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Abstract

We consider marketplaces where buyers and sellers iteratively encounter to trade.
Given some specific trade conditions, the question that we address is what strategies
should buyers and sellers use to maximize gains. We focus on electronic markets where
supply shortages are common. Under such market conditions sellers can only satisfy
a subset of the purchase-orders they receive from buyers. Consequently, some buyers
may become discontented and they may be motivated to migrate to other sellers in
proceeding encounters.

Beneficial purchase-order selection as well as seller selection require, respectively,
seller and buyer strategies. Analytical computation of stable profiles of such strategies
is infeasible in the enviroments we examine. We hence devise a new methodology for
studying strategic equilibria. We introduce specific equilibria strategy profiles to be
implemented by automated trade agents. The main conclusions of our study are that
automated sellers will benefit most by randomly selecting the purchase-orders of their
buyers to be satisfied. Additionally, such sellers will not benefit from learning the
buyers’ typical order size. Moreover, automated buyers will maximize their benefits
by re-issuing purchase-orders with sellers that satisfied them, fully or partially, in the
past.
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1 Introduction

Marketplaces, either traditional or electronic, are sites in which buyers and sellers meet in

order to trade. In monetary-based trade, goods held by sellers are sold in exchange for

monetary funds held by buyers. Although the task of a seller is to sell its merchandise and

the task of a buyer is to get the goods it needs, doing so, both sellers’ and buyers’ main

goal is to maximize their gains. Seeking such maximization, buyers and sellers may practice

strategic behavior. This imposes a practical question: given some specific trade conditions,

what strategies should buyers and sellers use to maximize gains? Game theory - the discipline

in which strategic behavior is studied analytically - provides very few practical solutions to

this question. This is mainly because the problem is too complex to solve analytically and

the strategy space is in many cases intractable. Such is the case in several electronic types

of trade. Prominent examples can be found both in B2C (business-to-consumer) and B2B

(business-to-business) marketplaces. For instance, in a competitive B2C commodity market

(e.g., books), where prices of goods are virtually the same across seller sites, and sellers

hold limited stocks to reduce their storage and financing expenses, stock shortages result in

buyers not being serviced. A similar phenomenon is present in B2B MRO (Maintenance,

Repair, Operation) markets (e.g., office supplies), where prices are competitive and sellers’

profits are lean.

Under the trade conditions referred to above, where sellers may, in times, be able to ad-

dress only part of the orders placed by buyers at their site, the sellers are in need for strategies

that will minimize the damage from the orders they received but eventually rejected. Buyers

can benefit as well from strategies that increase their chances of being serviced. The goal

of this research is to find such strategies. In particular, we seek strategies that, given the

trade conditions referred to above, maximize the gains of both sellers and buyers, and main-

tain a stable market. As stated above, computing these strategies analytically is infeasible.

Therefore, we have developed an experimental methodology as well as a simulation tool that

implements it. We use these methodology and tool to find the sought strategies.

The strategies we seek are different from strategies applicable to traditional trade. The

reason for this is that, in difference from traditional trade, electronic markets introduce a

combination of conditions that does not exist in other markets. This combination raises

challenging problems which are unique to electronic trade. The electronic interaction among

buyers and sellers in the markets we study includes the following characteristics:

1. Buyers can keep their anonymity (e.g., via anonymizers and third party brokers).

2. Buyers do not know about other buyers that participate in the trade, even when those

visit the same store concurrently.
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3. Buyers do not know the actual true stock level of the seller.

4. Sellers are uncertain regarding the number of buyers that will approach their site and

the volume of their orders. This problem is more intense in electronic markets than it

is in traditional trade. It results from liquidity and dynamism of the activity on the

web, where sites are easily accessible by buyers from diverse geographical locations,

and the cost of switching from one site to another is very low.

5. The pace of trade is high. This results from the automation of seller sites as well as

their distribution. The pace shall be further accelerated when the buyer’s side will be

automated via buyer agents.

The above characteristics result in several conditions. For instance, attribute 1 results in

the sellers’ inability to identify specific anonymous buyers. Thus, sellers may be unable to

benefit from identity-based long-term customer relation management. Attribute 3 results in

the sellers’ ability to manage stocks and orders at their own discretion to maximize benefits.

Attributes 4 and 5 above result in dynamic variations in demands at sellers’ sites, which

impose occasional shortages in stock.

Instantaneous supply shortages are rather common in B2C and B2B MRO electronic

commerce. One reason for this, which is unique to electronic trade, is that inventory verifi-

cation for a given purchase-order is performed only after the order is complete. Consequently,

concurrent preparation of purchase-orders by multiple buyers may result in a seller being

unable to satisfy the orders. This is in spite of the seller (implicitly or explicitly) declaring

that the requested products are available for sale.

In such cases of instantaneous supply shortages, sellers must decide which orders to satisfy

and which ones not to. This will leave some buyers unsatisfied. Buyers unsatisfied with one

seller may be motivated to approach another seller in proceeding encounters. This behavior

is referred to as punishment (for not providing the expected supply).

We have studied electronic markets where such trade conditions hold. The major contri-

bution of this study is twofold:

• We introduce a new methodology for studying strategic equilibria in environments

where analytical computation of these is infeasible. In particular, this methodology is

applicable for B2C and B2B MRO electronic markets.

• We find and present specific equilibria strategy profiles to be implemented by auto-

mated trade agents. These agent-oriented strategies can be used by humans who trade

in electronic markets as well.

Based on the study of strategy profiles we performed, the main conclusions are the
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following. Automated sellers will benefit most by randomly selecting the purchase-orders

of their buyers in order to satisfy these orders. Additionally, such sellers will not benefit

from learning the buyers’ typical order size. Further, automated buyers will maximize their

benefits by re-issuing purchase-orders with sellers that satisfied them, fully or partially, in

the past.

The rest of the paper is organized as follows. In Section 2 we present other studies

relevant to our research. Then, in Section 3, we describe the model of the electronic market

we examine and its specific settings. We proceed with presenting the strategies examined in

this market in Section 4. Following, in Section 5, we provide details regarding the simulation

methodology and implementation used for our experiments. The results of these experiments,

in which we study strategic interaction between electronic sellers and buyers, are presented

in Section 6. Section 7 closes with conclusions and discussion of future work.

2 Related Work

Work in the field of computational scheduling (e.g., [9]) addresses the distribution of a

set of tasks to a set of computers. The problem handled in this paper may be viewed as

a distributed scheduling problem. A number of buyers needs to be distributed among a

number of sellers such that the sellers remain with the minimal number of unsold items

in their stocks, and the buyers are satisfied as much as possible. A prominent difference

between scheduling solutions and electronic markets’ solutions is that the former attempt

to minimize some global objective functions, whereas in the latter, there is no such global

function. In electronic markets buyers are represented by intelligent agents whose purpose is

to each maximize its own gain and they decide rationally based on their strategy of action.

Sellers are self-interested and do not act under a central control either. Another difference

is that, unlike scheduling solutions, our analysis needs to take into account the buyers’

reaction to the sellers’ actions. As a result of these differences between scheduling problems

and electronic markets problems, we need to provide other solutions for the latter.

