
Artificial Intelligence 163 (2005) 163–201

www.elsevier.com/locate/artint

A logic-based model of intention formation and
action for multi-agent subcontracting ✩

John Grant a,∗, Sarit Kraus b,c, Donald Perlis c,d

a Department of Computer and Information Sciences and Department of Mathematics, Towson University,
Towson, MD 21252, USA

b Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
c Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

d Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Received 24 March 2004; accepted 10 November 2004

Available online 30 December 2004

Abstract

We present a formalism for representing the formation of intentions by agents engaged in cooper-
ative activity. We use a syntactic approach presenting a formal logical calculus that can be regarded
as a meta-logic that describes the reasoning and activities of the agents. Our central focus is on the
evolving intentions of agents over time, and the conditions under which an agent can adopt and
maintain an intention. In particular, the reasoning time and the time taken to subcontract are modeled
explicitly in the logic. We axiomatize the concept of agent interactions in the meta-language, show
that the meta-theory is consistent and describe the unique intended model of the meta-theory. In this
context we deal both with subcontracting between agents and the presence of multiple recipes, that
is, multiple ways of accomplishing tasks. We show that under various initial conditions and known
facts about agent beliefs and abilities, the meta-theory representation yields good results.
 2004 Elsevier B.V. All rights reserved.

✩ This research was supported by NSF under grant IIS-0222914 and by the Air Force Office of Scientific
Research, and the Office of Naval Research. Preliminary version appeared in the proceedings of AAAI-2002. We
wish to thank the referees for many helpful comments and suggestions.

* Corresponding author.
E-mail addresses: jgrant@towson.edu (J. Grant), sarit@umiacs.umd.edu (S. Kraus), perlis@cs.umd.edu

(D. Perlis).
0004-3702/$ – see front matter  2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2004.11.003



164 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
Keywords: Intentions; Subcontracting; Cooperative agents; Syntactic logic; Minimal model semantics

1. Introduction

In this paper we provide a formal meta-theory of the formation of intentions among
multiple cooperating agents.1 Such a formal theory is very useful to properly understand
computational models of such cooperative behavior, particularly as a specification lan-
guage. The meta-logic can be used to analyze the behavior of a team of agents and prove
various theorems about their activities. We provide a single unified framework that cap-
tures with a relatively small number of predicates and axioms an evolving notion of time,
the formation of potential and actual intention of agents, subcontracting between agents,
actions involving a recipe tree of subactions, parallel actions, multiple recipes for actions,
and the performance or failure of agents doing these actions.

For instance, agent 5 may know that in order to perform a complex action a it is suffi-
cient to perform subaction b and subaction c. However, agent 5 cannot do c but agent 3 can
do c. If agent 5 is asked to perform action a it can subcontract to agent 3 the performance
of action c. There is a rule here that the agent follows: when it cannot perform an action
(or subaction), it finds an agent that can do the action and subcontracts the action to it. In
this paper we specify such rules as meta-axioms relating to the mental states of agents in
the sense of the intentions that the agents adopt to perform certain actions and how these
lead to the actual performance of the actions. If the agents have been designed to always
apply these rules in a cooperative manner, then we can prove what actions will actually be
performed.

We use the approach of the mental state model of plans [42]. Pollack’s definition of the
individual plan of an individual agent to do an action α includes four constituent mental
attitudes: (1) belief that performance of certain actions βi would entail performance of α;
the βi constitute “a recipe for α”; (2) belief that the agent could perform each of the βi ;
(3) intentions to do each of the βi ; (4) an intention to do α by doing the βi . This definition
has been extended to handle multi-agent systems in various ways (e.g., [19–21]). Thus, in
this approach, agents do not model explicitly the state of the world. In contrast to classical
planning there is no attempt to search for a sequence of actions that change the world state
from its initial state to the goal state and thus the focus is not on the problems associated
with modeling how the state of the world is changing over time [47]. Instead, an agent
attempts to perform actions and in its planning it decomposes complex actions to simpler
actions using a library of recipes. The agent maintains a belief set that includes beliefs of
what it can and cannot do at various times which are used to decide on whether to adopt
intentions. These beliefs may change over time based on observations and reasoning which
may lead to dropping intentions and adopting new ones.

Most of the previous work on the mental state model for planning lack a well established
semantics, and especially lack a formal treatment of time. In a previous work [18] we made

1 Our focus is on how intentions are formed and action gets done in this setting. For detailed discussions of
intentions and actions see [11,35,41].



