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1 Introduction
We address a model of self interested agents competing to perform
tasks. The agents are situated in an uncertain environment while dif-
ferent tasks dynamically arrive from a central manager. The agents
differ in their capabilities to perform a task under different world
states. The tasks are allocated according to a pre-defined protocol set
by a central manager such as a government, a municipality, a com-
pany. The central manager lacks the required resources to perform
the tasks by itself. The protocol defines the rules for selecting a per-
former for a task and the appropriate payment to this performer. The
goal of the central manager is to maximize his expected utility, de-
fined as a function of the number of tasks being performed and the
total payment. Previous models concerning cooperative agents aim-
ing for a joint goal are not applicable in such environments, since self
interested agents have a motivation to deviate from the joint alloca-
tion strategy, in order to increase their own benefits. Given the allo-
cation protocol set by the central manager, a stable solution is a set
of strategies derived from an equilibrium where no agent can benefit
from changing its strategy given the other agents’ strategies. Hence,
a major challenge in task allocation process for self-interested agents
in such environments is to identify the agents’ equilibrium strategies,
for a given protocol and environmental settings.

We suggest a methodology for calculating the agents’ equilibrium
strategies. Specifically, we focus on a protocol in which, upon arrival
of a new task, the central manager starts a Vickrey auction, and the
agent who bids the lowest cost wins. In our domains, the number
of competing agents is relatively small, and their overall capabilities
can be estimated with some probability. Thus, an agent’s strategy
must consider the long term strategies of the other agents in the en-
vironment as part of its own bid strategy determination. An example
of such an application can be found in an environment where self
interested servers, with different configurations and changing loads,
compete for the execution of jobs arriving from an external source.
The servers set their strategies on-the-fly, according to their current
information of the world sate, and their evaluation of their competing
agents’ capabilities. The main difference from e-commerce domains
is that in e-commerce the rate of new agents entering the environment
is relatively high so it is unfeasible to consider the modulation of
competitors’ future strategies when setting an agent’s bid (e.g. [2]).

The concept of task allocation in a competitive environment is dis-
cussed in several works (e.g., [1, 3]). The main focus of these works
is on the commitments and the communication problems that emerge
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in such an environment. None of them concern the concept of equi-
librium and the modulation of other agents’ future strategies. Several
works from the adjacent domain of resource allocation involve equi-
librium analysis (e.g., [4]). However, they do not suggest the full
extent of changing capabilities and world states or the modulation of
all future strategies of the other agents.

2 A General Description of the Model
We suggest a model in which different types of tasks arrive dynam-
ically according to a given probability. We consider an environment
with a bounded set of self interested agents competing to perform
these tasks. A measure for an agent’s capability of handling a given
task is the duration of time required to successfully complete it. A ca-
pability for performing a task depends on a specific world state. Due
to the complexity of world states, and the changing environment, we
assume that for each world state the duration is drawn from a proba-
bility function,PD(x) wherex is in the interval[Dmin, . . . , Dmax].
Thus, each agent has a different set of capabilities in a specific world
state. The agent’s decision must take into consideration two types of
costs. The first reflects the cost of participating in an auction (costs
associated with preparing for the auction, possible auction fees set by
the central manager, calculations and evaluation costs, etc.), denoted
by C. The second cost,c, is the cost of operating the agent per time
unit when performing a task (for simplification we assume all agents
share the samec).

For each auction, ofk competitors and a givenDi ∈
[Dmin, . . . , Dmax], the agent calculates its equilibrium bid denoted
by Bk

i . The agents’ strategy is stationary, as the required duration
for performing a task is derived fromPD(x). The bid is limited by
the maximum payment,M , the central manager is willing to pay
per task. An agent will leave the environment only upon winning
an auction. The dynamic nature of the environment suggests possi-
ble entrance of new agents (either former auction winners once they
have completed their tasks, or brand new ones). We assume that the
number of agents entering the environment between two subsequent
auctions is associated with a probability function and can be evalu-
ated by the agents. This evaluation is denoted byp(j).

All the agents are acquainted with the total number of agents,k
in the environment at a given time, the cost parametersC and c,
the maximum priceM and p(j). Also, all the agents are familiar
with the probability functionPD(x) (though they have no specific
information regarding the durationDi of any of the other agents).

3 Equilibrium Analysis
Given the Vickery auction protocol, each agent sets its optimal bid
for any world state. Winning the current auction will result in an im-
mediate income, but the agent will need to allocate resources in order
to perform the task, thus avoiding any additional auctions (possibly
associated with better opportunities, e.g. better world states and/or



fewer agents to compete with). Therefore the agent’s bidding strat-
egy must consider the tradeoff between an immediate gain from the
current auction and the expected loss of future opportunities. The
agent’s evaluation of the above two measures is derived from the
analysis of the other agents’ strategies in current and future auctions.