Research in game theory and economics has addressed issues of competition among buyers

and among sellers that need to choose which buyer orders to satisfy. To our best knowledge,

none of these studies addressed agent strategic behavior in large markets. For instance,

Vincent [11] studies a single seller and the way in which the seller selects one buyer from

among a group of buyers, where all of the buyers are interested in buying the single good

the seller wishes to sell. We analyze a market where multiple sellers interact repeatedly with

multiple buyers. Each buyer places its purchase-orders sequentially. At each encounter, some

sellers cannot fulfill some of the buyers’ purchase-orders on time.
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A market in which sellers face an infinite number of anonymous and typed buyers is

studied in [1]. There, buyers compete since only one of them will be satisfied by the seller.

The question answered there was what price the winning buyer will pay. We consider a

different setting, where multiple products are sold, and we address a different question, as

our goal is to identify, by examining various strategy profiles, those strategies that agents

should follow to maximize their gains, assuming that prices are given.

In market settings similar to those we study, when the buyers need to choose which

sellers to approach, they may consider the sellers’ reputations. Reputation was studied

as a function (e.g., [13]), as a social mechanism for avoiding untrustworthy parties [12],

and as an expectation for quality [10]. Reputation is usually built over time and its use

is appropriate for long-term market interactions. In our case, interaction are mid-term to

short-term. Hence, the use of reputation systems is impractical. Yet, the buyers’ strategy

may change according to the service received from the sellers. This has some similarity to

the use of reputation, excluding the aggregation effect.

A market where buyers evolve into customers is studied in [2]. In particular, a model of

the buyers is analyzed, given that the sellers have a fixed capacity and receive a fixed and

equal demand from all buyers. There, it is assumed that each seller, subject to its capacity,

serves as many buyers as it can to entirety, and partially satisfies one buyer. It is also

assumed that the game lasts for a number of periods greater than, or equal to, the number

of sellers in the market. It is shown that conditional loyalty leads to an equilibrium. That

is, buyers will return to sellers that have served them in the last trading interaction, and

sellers serve the buyers they have served in the past. That study seems similar to ours, as

it addresses multiple sellers and multiple buyers. Yet, in that research the sellers’ strategy

was set, and only the buyers reaction to this preset strategy was examined. In our research,

both buyers and sellers can follow one out of a set of strategies, and we investigate equilibria

among these strategies, without imposing a specific strategy on either buyers or sellers.

A critical approach to game theory applied to Internet games appears in [3]. The authors

claim that these games cannot be analyzed in the framework of Nash equilibrium because

there is lack of information (the buyers do not know who the other buyers are and what

they do), the players do not apply optimal procedures, there is no synchronization, and the

mid-term is the one that is relevant. The authors suggest reasonable learners algorithms,

whose important features are optimality (i.e., the algorithms should enable the agent to

get the optimal gain), monotonicity (if the payoff of performing an action increases, the

probability of choosing this action cannot decrease) and responsiveness. In our work, we

evaluate actions based on the notion of experimental equilibrium, which enables us to find

strategy profiles that maximize the expected utility of the agents given the behavior of the
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other market participants.

Kephart et al. [7, 8] have also taken the game theoretic approach to analyze electronic

markets. Their focus, though, is on dynamic price changes in electronic markets. In this

paper, we assume that the time range is short and therefore prices remain static. Our focus

is on the interactions between the agents’ strategies.

3 The Simulation Model

A general analytical solution to the strategic agent interaction problem that we address

does not seem amenable. To provide a solution nevertheless, we opted for an experimental

approach. Hence, we have developed a simulation model—Simulation of Electronic Market

Interactions (SEMI)—which was also implemented and utilized to study possible strategies

for the sellers and the buyers in the markets of interest. Running simulations with the

SEMI system enables us to empirically test the effects of various settings on the utilities

obtained by the electronic buyers and sellers. Experiments with SEMI can (and do) unravel

experimental equilibria between buyers’ and sellers’ strategies.

The SEMI system can be used for a broad range of settings, however we use it to model

and simulate the specific problem of interest. That is, we simulate sellers that hold limited

stocks and buyers that each places a purchase-order with one seller at each encounter. With-

out loss of generality, we refer to a single type of good1 to be sold by all of the sellers. We

consider a market of repeated encounters between finite sets of buyers and sellers. Buyers

approach sellers and submit requests for buying goods. At each encounter, a seller may

receive requests that cumulatively exceed the quantity of the good available in its stock. It

thus needs to decide which requests to satisfy and which ones to leave unsatisfied.

In our model, there is a set B of buyers and a set S of sellers. A SEMI simulation consists

of a sequence of K encounters between the sellers and the buyers. In each encounter, k, a

seller Sj ∈ S holds in its stock a quantity ST jk of the good for sale. Each buyer Bi ∈ B

is associated with a type TY i which indicates the average size of its purchase-order. We

denote Bi’s purchase-order at encounter k by POik or, when this order is intended for a

specific seller Sj, by POik
j . The purchase-order, POik, specifies the number of units of the

good that Bi would like to buy at encounter k. To simplify the analysis, we assume that

this number is an integer.2 At a given encounter k, Bi submits its purchase-order POik
j to

some seller, Sj. Sj can sell Bi all, part or none of the quantity specified in its purchase-

1Goods of various types can be handled in the same way as long as there are no interdependencies among
them.

2This assumption is not restrictive, as the majority of the B2C and B2B MRO goods are sold in whole
units.
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order. Bi’s utility from this transaction is proportional to the portion of the purchase-order

supplied to it. In our model, a seller gains from the sale of each unit and it incurs a cost

for each unsold unit held in its stock at the end of each encounter. Thus, a seller’s utility

at a given encounter is proportional to the quantity of the good it sells at that encounter,

and is inversely proportional to the quantity of the good left in its stock at the end of the

encounter. A seller would incur additional costs for revealing the buyers’ types. The utility

functions of the agents explicitly express these costs. The details of the utility functions and

their formal expression are provided later in this section.

Our model includes several assumptions that commonly hold in B2C and B2B MRO

electronic markets or in a subset thereof. We assume that all of the sellers sell the same

type of a good, where quality, price and units are the same as well. The conditions of this

assumption hold in a subset of the electronic markets. They typically hold in competitive

commodity markets such as, e.g., books, appliances, office supplies and others, where the

ease of price comparison and the competition among sellers result in relatively uniform prices

and quality. Our model refers to sellers and buyers that transact repeatedly in fixed-price,

catalog-based, electronic stores, where prices remain static within short to intermediate

periods of time. Our solution concentrates on such periods of time, hence we can safely

assume static prices.3 To simplify our analysis we assume that, at each encounter, each

buyer is associated with only one purchase-order, and this purchase-order is valid only for

that encounter. Such a condition holds only in some electronic markets, however it is rather

simple to relax this assumption. For instance, to model purchase-orders that persist along

multiple encounters, all one needs to do is to allow re-issuing of expired purchase orders in

the encounter proceeding their expiration.