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 165
the first step in providing semantics for this approach by presenting a framework for the
way the beliefs of bounded rational agents change over time. In this paper we consider
intention formation when agents can subcontract actions to one another. We focus on how
the intentions of the agents change over time.

We assume all agents to be cooperative; but giving this requirement a formal character-
ization involves the notion of intention. We require an agent to adopt a potential intention
to perform an action if it is asked to do so. We provide a specification for the beliefs and
intentions that an agent should have in order to turn a potential intention to an intention. We
also specify the communication needed and the change in the agents’ beliefs and intentions
when something goes wrong.

Our work differs from others in its use of a meta-theory of intentions; of an evolving
notion of time that allows agents to reason about genuinely-approaching deadlines; and of
a reified notion of (explicit) agent beliefs so that they can be tracked over time. Thus we
view the reasoning of agents as ongoing processes rather than as fixed sets of conclusions.
This reasoning involves rapidly evolving sets of beliefs and intentions, and is governed in
part by formal rules of inference. We model beliefs and intentions in a formal logical agent
calculus that can be regarded as a meta-logic describing an actual on-board agent logic
that evolves in (and takes account of) that same passage of time. This is a style of formal
representation that departs from traditional temporal logics in that there is an internally
evolving notion of time that the logic must keep track of.

For allowing this kind of reasoning, our approach utilizes a strongly sorted calculus,
distinguishing the application language, time, and various syntactic sorts. We provide for-
mal tools for representing agent intentions and methods for reasoning with and about such
intentions, especially in the context of cooperative actions. We focus on cases where one
agent alone cannot accomplish a complex task and must subcontract with other agents.

The format of this paper is as follows. In the rest of Section 1 we describe the basic
syntactic formalism for intentions and give an example that is used throughout the paper
for illustration. Section 2 deals in more detail with the syntax and semantics of the meta-
language. In Section 3 we show how our framework can be used to model the case of
cooperative multiple agents where each action has a single recipe. Multiple recipes for ac-
tions are considered in Section 4. Some work related to this paper is described in Section 5.
Section 6 summarizes the paper and indicates topics for future research. We also provide
four tables: the first one summarizes the convention used for variables in Section 2.1; the
others at the end of the paper give the meanings of the predicates for two different sections
and specify the locations of the axioms.

1.1. Languages for reasoning about agents

In our framework we find it useful to introduce three related languages. The first lan-
guage, LS , is the language of the subject matter, that is, the subject that the agents reason
about: e.g., web searches. The second language, LA, is the “agent” language. This in-
cludes the subject matter language, but also has additional symbols allowing assertions
about what some particular agent may believe at a given moment; this allows an agent to
reason about another agent, for instance in deciding whether to ask another agent to per-



166 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
form some subtask based on what that other agent believes.2 The third language, LM , is
the meta-language used to reason about the agents.

The meta-language, LM , must be powerful enough to characterize agent behavior quite
generally. For instance, in our meta-language we can write the statement that an agent
always applies Modus Ponens, when that is possible. This, taken as an axiom, would assert
that the agents are programmed to apply Modus Ponens; that is an aspect of their behavior.
Thus, while the agent language, LA, must allow for the expression of the formulas A,
A implies B , and B , still an agent does not in general have the meta-rule such as “I apply
Modus Ponens whenever I can”, even if that happens to be true (and expressed in the meta-
language). The three languages are sorted first-order logics.

In much of the existing formal work on modeling agent behavior, it is not specified pre-
cisely who is doing the reasoning; it appears implicit that the reasoning is meta-reasoning
by external observers about agent behavior. In particular, we use our meta-language to
track the evolving behavior (including the evolving beliefs and intentions) of the agents
over time. Hence the meta-language (as well as the agent language) must have a robust
notion of time. It is an important aspect of this approach that we explicitly represent in-
dividual beliefs of an agent, i.e., we apply a syntactic approach where beliefs are objects
(such as sentences) rather than a modal approach with abstract (modal) propositions. For
instance, an agent at time t may believe A, A → B , and B → C, and yet not believe C,
simply because it did not yet (have time to) apply Modus Ponens (twice); and yet it may
at a later time believe C (e.g., at time t + 2, if it applies MP once at each time step). In
order to represent this sort of behavior we need names for beliefs; we also need names
for other sentences, such as statements about agent intentions. For instance, agents invoke
a Tell process in order to inform one another of a new intention, as part of a cooperative
venture to achieve some goal. We write roughly in the form Tell(“Int(. . .)”); so Tell takes
an argument that is the name of the sentence Int(. . .) that expresses an intention.

