
4. While HS # do

(a) H = head(HS),HS = HS \ {H}.
(b) pos=ComputeTPI(sa-T Spew UH,TP,0).
(¢) If pos # false then return pos.

5. Return false.

The intuition behind the algorithm is as follows. It starts
with acthist and closes it under program rules using the Drp
operator. If the result is solution closed, then we check for
feasibility. If not, there may be many “reasons” why the
result is not solution closed. For example, Do aitc:] and
Do as[tce] may both be such that no status atom of the
form Do a[t1] and Do az[tz] are present in sa-7 Spew where
t1, to are solutions of tcy, tcy respectively. tci,tce may have
lots of solutions but we can pick a hitting set of their set
of solutions and add those simple annotated status atoms
to sa-7 Snew to remove the “reasons” for solution closure
to fail. This process may in turn may cause new status
atoms to be derivable (i.e. sa-7 Spew may not be closed
under program rules after the addition of these atoms) and
hence the process must be repeated till we reach a situation
where termination occurs through step (2) of the algorithm.
The following theorem states the correctness of the above
procedure.

Theorem 5.9 (Soundness and Completeness) The Com-

puteTPI (5.8) procedure generates a feasible TP-status in-
terpretation (if one exists).

6. RELATED WORK

There has not been a lot of work on agents that reason
about actions, time and uncertainty. Haddawy [16] develops
a logic for reasoning about actions, probabilities, and time.
His framework is purely logical and does not deal with legacy
code. In addition, he studies a general logic, whereas our TP
agents have a restricted syntactic form which makes them
more suitable for computation.

Lehmann and Shelah [19] were one of the first to inte-
grate time and probability. They developed a probabilistic
temporal logic - however, actions were not studied, and an
algorithm by which an agent can decide what to do, given
its operating principles, was not studied either. Dean and
Kanazawa have also studied the integration of probability
and time with a view to developing efficient planning tech-
niques [4, 17]. Their main interest is in how probabilities
of facts and events change over time. In our setting, where
actions are also present, this would amount to metareason-
ing over histories and possible futures. In addition, Dean
and Kanazawa attempt to model decreasing persistence of
fluents — something we do not address here. Dubois and his
colleagues [7] have studied the integration of uncertainty and
time — they extend the well-known possibilistic logic theory
[8] to a “timed possibilistic logic.”

The work on MetaTem [1] and its successor, Concurrent
MetaTem [13] are closely related to our work as they provide
a framework to reason about agents with temporal reasoning
capabilities. No probabilities are processed in their work—
when probabilities are ignored, the relationship of their work
to our framework has been cleanly described in [5].

Shoham and his colleagues [22] have developed a frame-
work for integrating beliefs, time, commitment, desires and
multiple agents. However, they do not deal with probabil-
ities at all. Likewise, Sandewall [9] has presented a frame-
work for integrating time and action, but does not deal with
probabilities. Durfee and his colleagues [14] have developed
a logic of knowledge and belief to model multiagent coordi-
nation. Their framework permits an agent to reason not only
about the world and its own actions, but also to simulate
and model the behavior of other agents in the environment.
In a separate paper [15], they show how one agent can rea-
son with a probabilistic view of the behavior of other agents
so as to achieve coordination.

7. REFERENCES

[1] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and
R. Owens. METATEM: A framework for, programming
in temporal logic. In LNCS 430. Springer-Verlag, June
1989.

[2] G. Boole. The Laws of Thought. Macmillan, London,
1854.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw-Hill, 1989.

[4] T. Dean and K. Kanazawa. Probabilistic Temporal
Reasoning. In Proceedings AAAI pages 524-529, 1988.

[5] J. Dix, S. Kraus, and V. Subrahmanian. Temporal
agent reasoning. Artificial Intelligence, 127(1):87-135,
2001.

[6] J. Dix, M. Nanni, and V. S. Subrahmanian.
Probabilistic agent reasoning. ACM Transactions of
Computational Logic, 1(2):201-245, 2000.

[7] D. Dubois, J. Lang, and H. Prade. Towards
Possibilistic Logic Programming. In Proceedings of the
Eigth ICLP, pages 581-595, Paris, France, June 1991.
MIT Press.

[8] D. Dubois and H. Prade. Possibilistic logic. In
D. Gabbay, C. Hogger, and J. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic
Programming Vol. 8, Nonmonotonic and Uncertain
Reasoning, pages 439-513. Oxford University Press,
1994.

[9] E. Sandewall. Features and Fluents: The
Representation of Knowledge about Dynamical
Systems, 1994.

[10] T. Eiter, V. Subrahmanian, and G. Pick.
Heterogeneous Active Agents, I: Semantics. Artificial
Intelligence, 108(1-2):179-255, 1999.

[11] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge,
Massachusetts, 1995. 2nd printing.

[12] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for
reasoning about probabilities. Information and
Computation, 87(1/2):78-128, July/August 1990.

[13] M. Fisher. A survey of Concurrent METATEM —, the
language and its applications. In D. M. Gabbay and
H. J. Ohlbach, editors, Temporal Logic — Proceedings
of the, First International Conference.
Springer-Verlag, July 1994.

[14] P. Gmytrasiewicz and E. Durfee. A Logic of
Knowledge and Belief for Recursive Modeling. In
Proceedings of the 10th National Conference on
Artificial, Intelligence, pages 628634, San Jose, CA,
1992. AAAI Press/MIT Press.

[15] P. Gmytrasiewicz, E. Durfee, and D. Wehe. A
Decision-Theoretic Approach to Coordinating
Multiagent, Interactions. In Proceedings of the 12th
IJCAI pages 6268, Sydney, Australia, 1991. Morgan
Kaufmann.

[16] P. Haddawy. Representing Plans under Uncertainty: A
Logic of Time, Chance and Action. PhD thesis,
University of Illinois, 1991.

[17] K. Kanazawa. A Logic and Time Nets for
Probabilistic Inference. In Proceedings AAAI-91,
pages 360-365, Anaheim, August 1991.

[18] V. S. Lakshmanan, N. Leone, R. Ross, and S. V. S.
ProbView: A Flexible Probabilistic Database System.
ACM Transactions on Database Systems,
22(3):419-469, September 1997.

[19] D. Lehmann and S. Shelah. Reasoning with time and
chance. Information and Control, 53:165-198, 1982.

[20] J. Lloyd. Foundations of Logic Programming.
Springer-Verlag, Berlin, Germany, 1984, 1987.

[21] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter,

S. Kraus, F. ézcan, and R. Ross. Heterogenous Active
Agents. MIT-Press, 2000.

[22] B. Thomas, Y. Shoham, A. Schwartz, and S. Kraus.
Preliminary Thoughts on an Agent Description
Language. International Journal of Intelligent
Systems, 6(5):497-508, August 1991.