Following the settings and assumptions above, we present the details of buyers’ and

sellers’ utility functions as well as other controllable parameters of our simulation model.

• The utility function of the sellers — We examine risk-prone, risk-neutral and

risk-averse sellers. The utility function varies according to the risk attitude. Given a

risk-neutral utility function U , the risk-prone utility function is convex w.r.t. U , and

the risk-averse utility function is concave w.r.t. U [4].

The utility function of a risk-neutral seller Sj in a given encounter k, when it receives

r purchase-orders, is

U j(PO1k
j , . . . , POrk

j ) = G ·
r∑

i=1

sat(POik
j ) − Cs · (ST jk −

r∑

i=1

sat(POik
j )) − Ct · r

∗ (1)

3See reference to work by Kephart as explained in Section 2 for dynamic pricing strategies.
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G is the gain for one sold unit; the function sat(POik
j ) returns the size of satisfied

portion of POik
j ; Cs is the cost of holding one unsold unit for one encounter; Ct is the

cost for obtaining the type of one buyer; r∗ is the number of times the seller bought

such type information in the given encounter.4

The utility function of a risk-prone seller is the following convex function:5

U j
convex(PO1k

j , . . . , POrk
j ) = exp(

G · Σr
i=1

sat(POik
j ) − Cs ∗ (ST jk − Σr

i=1
sat(POik

j ))

ST jk
)

(2)

The utility function of a risk-averse seller is the following concave function:

U j
concave(PO1k

j , . . . , POrk
j ) = exp(

Cs ∗ ST jk

Av
) − (3)

exp(
GΣr

i=1
sat(POik

j ) − Cs ∗ (ST jk − Σr
i=1

sat(POik
j ))

−Av
)

where Av a positive number that affects the level of averseness of the sellers such that

smaller Av refers to higher averseness and vice versa.

• The utility function of the buyers — We distinguish between conceding buyers

and non-conceding buyers. A conceding buyer’s utility is proportional to the part

of its purchase-order that was fulfilled. The utility function is given by U i(POik) =

sat(POik)/POik. Non-conceding buyers are buyers whose willingness to accept partial

purchase-order fulfillment is lesser than the willingness of other (conceding) buyers to

do so. This is expressed in their utility function, where partial satisfaction of purchase-

orders intensifies the loss of gains. A non-conceding buyer Bi’s utility is given by the

function

U i
nc(POik) = (sat(POik

j ) − (POik
j − sat(POik

j )) ∗ LS)/POik
j (4)

where LS is the factor that reflects the level of buyer dissatisfaction with partial

purchase-order fulfillment. Note that here, the utility of a partially satisfied buyer

4Note that r∗ is only relevant to the strategies that consider buyers’ type. In our experiments, these
strategies were found to provide poor gains compared to other strategies. Therefore, the use of these
strategies is of little importance and r∗ is omitted from the following utility functions.

5It is based on the non-normalized utility function of the risk-neutral sellers given by GΣr
i=1

sat(POik
j )−

Cs ∗ (ST jk − Σr
i=1

sat(POik
j )).
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Notation Description

k The kth encounter.

K The number of encounters.

B= {Bi}, 1 ≤ i < ∞ The set of buyers.

S= {Sj}, 1 ≤ j < ∞ The set of sellers.

ST jk The stock that seller Sj holds at the beginning of encounter k.

TY i The average purchase-order size of buyer B i.

POik
j The purchase-order placed by buyer B i to seller Sj at encounter k.

sat(POik
j ) The actual deal satisfied by seller Sj after buyer Bi requested POik

j .

Cs The cost of holding one unsold item in stock for one iteration.

Ct The price that a seller needs to pay to reveal one buyer’s type.

G The gain of a seller from selling one unit of the good.

Table 1: Summary of the SEMI’s Notations

may be nullified.6 As the value of LS increases, the buyer’s level of non-concession

increases too.

• Stock sizes — We distinguish between homogeneous and heterogeneous markets.

In homogeneous markets, all sellers hold equal-sized stocks at the beginning of each

encounter (i.e., for any k, k′ ∈ IN , ST jk = ST jk′

). In heterogeneous markets, the sellers

may hold stocks of different sizes.

• The size of the market — Smaller markets may behave differently from larger ones,

in the sense that sellers and buyers may need to use different strategies to maximize

their gains. Our model allows us to populate the market with buyers’ and sellers’

populations of various sizes. Utilizing this flexibility, we have examined markets of

several sizes. By this, we were able to study similarities and differences in strategic

behavior as affected by the size of the market.

The utility functions and the parameters presented above are used in our experiments. The

notations of this section are summarized in Table 1. These will be used in following sections

to describe strategies (Section 4.1) and experiments (Section 6).

4 Sellers’ and Buyers’ Strategies

The model presented above provides the framework in which the trade interactions of interest

should take place. Given this framework, agents would interact strategically to achieve their

trade objectives. Since we use a simulated agent system for our study, we need to provide the

6For example, when LS = 0.5, a buyer for which less than a third of the purchase-order was satisfied will
gain zero, which is, utility-wise, equal to not being satisfied at all.
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strategies to be used by the agents within the simulator. We denote by Σs the set of strategies

to be used by the sellers, and by Σb the set of buyers’ strategies. It is preferable that the

strategies we provide represent the strategy space, however since this space is intractable,

we have concentrated on a set of representative strategies. We later show that the selected

strategies are beneficial and enhance stability.

As stated in Section 1, the markets we study are characterized by sellers that, as a

result of stock shortages, may be unable to satisfy some of the requests submitted to them.

Therefore, we concentrate on buyer strategies that allow punishment behaviors, and seller

strategies that consider a variety of decision policies for selecting buyers to be satisfied.

4.1 Sellers’ strategies

In our model, given a set of purchase-orders received by a seller, a seller’s strategy specifies

which portion of each purchase-order to supply. The strategy could be affected by the

following issues: (i) the arrival time of the purchase-order at the seller’s site (within an

encounter); (ii) the size of the purchase-order; and (iii) the type of the buyer that submitted

the purchase-order, when it is possible for the sellers to obtain this information.

We developed representative strategies to test which equilibria will result from encounters

between buyers and sellers. We categorize the strategies according to the way in which they

use the available information. For simplicity, a strategy does not use historical information.

This is reasonable in situations where the buyers are unrecognizable. Note that, when

the requests to a seller, cumulatively, do not exceed its stock, the differences between the

strategies become unimportant, as the seller agent will satisfy all the requests, regardless

of the use of a specific strategy. Only when the requests cumulatively exceed the seller’s

stock, the details of the strategy indeed affect the behavior of the agent that implements it.

Below are the details of the strategies. In the naming of these strategies, we add the prefix

letters O, D and R, to indicate that the strategy implements, respectively, size ordering,

proportional distribution and type recognition.

Below we present the strategies, partitioned into categories:

The uninformed seller category includes strategies in which the seller does not consider

the size of the purchase-orders (issue (ii) above) nor the buyers’ type (issue (iii) above). In

this category we consider a simple seller strategy as follow.