The syntactical approach that we follow seems attractive to researchers in artificial intel-
ligence (see Chapters 2 and 8 of [12]). For one thing, it is natural to represent the knowledge
and beliefs of a computer program by writing sentences representing facts that are known
or believed. For another, syntactical treatments can be formalized in the classical predicate
calculus, which is the lingua franca of knowledge representation [22,36,40]; since there
is good theorem-proving technology for this language (e.g., [3,4,6]), such treatments lend
themselves directly to implementations.

Furthermore, in other approaches to the issue of agent reasoning, often logical omni-
science is assumed. This means that the agent’s beliefs are closed under logical rules, such
as Modus Ponens, in every time period. That is, if the formulas A and A → B are believed
by the agent at time t , the agent is assumed to believe B at the same time. We think that
our approach, where rules are applied over time is a more realistic way to model agent be-
liefs and intentions. Some researchers avoided the use of the syntactic approach because,
in general, the syntactical treatments face a serious theoretical difficulty [13,38]. Richard
Montague [34] showed that under certain fairly intuitive conditions a syntactic formaliza-

2 We do not assume that the agent uses logic for its reasoning. LA is the language that is used to specify the
agent behavior. We do assume that each agent maintains a database with—possibly fallible—information about
agent abilities. However, we do not make any assumptions about the specification of the database.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 167
tion of modal notions such as knowledge becomes contradictory. Thomason later showed
[53] that under even less restrictive conditions a syntactic formalization yields a contra-
dictory set of beliefs. However, we showed in [18] that when dealing with only beliefs our
meta-theory is always consistent. Moreover an agent theory need not be inconsistent either.
Nevertheless, it is an interesting property of our approach that agent theories may indeed be
(or become) inconsistent—e.g., through observations—and this is one of the advantages of
our treatment: commonsense reasoning can proceed in the presence of inconsistency. The
time-situated character of our logic offers “protection” from inconsistency in two ways:
it affords a consistent meta-theory, and it allows for an inconsistent but still useful agent
theory. We further extends these results for intentions as discussed in Section 2.2 below.

Finally, we note here that we regard actions as objects. Instead of “make (arrive-on-
time) true” our actions have the flavor “arrive on time”. This seeming mere terminologic
difference has the implication that actions can be treated on a par with names of beliefs,
making the formal treatment more uniform.

1.2. Agent beliefs and intentions

Beliefs and intentions are the two main predicates in our logic. In [18] we focus on
the way the beliefs of bounded rational agents change over time. In this paper we focus
on the intention formation of cooperative bounded agents and discuss the agents’ beliefs
only when they are necessary for understanding the agents’ intention formation process.
We first survey the way agents’ beliefs are changing over time. The specific axioms are
presented in [18]. In our context, these beliefs could be on the actions that an agent can do,
and the actions that other agents can perform. Changes in such beliefs will lead to changes
in intentions.

Because of our emphasis on changing beliefs and intentions over time, agents need to
know the present time and be able to reason about time. In addition, the meta-language
should be able to reason about time and about the change of the agents’ beliefs and inten-
tions over time. In both logics, we use a discrete model of time.

Also, in our framework agents have introspection capabilities [18]. By this we mean
that one of the agent’s beliefs may be that it believed or did not believe something at a
different time. There are two types of introspection: positive and negative. An example
of positive introspection is if an agent believed some fact (represented by a formula) at
time t , it will then believe at time t + 1 that it believed that fact at time t . This way an
agent can reason about its own or another agent’s beliefs over time. Suppose now that at
time t the agent is considering but does not believe a particular possible fact A (that is, A

is not in its database). Then at the next time value, t + 1, it will believe (know) by negative
introspection that it did not believe A at time t .

Another important capability of an agent is the inheritance of beliefs, or as it is some-
times called, persistence [37,49]. The idea is that if an agent believes some fact A and
does not believe something contradictory to it (that is, not A), it will continue to believe A.
There are exceptions to inheritance. Things that are changing, such as the location of a
moving object, or the present time value, should not be inherited.

We have found it useful also to add axioms concerning the cooperation of agents. So
for example if an agent “tells” another agent a fact, the second agent will treat it as a fact.



168 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
Fig. 1. An example of a recipe tree.

This assumes that agents are trustworthy. Agents may also be helpful to other agents by
answering each other’s questions. Note that of course there can be nontrustworthy agents,
and that this is a major topic of research (see a survey in [27]). But here we focus on fully
cooperative (and nonforgetful) agents.