Consider an agent which is about to attend an auction with a total
of k participating agents. The expected revenue of this agent is de-
noted byRk. Once the task associated with the auction is revealed,
the agent can evaluate its own required durationDi for performing
the task in the current world state. The expected revenue of the agent
in an auction where its duration for the proposed task isDi is denoted
by Rk

Di
. The expected revenueRk is calculated as:

Rk = −C +
X

y∈[Dmin,Dmax]

Rk
yPD(y) (1)

Consider a new task arriving at a given time, wherek agents are
situated in the environment. An agent winning an auction, when bid-
dingBk

i , will be awarded the mean of second bid values, denoted by
EDi [second]. Otherwise, it will move on to the next auction where
its expected revenue will be either (assumingk agents in last auction)
Rk+p(j)−1, if one of the other agents won this auction; orRk+p(j),
if all agents used a bid higher thanM . In order to compute theRk

Di
,

we distinguish between 3 types of bids within the equilibrium (based
on a theorem we prove, which divides the agents into 3 continuous
groups in the interval[Dmin . . . D . . . D . . . Dmax]).
(I) Bidding less than the maximum price set by the central manager,
i.e., Bk

i < M . In this case the expected revenue is composed of 3
components: (a) The agent is the sole best bidder (awarded the ex-
pected second bid) ; (b) the agent is the best bidder along with other
agents with equal bids (awarded its own bid with a probability equal
to the others) ; (c) the agent loses the auction and moves on to the
next one. The above is formulated as follows (Peq is the probability
the agent will win the auction when one or more additional agents
have the same durationDi):

Rk
Di

=
X

y∈[i+1,max]

(min(Bk
y, M)− cDi)(PD(D≥ y)k−1− PD(D> y)k−1)+

+ Peq(B
k
i− cDi)+(1− PD(D≥ Di+1)

k−1− Peq)R
k+p(j)−1 (2)

(II) Bidding exactly the maximum price, i.e.,Bk
i = M . The ex-

pected revenue in this case is composed of 2 components: (a) The
agent wins the auction with a probability similar to all other agents
offering M (awardedM ) ; (b) the agent loses the auction, moving
on to the next one. The above is formulated as follows (PII is the
probability the agent will win the auction when biddingM ):

Rk
Di

= (M − cDi)PII + (1− PII)R
k+p(j)−1 (3)

(III) Bidding more than the maximum price, i.e.,Bk
i > M . In this

case the agent inevitably loses the auction thus the only considera-
tion is the number of agents it will compete with in the next auction
(affected by whether or not one of the other agents wins the current
auction):

Rk
Di

= PD(D > D)k−1Rk+p(j)+(1−PD(D > D)k−1)Rk+p(j)−1

(4)
where the lowest duration of an agent biddingM , is denoted asD
and the highest duration asD.

Solving a system of simultaneous equations of types (1-4), yields
the appropriate strategy parameters. However, in the current structure
of the problem, this would be extremely difficult as we need to solve
a set of2 ∗N + K complex equations, whereN denotes the number
of discrete durations in the interval[Dmin, Dmax].

We suggest a solution for an important applicable variant of the
above model where no new agents enter the environment (p(j) = 0).

Considering the proposed self-interested servers application (see sec-
tion 1), for example, we can identify such a scenario, in which servers
are competing for the execution of night jobs (assuming they have
idle resources only at nighttime). A typical execution of such a job
lasts several hours, thus preventing the executing server from com-
peting for additional jobs during the night run. The entire application
will start over the next night as all servers will be available again to
compete for incoming jobs. In this case, once an agent is awarded a
task, the number of available remaining agents, for the next auction,
always decreases by one.

In this scenario, once a single agent remains in the environment,
it will undoubtedly bidM , having no other agents to compete with.
However, even in this situation the agent might not be interested in
winning any given auction. As no competition is expected in future
auctions, it might be more beneficial for it to wait for a better world
state, in which its capabilities allow it to complete the task in a shorter
duration, and thus at a lower cost. In the absence of the cost of partic-
ipating in an auction, the agent would have to wait until it reaches a
world state in which its capability for performing the task is optimal.
However, the introduction of costC requires a cost-effective analy-
sis. Thus the agent will use a reservation value strategy, biddingM in
all world states where its duration is smaller or equal its reservation
value. The analysis of such problems can be deduced from classical
search theory, in which the searcher, having a fixed cost per search
stage and a distribution of benefits from possible opportunities, seeks
to maximize its overall utility.
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Figure 1. Cost per task

For this case a simple algorithm
with a complexity O(N2k) can be
used to calculate the equilibrium bids
and revenues. Using the algorithm,
we explored the behavior of agents’
expected revenues and the central
manager’s expense for different en-
vironmental settings. We investigated
several properties of the equilibrium
including the affect of costC for
participating in an auction and the
number of agents,k, on the expected
expenses of the central manager. As
shown in Figure 1 increasing the number of agents and decreasing
costC enhances competition and the average expenses of the central
manager per task decreases. However, at some point, as the number
of agents increases, the expected future revenue becomes negative
for any agent participating in this type of auction sequence. This is
simply because adding more agents extends the average number of
auctions an agent needs to participate in, prior to winning a task, and
the agents initially prefer not to participate in any of the auctions.
The same holds for the increase in cost. If the central manager can
controlC andk, it will select the combination that will produce the
lowest feasible expected cost (e.g.,k = 20, C = 2.2).
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