1. Random Seller (in short RandS)— According to this strategy, a seller randomly chooses

the purchase-orders to be fulfilled from those that were submitted to it. The seller

attempts to completely fulfill all of the requests, however as a result of its stock being

limited in size it may end up not fulfilling some of the requests. The seller sequentially
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selects, by random, purchase-orders. Each of these is fully satisfied (except for, possibly,

one purchase-order which may be only partially satisfied), until its stock is exhausted

or there are no more requests to fulfill. The RandS strategy is equivalent to a First-In-

First-Served (FIFS) strategy in cases where the order of arrival of buyers’ requests at

sellers’ sites does not depend on characterizing traits of the buyers (e.g., their typical

order size).

The greedy seller category includes strategies that are affected by the size of the purchase-

orders (issue (ii) above).

1. Ordered Purchase-Orders (in short OPO) — According to this strategy, the fulfillment

of the buyers’ purchase-orders is performed in a decreasing order of their sizes.

2. Distributed Purchase-Orders (in short DPO) — According to this strategy, a seller

(partially) satisfies the purchase-orders proportionally to their size. That is, if S j

receives r purchase-orders in encounter k, PO1k
j , . . . , POrk

j , then each buyer Bi will

be supplied with b
POik

j∑r

l=1
POlk · ST jkc. The remainder of this distribution, i.e., ST jk −

(
∑r

h=1
b

POhk
j∑r

l=1
POlk · ST jkc), is allocated to one buyer, selected randomly.

The intelligent seller category includes strategies in which the seller uses the buyers’ type

(issue (iii) above) for deciding upon purchase-orders to be fulfilled.

1. Ordered Types (OType) and Ordered Recognized Types (ORType) — According to

these strategies, the fulfillment of the buyers’ purchase-orders is performed in a de-

creasing order of the type of the buyers. R in the prefix denotes recognizable buyers

(referring to type recognition and not identity recognition). In our model, sellers that

are interested in the information regarding the type of a buyer need to pay for it. When

buyers are recognizable (i.e., their identity is not hidden), a seller needs to pay only

once for this information. In such a case, the ORType strategy is relevant. When buy-

ers are not recognizable, the a seller needs to pay for this information in each encounter

it would like to use it. In such a case, the OType strategy is relevant.

2. Distributed Types (DType) and Distributed Recognized Types (DRType) — According

to this strategy, a seller satisfies the purchase-orders proportionally to the buyers’ types.

That is, if Sj receives r purchase-orders in encounter k, PO1k
j , . . . , POrk

j , then for each
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buyer Bi, the seller computes poi = b TY i∑r

l=1
TY l · ST jkc. If poi ≥ POik

j then poi is set

to POik
j . The remainder of the seller’s stock is allocated to buyers in the same way as

in the DPO strategy. The inclusion of R in the prefix (DRType) refers to the case of

recognizable buyers. Payment for type are applicable following the same guidelines as

in the ORType and OType strategies.

The sellers’ behavior when following the strategies presented above is demonstrated by

examples in Appendix A.

4.2 Buyers’ strategies

Under the assumptions made in this paper, a buyer has very limited information (relevant

to the trade) on the sellers. Note that limited information as we assume is common in real

B2C and MRO electronic markets. At each encounter, the buyer knows what portion of its

submitted purchase-order was satisfied. Given such a history of past encounters, a buyer

should decide which seller to approach in the current encounter. In this paper, for simplicity,

we focus on strategies that take into consideration only the history of the last encounter.7

The list of buyer strategies follows.

1. Random Buyer (in short RandB) — According to this strategy, the buyer randomly

selects a seller for submitting a request.

2. Loyal — According to this strategy, a buyer Bi will first check whether the seller Sj

with which it has placed a purchase-order at encounter k has completely or at least

partially satisfied it at that encounter. If Sj has (partially) satisfied it, at encounter k,

Bi returns to seller Sj at encounter k +1. Otherwise, at encounter k +1, Bi randomly

selects a seller from S to which it submits its purchase-order (this random selection

may be Sj as well).

3. Loyal and Punish (in short LoyalP) — According to this strategy (in similarity to the

Loyal strategy), a buyer Bi will first check whether the seller Sj with which it has

placed a purchase-order at encounter k has completely or at least partially satisfied it

at that encounter. If Sj has (partially) satisfied it at encounter k, Bi returns to seller

Sj at encounter k + 1. In difference from the Loyal strategy, if B i’s order was not

satisfied at all, at encounter k + 1 Bi randomly selects a seller from S \ {Sj} (thus not

approaching Sj at encounter k + 1).

7Long histories are more commonly taken into account in long-term interactions between buyers and
sellers. In these cases, contracts are usually signed when the supply and the demand are known in advance.
This is not the case we study in this research, in which we focus on short-term interactions.

12



4. Loyal Weak (in short LoyalW) — According to this strategy, a buyer B i will first

check whether the seller Sj with which it has placed a purchase-order at encounter k

has completely satisfied it at that encounter. If Sj has fully satisfied it at encounter k,

Bi returns to seller Sj at encounter k +1. Otherwise, at encounter k +1, Bi randomly

selects a seller from S \ {Sj} (thus not approaching Sj at encounter k + 1).

5. Probabilistic Buyer (in short Prob) — According to this strategy, a buyer B i that has

approached seller Sj at encounter k with a purchase order POik
j , will approach Sj at

encounter k + 1, with a probability of sat(POik
j )/POik

j . This probability—the ratio

between the portion of the purchase-order satisfied and the whole purchase-order—

expresses the level of satisfaction of a buyer. Bi will approach each of the other sellers

with a probability of (1 − sat(POik
j )/POik

j )/(|S| − 1).

When following any of the strategies above, except for the RandB strategy, a buyer will

return to a seller that has completely satisfied it. Yet, when partially satisfied or not satisfied

at all, a buyer may punish the seller it has approached at encounter k, by not returning to

this seller at encounter k + 1. The severity of the punishment is expressed in the following

order of the strategies: on the one extreme, LoyalW is the most punishing strategy because

even if a seller has partially satisfied a buyer, this buyer will not return to the seller at the

next encounter. The probabilistic strategy is less punishing than LoyalW since there is still

a positive probability for a buyer to return to a partially satisfying seller. LoyalP is more

punishing than Loyal and less punishing than LoyalW. RandB induces a buyer to choose a

seller in a random way, with no regard to the seller’s behavior. We demonstrate the behavior

of the buyers when they follow each of the aforementioned strategies in Appendix B. Our

hypothesis was that not returning to a seller that has not fully satisfied a buyer, would be

the best strategy for the buyer. We found out in the experiments that this is not always the

case.

5 The Methodology of the Simulation-based Solution

The utility of an agent trading in an electronic market is influenced by the other agents’

actions in that market. The analysis of such influences usually resides in the field of game

theory, hence our methodology relies on game-theoretic concepts as well. In particular, we

study strategy profiles and their stability. However, in difference from the classical game-

theoretic approach, we perform our study via simulations. In the simulations, the expected

utility of buyers and sellers is computed subject to various market settings and the use

of different strategies. Since in markets of the type studied here agents are self-interested
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and competitive, there is no single evaluation criterion that fully captures the preferences

of all market participants. Some solutions might be optimal for some of the agents, but

disadvantageous for others. Our study seeks solutions, in which each agent maximizes its

utility given the behavior of the other agents. Solutions of this type provide strategy profiles

that inherently give the agents no incentive to deviate from them.