The exact definition of intentions may be necessary for cooperation. For example, an
agent needs to know how to interpret a belief that its partner has adopted an intention to
do the given action: does this mean the action will indeed be performed by that partner
if the partner is able? Thus, it is important to formally define (a) what are the minimal
requirements that are needed for an agent to adopt an intention; (b) how an agent’s inten-
tions change over time (and what are the occasions when an agent will drop an intention);
(c) what are the reasoning processes that the agent will perform when it adopts an intention;
and (d) what are the actions that an agent will perform when it adopts an intention.

We define a notion of “potential” intention that means roughly that the agent has been
given a task and is determining whether it can do it (perhaps with help). We reserve “in-
tention” for the situation in which the agent has determined that it can do the task (perhaps
with help) and in that case it will indeed attempt to carry out the task, unless in the mean-
time it has dropped that intention because (a) it is told to drop it; or (b) it is given another
task that conflicts with the first one and which is assigned higher preference; or (c) the
world changes and it finds that it can no longer do the task (perhaps because a subcontract-
ing agent cannot do its part). The main difference between intentions and desires [14,28]
is the strong commitment to perform the intended actions. While such a commitment is
not associated with a potential intention, the agent that has a potential intention to do an
action is committed to consider the subactions (if any) required for the action (in a recipe)
and possibly communicate with other agents to get their commitments for all the required
subactions.

In the context of collaboration, it is also important to decide whether an agent can have
intentions that another agent will perform an action. In our model, an agent cannot in-
tend directly that another agent will do an action;3 however, its plan for doing a, that is
motivated by the intention to do a, may include the intentions of other agents.

We divide actions into two types: basic level and complex. Basic level actions are done
by agents that can do them as primitive acts. A complex action requires a recipe [42], that
is, a specification of a list of actions, the doing of which constitutes performance of the

3 Technically, intending that another agent do an action is impossible in our logic since done and intentions are
sentences and the intentions are with respect to actions not sentences. Furthermore, since agents are autonomous,
it is not reasonable to assume that one agent intends that another agent will do an action [33].



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 169
complex action.4 The subsidiary actions, referred to as subactions, may be basic level or
complex. The general situation is illustrated in the tree of Fig. 1 where we consider only
a single recipe for a complex action. Here an agent is given task a1, which has a recipe
shown in the tree, i.e., to do a1, it is sufficient to do b1, b2, b3 (in that order). Similarly, b1
and b2 themselves have recipes. The leaves are the basic level actions. If an agent cannot
do all the actions for a recipe, it then may subcontract some of them to other agents.

1.3. Example

We now illustrate many of our ideas with an example that will be used in the rest of the
paper. We have chosen this example to be relatively simple and yet to have a number of the
more interesting features that our work allows. We assume that there are two agents, one of
which has been given a request to perform an action starting at a particular time. We further
assume for now that for each action (and subaction) there is only one available recipe for
performing that action. We use the convention that an agent must always subcontract a
complex action if it cannot do the first subaction. We may imagine that the agents are part
of a network of helper agents that work in the service of a human.

Let the two agents be G and H . The request to act is given to G, and the request itself
is (for G) to arrange (for the human requester) to get to the airport on time. Let us name
the action “aaat” (arrange for arriving at airport on time).

There is a recipe for aaat, consisting of four subactions:

(i) find flight info (number, date, airport);
(ii) use this info to find time to arrive at airport;

(iii) estimate time to leave for airport;
(iv) arrange for a taxi.

Furthermore, the recipe for action (ii) consists of two subactions: (a) find the url for the
airline and (b) do a web search; while the recipe for action (iv) consists of the two subac-
tions: (c) find the phone number for the taxi and (d) call for the taxi. We suppose that G

can carry out by itself (i), (ii)(a), (iii), and (iv)(d), but it needs to subcontract (ii)(b) and
(iv) to H which, not being able to do (iv)(d) will subcontract this to G.

Of course, G and H have to be especially designed to be able to do (or not do) just the
right things for this example to work. In a more realistic (but far more complex) example,
there would be more agents, and subcontracting in general would involve an agent asking
one agent after another to help with a subaction until success occurred, and even then the
success might later be overturned due to some later failure. Some of these complexities are
taken up in a later section of the paper, including multiple recipes.

We assume that, as the various subactions in a recipe are performed, a vector of informa-
tion is maintained and kept available for use during subsequent subacts. This information
includes historical data on what has been done so far, as well as acquired information re-
sulting from an action. For instance, in this example, the subaction “estimate time to leave”

4 We assume that for each subaction, its relative start and maximal possible end time are specified in the recipe.



170 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
Fig. 2. Recipe tree—the UPPER CASE actions are subcontracted to H .

results in a time value that is placed into the vector and then used later when the taxi call is
made. Since these details are at the agent level, they do not directly bear on the meta-theory.
The overall tree of subactions is presented in Fig. 2.