Given the two sets of strategies Σs and Σb as described earlier, and with such a game-

theoretic approach taken, we seek strategy profiles that are in equilibrium. A strategy profile

F is a set of strategies, one for each buyer and one for each seller from the relevant sets of

strategies. To find strategy profiles which are in equilibrium, we compute the average utility

of each agent in the market, utilizing the SEMI simulator, and use this computed utility as

an estimation of the agent’s expected utility. Once the utilities are available, we examine

strategy profiles in conjunctions with the utilities they yield, seeking profiles that are in

experimental equilibrium.

Definition 1 (Experimental Equilibrium) A profile F is an experimental-equilibrium

if, for any agent A who deviates from its strategy in F by using another strategy from Σ,

A does not increase its estimated expected utility, given that the other agents follow their

strategies in F .8

Definition 2 (Dominant Experimental Equilibrium) A profile F is a dominant-experimental-

equilibrium if, for any other profile F ′ that is an experimental-equilibrium, both the sellers

and the buyers obtain the largest expected utility by following F .

Our experiments are aimed at finding such equilibria.

6 Experiments

In order to reveal experimental equilibria, we have performed a series of experiments. Our

main goal was to identify dominant experimental equilibria profiles, if these exist. Dominant

equilibria profiles are desirable since, if they exist, all the agent that know them should

prefer using the strategies of the dominant equilibrium. This will result in both utility

maximization and stability. Hence, dominant equilibria profiles we find in our experiments

should be recommended for the design of agents that buy and sell in fixed-price electronic

markets similar to those we examine.

8Since our market is complicated, we assume that the set of strategies that is considered for deviation is
determined in advance. Note that this definition differs from Nash equilibrium since we use an estimation
of the expected utility, rather than the actual value.
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Figure 1: Experiments run with SEMI.

Our experiments were conducted using the SEMI model and simulator (described in

Section 3). The settings of the experiments are summarized in Figure 1. Although we have

experimented with several different market settings, some parameter values were not changed

across settings, as follows. A seller’s gain from selling one unit of the good is 1. A seller’s

cost for holding one unsold unit in stock for one iteration is 2 (i.e., Cs = 2). The underlying

intuition for setting this cost is that, in similarity with real markets, it should be costly to

hold items unsold in stock. Such costs result from the costs of both storage and financing of

the unsold units. Determining the size of Cs was done experimentally. We have examined

Cs > 2 as well, however Cs = 2 was found sufficiently large to express costliness of unsold

stocks.

In cases I through VI (see Figure 1), in which the types of the buyers were stochastic

independent and identically distributed (i.i.d.), the distribution of types was set to a normal

distribution with mean µ = 50 and standard deviation σ = 40. When smaller µ values (e.g.,

µ = 10) were used in our experiments, some buyers ended up with negative types. One

way to bypass this problem is by cutting the tail of the distribution. Yet, this will result

in a non-normal distribution, which will, in turn, complicate the analysis of the results and

impose difficulty in comparing them to other studies. We solved the problem by selecting a

greater µ value, leaving virtually all buyer types positive.

In cases VII and VIII (Figure 1), where the types of the buyers were distinguishable,

we devised a bi-polar distribution, which is in fact a superposition of two narrow normal
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distributions. The choice of a bi-polar distribution was made to model a common structure

of B2B MRO markets, where buyers can usually be classified into larger-volume buyers and

smaller-volume buyers, and the larger volumes are significantly larger than the smaller ones,

with no overlap in size.

Across all simulations, each run consisted of 30 encounters. The number of encounters in

our experiments should not be too small, since our strategies are applicable only for markets

where buyers and sellers interact repeatedly. Yet, the number of encounter should not be

too large either. This is because we consider short periods of time in which prices and stock

sizes do not change, and long-term customer-vendor relationships do not form. Under such

constraints, we opted for 30 encounters, gaining the additional advantage of statistically

significant results.

In all simulation cases, in each encounter, for each buyer Bi and its type TY i, the size of

its purchase-order was chosen randomly from {TY i−1, TY i, TY i +1}. Note that two agents

of different types may have purchase-orders of equal sizes in a given encounter. Thus, the

type of a buyer cannot be determined from its purchase-order (though it can be learned from

multiple orders). The sizes of stocks held by buyers were computed by (µ−Xσ · σ) · |B|/|S|,

where Xσ is the factor by which we can constrain the stock to be smaller than the average

expected cumulative demand µ, thus imposing supply shortages. |B|/|S| is a normalization

factor which is necessary to allow comparison between different market sizes.

Experiments were performed on two scales of markets: 1) a small market composed of 9

buyers and 3 sellers, and 2) large markets with 100 buyers trading with 14 sellers. A market

of 9 buyers and 3 sellers is the smallest size in which meaningful many-to-many buyer-seller

interactions occur. The number of sellers must be at least 3 so that a buyer will have the

opportunity to select between at least two sellers, even in the case it decides not to return

to one of the sellers. The number of buyers should be at least 3 times the number of sellers,

to allow an average of at least 3 buyers per seller, so that a seller can choose from among

them.

The exponential search space of possible deal combinations implies that even for the small

market we cannot experiment with all possible combinations. Nevertheless, for the smaller

case, running 100,000 experiments was sufficient to arrive at results which are statistically

meaningful, and stable. In addition, for the small market it was possible to enumerate

offline, prior to the experiments, the set of deal combinations to be experimented with.

That is, for each simulation configuration we computed and stored set of 30 ∗ |B| ∗ 100, 000

deals (30 per buyer, for 100,000 runs), which were later used for the experiment. A stored

set of deal combinations allows comparison between results of different experiments that

use this stored set. For the larger market, however, the space complexity of the set of
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deal combinations is prohibitively large, thus pre-computation of the set is not an option.

Therefore, we dynamically created the buyers’ deals for each simulation run. The number

of simulation runs for the large market was 400,000.

The basic setting that we considered is of risk-neutral homogeneous sellers and stochastic

conceding buyers acting in a small market. In all of the other experiments we changed one

parameter setting, keeping the other parameters as in the basic setting. First we changed

the size of the market, i.e., we considered risk-neutral homogeneous sellers and stochastic

conceding buyers acting in a large market. Second, we changed the utility function of the

buyers and conducted experiments of risk-neutral homogeneous sellers and non-conceding

buyers acting in a small market. Third we changed the risk attitude of the sellers and then

we considered heterogeneous sellers. Finally, we considered non-stochastic buyers with both

risk neutral and risk averse sellers. After presenting the results of these experiments, we will

discuss our findings.

6.1 The basic setting: risk-neutral homogeneous sellers and stochas-
tic buyers in small markets (case I)

In the basic setting the market consists of 9 conceding buyers and 3 risk-neutral sellers holding

stocks of 100 units each. Experiments performed in this market show that the strategy profile

(LoyalP RandS) is the dominant experimental equilibrium of these markets.9 The results

are shown in the central column of Figure 2. There, UB (US) is the average expected utility

that the buyers (sellers) obtain by following the corresponding strategy.

In addition to the dominant equilibrium, we have identified 5 non-dominant experimental

equilibria. Three of these include sellers that benefit from choosing the buyers according to

the size of their orders (i.e., the sellers follow the OPO strategy). Sellers that implemented

ORType, OType, DRType, DType with Ct ∈ [0, 4] obtained poor expected utility. These

strategies do not appear in the Figure as they are not part of any equilibrium. For these

type revealing strategies, there was always an alternative greedy or uninformed strategy that

yielded a higher remuneration.

6.2 Large markets (case II)

To find out whether the results obtained for the small market apply to larger markets, we have

examined a market that consists of 100 buyers and 14 sellers. The size of each seller’s stock

was set to 233 units (in proportion to the 100 unit stock of the basic case with Xσ = 0.412).

The results of these experiments show that the strategy profile (LoyalP, RandS) remains

9Significance of the results was tested with the t-tests with α = 0.05.
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Figure 2: Equilibria found for a market with risk-neutral sellers with homogeneous stocks
and buyer types normally distributed with parameters µ = 50, σ = 40.

the dominant experimental equilibrium. Numerical results are presented in the rightmost

column of Figure 2. Note that, for some strategy profiles, no results regarding equilibria

are presented. Our experiments have proven dominance of (LoyalP, RandS) over these

profiles. Yet, a large market imposes a high time-complexity for checking whether a profile

is in experimental equilibrium. Because of this complexity, we have refrained from checking

experimental equilibria of all of the profiles which were dominated by (LoyalP, RandS). In

particular, the profiles (LoyalW, RandS), (LoyalW, OPO), (Prob, OPO), (RandB, RandS),

(RandB, OPO) and (RandB, DPO) were dominated by (LoyalP, RandS), hence we have not

checked them for experimental equilibria.

As found in the small market, the strategy profiles (LoyalP, DPO), (LoyalP, OPO),

(Loyal, DPO), (Loyal, OPO), (LoyalW, DPO) and (Prob,DPO) are not experimental equi-

libria thus are not presented in the Figure 2. Similarly, any strategy that required that

the seller pay to acquire the type of the buyers was not part of any equilibrium. In differ-

ence from the results obtained for the small market, the profiles (Loyal, RandS) and (Prob,

RandS) are experimental equilibria in the large market. Nevertheless, they are dominated

by (LoyalP, RandS).

Altogether, the experimental results of this case strengthen our findings that (LoyalP,

RandS) is the dominant experimental equilibrium in a large number of markets.
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6.3 Non-conceding buyers (case III)

A buyer that follows the LoyalP strategy would return to a seller even if the seller only

partially satisfied its order. In some cases, buyers are more sensitive to partial satisfaction

of their orders. The displeasure of such non-conceding buyers with partial satisfaction is

expressed by a significant reduction in their utility, as expressed in equation 4. We wanted

to check whether in the case that buyers are non-conceding, the profile (LoyalP, RandS) will

stop being the dominant experimental profile. It seems that the strategy LoyalW, according

to which a buyer returns to a seller only if the seller completely satisfied its purchase-

order, is more beneficial in this case. However, our experiments of risk-neutral homogeneous

sellers and stochastic non-conceding buyers in small markets show that this is not the case.

This is shown in the leftmost column in Figure 2, where (LoyalP, RandS) is the dominant

experimental equilibrium.

6.4 Risk averse and risk prone sellers (cases IV and V)

Next we checked situations where the sellers are risk averse. It seems that it may be ben-

eficial for a risk-averse agent to deviate from RandS where it makes decisions randomly.

We considered situations of homogeneous sellers and stochastic conceding buyers in small

markets. Here, we used the parameter Av to express the level of averseness of the seller. As

Av decreases the averseness increases (see Section 3). We found that only when the sellers

are highly averse to risk, (LoyalP, RandS) stops being a dominant strategy (see Figure 3).

In particular, for 45 < Av < 100 we found that the profile (LoyalP, RandS) is the dominant

experimental equilibrium (as in markets with risk neutral sellers). For averseness values of 45

and 46, the expected utility of the sellers for the (LoyalP, RandS) profile was equal to their

expected utility for the profile (Prob, OPO). Among these two profiles, the buyers’ expected

utility is greater for (LoyalP, RandS). Thus (LoyalP, RandS) is a weakly dominant profile.

For Av < 44, i.e., sellers’ averseness is intensified, their expected utility from the profile

(Prob, OPO) is greater than their expected utility from (LoyalP, RandS). Nevertheless, a

dominant experimental equilibrium was not found because the buyers benefit most when the

sellers are indeed RandS.

We have further tested markets with risk-prone sellers. As expected, the dominant ex-

perimental equilibrium found for such markets is (LoyalP, RandS), as appears in Figure 3.

Profiles that do not appear in the table are not in equilibrium.
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averseness, nine conceding buyers with types normally distributed with parameters µ =
50, σ = 40.
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6.5 Heterogeneous stock sizes (case VI)

We hypothesize that in situations where sellers hold stocks of different sizes it will be bene-

ficial for sellers holding a small stock to deviate from the RandS strategy; they may need to

be more careful in satisfying their customers in order to attract them. However, experiments

with heterogeneous sellers’ stock sizes show that (LoyalP, RandS) is the dominant experi-

mental equilibrium in this case too (see Figure 4). We considered a market of 3 sellers: one

seller held a stock of 70 and two sellers held a stock of 100. Note that in this experiment

we considered heterogeneous strategy profiles (i.e., sellers that hold stocks of different sizes

implement different strategies). In addition, the utilities of the sellers were computed for

each stock separately and not averaged over all sellers. That is, U(S[70]) in Figure 4 is the

utility calculated for the seller with stock 70 and U(S[100]) is the average utility obtained

by the sellers with stock 100.

We were able to find heterogeneous profiles that are experimental equilibria. For example,

LoyalP for the buyers, OPO for the seller with stock 70 and RandS for the sellers with stock

100 is an equilibrium. Nevertheless, (LoyalP, RandS) is still the dominant experimental

equilibrium (see Figure 4).

S0,S1, S2 and B strategies Stock for S0, S1, S2
70 100 100

OPO,OPO,OPO VLoyalW

UB:0.4869
U(S[70]):0.9357

U(S[100]):0.9622

v

U(S[100])
V

v

V

v

OPO,OPO,OPO
Prob

UB:0.4916
U(S[70]):0.9726
U(S[100])0.9723

V

OPO,RandS,RandS
LoyalP

RandS,RandS,RandS
LoyalP

UB:0.6187
U(S[70]):0.9939
U(S[100])0.9901

UB:0.6406
U(S[70]):0.9939

0.9906

Figure 4: Equilibria found for a market with |B|=9,|S|=3, sellers’ stocks are Stock(S0) = 70,
Stock(S1) = Stock(S2) = 100 and buyer types are normally distributed with parameters
µ = 50, σ = 40.

6.6 Distinguishable buyers (cases VII and VIII)

One may hypothesize that a dominant equilibrium that includes RandS results from the

buyer types being normally distributed. Thus, we decided to consider situations where there

are only two possible types of buyers: low and high. In particular, we experimented with

three sellers and a set of buyers composed of five buyers of type 20 and four buyers of type

70. The corresponding possible order sizes were 19,20,21 and 69,70,71 units.
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The interesting result of this experiment is that (LoyalP, RandS) is no longer an experi-

mental equilibrium. A single experimental equilibrium was found—(RandB, RandS)—which

is, obviously, the dominant equilibrium. This result was obtained for both markets with risk-

neutral and risk-averse sellers. It is somewhat surprising that, in the resulting equilibrium,

RandB replaces LoyalP from preceding experiments. We would expect RandS to be replaced

by a more deterministic strategy instead. Furthermore, this result implies that, in this mar-

ket too, it is not beneficial for the sellers to learn the types of the buyers, even though these

are clearly defined and distinguishable. We will discuss our intuition of this finding and the

previous ones in the next section.

6.7 Discussion

The main result of our experiments is that the strategy profile (LoyalP, RandS) is the

dominant experimental equilibrium in almost all of the situations considered. Our intuition

is that this is the case because the (LoyalP, RandS) profile leads to the best stable split of

the buyers among the sellers. To reach a good split, buyers completely unsatisfied by their

current sellers should move to other sellers. When buyers who are completely unsatisfied

implement a positive probability of staying with the non-satisfying sellers, as in the Loyal

strategy, the resulting split of the market is non-beneficial. Note, however, that too frequent

hopping to other sellers, either when buyers are partially satisfied (e.g., when they follow

LoyalW) or when hopping is done regardless of the level of satisfaction (e.g., when RandB is

followed), renders an unstable market. Instability of the market results in reduced utilities

to both buyers and sellers. Thus, the profile (LoyalP, RandS) is the go between.

LoyalP behavior of buyers may be further understood as means for buyers to consider

possible outcomes of future encounters in their current decision. For instance, a buyer which

is partially satisfied by a seller at a given encounter may become fully satisfied in proceeding

encounters, when agents that were not satisfied at all by that seller leave and the missing

stocks for fully satisfying its order become available.

A seller’s goal is to have a set of buyers that it will (almost) always be able to satisfy.

Because of the dynamism implied by the buyers following LoyalP, a seller that holds a mixed

set of customers, some of larger types and some smaller types, has a better ability to satisfy

almost all. The best way for a seller to form such a mixed buyer set is to follow the RandS

strategy, and this explains the sellers part in the (LoyalP, RandS) profile.

There were two cases where changes to the basic setting resulted in the profile (LoyalP,

RandS) not being the dominant experimental equilibrium. The first was the case where

risk attitudes were introduced. For sellers that were highly averse to risk, (LoyalP, RandS)
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was still an experimental equilibrium, however no longer the dominant one. Nevertheless,

no other equilibrium became dominant. In this case, the sellers preferred (Prob, OPO) to

(LoyalP, RandS); this is reasonable given their averseness to risk.

The second case was the case of distinguishable types. Under, the bi-polar distribution,

where buyers were divided into two types, low and high, the profile (LoyalP, RandS) was no

longer an equilibrium. Instead, the unique equilibrium was (RandB, RandS). Our intuition is

that this stemmed from the specific choice of types in this experiment. There were 4 buyers

of type 70 and 5 buyers of type 20. The average type (42.2) is lower than in the stochastic

case (50) and the stock (100 per seller) was not changed. However, for the 4*70;5*20 type

distribution, it is more difficult to split the market in a way that the buyers will be satisfied

than it is in the case of normal distribution. Therefore, it is better for the buyers not to

reach a stable split, but each time to try a different one by following RandB. When the

buyers follow RandB, the sellers’ strategy has no effect on the buyers’ decision. Hence the

best alternative for the sellers is to follow RandS.

When changes to the basic setting other than the bi-polar distribution were made, reach-

ing a stable split was both possible and beneficial. For example, consider a non-conceding

buyer. Although such a buyer loses more than a conceding buyer when partially satisfied,

our intuition is that punishing the seller on partial satisfaction (e.g., using LoyalW) will not

increase the expected utility of the buyer. Rather, as in the conceding case, when using

LoyalW a stable split will not be reached. Thus, (LoyalP, RandS) is a dominant experimen-

tal equilibrium. Similarly, when there is one seller with stock 70 and two sellers of stock

100, the seller with the smaller stock can almost always sell all of its stock, regardless of the

strategy that it uses. However, reaching a stable split is beneficial to the other large sellers.

Therefore, (LoyalP, RandS) is the dominant equilibrium.

In addition to market settings discussed in this paper, we have experimented with, and

analyzed, other settings. Results from experiments performed with markets where sellers

held stocks of 70 and 150 units were analyzed and published in [5, 6]. There, it was found

that for a stock size of 70, (LoyalP, RandS) was not a dominant equilibrium, although it

was an equilibrium, and no other profile was a dominant equilibrium. We have no intuition

that explains this behavior for this stock size. When the stock was 150, (Prob, RandS) was

the dominant equilibrium, maintaining the RandS dominance, however replacing the buyers’

strategy by a more punishing one, which is reasonable when the supply is increased.

In all of our experiments, for any setting considered, we observed that learning the type

of the buyers is not beneficial to a seller. Our intuition is that this is because we considered

situations where the demand was very close to supply. The sellers were quite often able to

sell all their stock. In such cases it is better for sellers to form a set of mixed size customers,
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rather than spending money on identifying large buyers and trying to attract them. The

best way to form such a set is using RandS.

It is important to note another property of RandS. When the order of arrival of buyers’

requests at sellers’ sites is random, and this arrival order does not depend on the quantity

requested, using RandS is equivalent to using FIFS. This observation is particularly useful

for sellers when the buyers can observe the order of their requests’ arrival. The sellers can

implement RandS since it is their dominant strategy, however the use of FIFS, when observ-

able, exhibits a fair service. Since FIFS is equivalent to RandS, the sellers can implement

FIFS with no harm to their gain.

7 Summary and Conclusions

The goal of this paper was to study strategic interactions among agents transacting in

B2C and B2B MRO electronic markets, and to find stable and beneficial strategy profiles

for such agents. In particular, strategies for buyers to select sellers and for sellers to decide

which purchase-orders to satisfy were sought. Desirable criteria that recommended strategies

should address are stability and maximization of gains. Since the profits of each agent

participating in a trading activity are influenced by the other agents’ activity, we sought

strategy profiles that maximize each agent’s utility given the actions taken by the other

agents. The notion of equilibrium provides us with these desirable properties. A profile of

strategies is in equilibrium if no agent can increase its utility by deviating to another strategy

that is not part of the profile.

Traditionally, the study of strategic behavior of agents belongs to the field of game

theory. Hence, our research is based on some game theoretic concepts. However, since

practical electronic commerce scenarios are much more complex than classical games, our

study includes several simplifications, as follows. We have limited the sets of strategies

implemented by the agents to those relevant to the problem. In addition, since analytical

computation of the expected utilities of the agents is very complex, we have opted for an

approximation of these. Using a subset of the strategy space and approximated utilities,

classical notions of equilibria do not hold. Hence, we defined the notion of experimental

equilibrium. We empirically computed the expected utilities of the participating agents, and

used these values to evaluate all of the combinations of strategies resulting from the sets we

have assumed.

Based on our results, it is recommended that automated trading agents implement the

strategies of the dominant experimental equilibria found. This will provide both buyers and

sellers maximal gains. When the market includes stochastic, independent and identically
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distributed (i.i.d.) buyers—a typical buyer distribution in B2C electronic markets—it is

recommended to implement the (LoyalP, RandS) profile. That is, sellers can be designed to

select buyers at random, however buyers must be designed to be loyal to sellers as long as

the latter satisfy at least part of their purchase orders. When the buyers’ types are closer to

the bi-polar distribution, the recommendation is to implement the profile (RandB, RandS).

That is, both sellers and buyers should select one another in a random manner. It important

to notice that these results are invariant to the sellers’ attitude to risk10, to the size of the

stocks held by the sellers, to the buyers’ attitude to partial satisfaction of their purchase

orders, and to the size of the market. Since, in the dominant experimental equilibria found,

sellers select buyers at random, learning the buyers’ type cannot increase the sellers expected

utility.

To summarize, we have developed a new means for studying strategic equilibria in com-

plex, E-commerce environments where analytical computation of such equilibria is infeasible.

We have specifically developed a model for B2C and B2B MRO electronic market, where

prices are relatively uniform, buyers and sellers typically interact for short to medium peri-

ods of time, and the dynamism of the market results in occasional stock shortages. Subject

to these market conditions and under a variety of settings, we have identified an array of

strategic equilibria. In particular, we found dominant equilibria, and the strategies from

which these equilibria are comprised are the ones recommended for use by trade agents, as

they will provide them with both utility maximization and stability.

Electronic markets may include a huge number of buyers and sellers. The largest markets

that we considered in this work consists of 100 buyers and 14 sellers. We believe that our

ability to extend our results from small markets (3 sellers and 9 buyers) to the larger ones

supports our hypothesis that these results will be also valid in larger markets as well. How-

ever, further research is needed to verify this hypothesis. Another issue that is problematic

when considering the application of our results to real markets is our assumption that the

set of strategies that is considered for deviation from an equilibrium is fixed. If additional

strategies for the buyers and sellers would be identified, additional experiments should be

carried to support the existence of the equilibria in the larger context.

In particular, in this work, we have studied agents’ strategies that consider a history of

only one time period. Future work should examine strategies that consider longer histories

for decision making. Another aspect which deserves consideration in future research is dy-

namism. Agents may benefit by using adaptive strategies that enable them, in the course

of interacting with other agents in the market, to alternate their behaviors. Whether longer

10This is true while the sellers are not too averse. Then, (LoyalP, RandS) is still in experimental equilib-
rium, but there is no dominant experimental equilibrium.
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histories or adaptive behavior will provide more beneficial strategies is yet an open question

to explore.
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A Sellers’ Strategies - An Example

Example 1 Suppose a seller, Sj, has a stock of 14 units, i.e., ST j = 14. In a given

encounter k, four buyers, B1, ..., B4 approached Sj sequentially with the requests 4,5,8, and

4, respectively. These buyers’ types are 3,6,9 and 5 respectively. The buyers will be supplied

differently depending on the strategy used by the seller.

RandS: The distribution is not deterministic. For example, it is possible that B1 and B4

each, will obtain 4 and B3 will obtain 6.

OPO: B3 will get 8, B2 will obtain 5 and either B1 or B4 will get 1.

DPO: B1 will obtain 2 (i.e., b 4

21
·14c), B2 will obtain 3, B3 will obtain 5 and B4 will obtain

2. In addition, one of the agents that will be chosen randomly will obtain additional 2.

ORType or OType B3 will obtain 8, B2 will get 5, B4 will obtain 1 and B1 will not get

anything. This division is similar to OPO, however, B4 gets 1 in this case, while it

may not get anything when OPO is used.

DRType or DType: B1 will obtain 1 (i.e., b 3

23
· 14c), B2 will obtain 3, B3 will obtain 5,

B4 will obtain 3. In addition, one of the buyers will obtain an additional unit.

As demonstrated in the example, a buyer may be supplied with different quantities

depending on the strategy that is used by the seller. For example, B1 may obtain 4 units

when RandS is used, it obtains 2 when DPO is used, it obtains 1 when DType is used, it

obtains nothing when OType is used and it may obtain 1 or nothing when OPO is used.

B Buyers’ Strategies - An Example

Example 2 Suppose there are three sellers S1, S2, and S3, and in encounter k, Bi ap-

proached S1 with a purchase-order POik
1

= 5. We consider three cases and indicate which

seller Bi will approach at encounter k + 1.

(1) S1 supplied Bi 5 units (of 5) in encounter k:

If Bi uses the strategies Loyal, LoyalP, Prob or LoyalW it will approach S1 in iteration k+1
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as well. If B1 uses the strategy RandB it will approach S1 with a probability of 1

3
. With a

probability of 1

3
it will approach each of the other sellers.

(2) S1 did not supply Bi anything in encounter k:

If Bi uses the strategies LoyalW, Prob and LoyalP it will not approach S1 at encounter k+1.

It will approach either S2 or S3, each with a probability of 1

2
. If Bi uses the strategies RandB

and Loyal it approaches S1 with a probability of 1

3
. With a probability of 1

3
it approaches each

of the other sellers.

(3) S1 supplied Bi 3 units (of 5) in encounter k:

If Bi uses the strategies Loyal or LoyalP it approaches S1 in encounter k + 1. If Bi uses

the strategy Prob it will approach S1 with a probability of 3

5
. It will approach each of the

other sellers with a probability of 1

5
. If B1 uses the strategy RandB it will approach S1 with

a probability of 1

3
and each of the other sellers with a probability of 1

3
.

If Bi uses the strategies LoyalW, it will not approach S1 at encounter k + 1. It will

approach either S2 or S3, each with a probability of 1

2
.

As shown in the above example, a buyer Bi using the strategies Loyal, LoyalP, LoyalW

and Prob demonstrates some degree of loyalty to the seller Sj, that it approached in the

previous encounter. If Sj supplied all its request, Bi will return to it in the next encounter.

These strategies differ in the cases of partial fulfillment and when Sj does not supply any-

thing. Using the Loyal strategy the buyer presents the most loyal behavior. It returns to

the seller if it was partially supplied, and chooses randomly between all the sellers (including

Sj) when Sj supplied nothing. Using LoyalP, LoyalW and Prob, Bi does not return to Sj

when it has not supplied it anything. These strategies differ in the case of partial supply.

Using LoyalW, Bi does not approach Sj in such a case. Using LoyalP, Bi returns to Sj and

using Prob, it approaches Sj with a probability that is proportional to its satisfaction level.
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