2. Syntax and semantics

This section describes the syntax and the semantics of LM , the meta-language. In the
first subsection we write the predicates of the meta-language and explain their use. The
second subsection deals with the minimal model semantics that allows us to obtain, once
the initial conditions and axioms are given, a unique minimal model of the theory showing
the mental processes and activities of the agents as they change over time.

2.1. Sorted language for agent intention

In this section we introduce the main predicates that we use in our work in the meta-
language to characterize agent intentions. These will be constrained by the axioms in
different ways. For each predicate we explain the use of the different attributes. We use a
sorted language for comprehensibility and convenience so that, for example, agent names
and times (for both of which we use positive integers) cannot be confused. Since the lan-
guage is sorted, we use a convention for variables of different sorts, namely t , i, j , k for
time; m, n for agent names, a, b, c for actions, and r for recipes. As needed, _ is used for
the null element.

We start with the two predicates for intention: PotInt and Int, as well as AskedToDo
(ATD) and Refrain (Ref ). Basically, PotInt represents a potential intention for an agent
asked to perform an action. Under certain conditions a PotInt will become an intention
(Int).

The context, that is an argument of several of the predicates, keeps track of the tree
structure of the recipes used. So, when an agent has a potential intention or an intention
for an action, the context of the action, if there is one, is the parent node in the tree. For
instance, in the example given in Fig. 1, the context for c2 would be b1. For the root node,
a1, the context is the null action _. So the context of a potential intention to do “find url”
of the example of Fig. 2 is “find when to arrive” and the context of a potential intention of



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 171
Table 1
The convention for variables of different sorts

Variables Sort

t , i, j , k time
m, n agent names
a, b, c actions
r recipes

“find when to arrive” is “aaat”. Several predicates involve two agents, such as one agent
assisting another agent; we allow these agents to be the same agent.

ATD(t, n,m,b, a, t ′): At time t agent n asks agent m to do action b in the context of action
a at time t ′. This predicate, which requires communication, is used both by the
agent’s owner who asks an agent initially to do a task, as well as by other agents
as they request one another to do various tasks for them: this is subcontracting.
There are two times involved, the time of the asking and the time that the action
needs to be done. This will also be the case for several other predicates. In the
example given above, writing aaat for “arrange for arriving at airport on time”,
we could write ATD(14:30:00,_,G,aaat,_,15:00:00) to indicate that the owner
(null agent) asked agent G (in the axioms we will assume for convenience that
each agent is referred to by a number) at 2:30PM to start at 3PM the (root) action
of arranging for arrival on time at the airport.

PotInt(t,m,n, b, a, t ′): At time t agent m directly assisting agent n (the null agent, in
case there is no agent n) has the potential intention to do action b in the context
of action a at time t ′.
When G is asked to arrange for arriving at the airport on time, it adopts a potential
intention to do this task at the next time period. Assuming that a time period is one
second, we will have PotInt(14:30:01,G,_,aaat,_,15:00:00) indicating that G

will have a potential intention to start doing aaat at 3PM. The task is done for the
owner (hence the first _) and the arrange action is not a subaction in the context
of another action (hence the second _).

Int(t,m,n, b, a, t ′): At time t agent m directly assisting agent n has the intention to do
action b in the context of action a at time t ′.
In our example, if G or its assistants will adopt all the needed intentions to arrange
for arriving at the airport on time in one minute, then the formula indicating this
will be Int(14:31:00,G,_,aat,_,15:00:00).

Ref (t,m,n, b, a, t ′): At time t agent m refrains agent n from intending to do action b in
the context of action a at time t ′. As we show later, the effect of this request is that
the agent in the next time period will no longer have the potential intention to do
the action, in effect cancelling the task for the agent. We assume that Ref includes
the communication involved in an agent refraining another agent, but also allow
for the case where m = n.

As noted in Section 1.2 we distinguish between basic level actions that are done by
agents that can do them as primitive acts and complex actions that consist of several subac-



172 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
tions. The various subactions for achieving a complex action are specified in a recipe. The
actions in a recipe may themselves be complex.

The following three predicates do not involve time in the sense of the previous predi-
cates, because they refer to facts that are considered true for every time period.

BL(a, d): a is basic level, takes d units of time to complete, and has no recipe. We will
use d = 1 in the examples, but that is not necessary. In the example, we have
BL(call,1).

Rec(a, r): For action a, r is the unique recipe (multiple recipes are discussed in Section 4).
Mem(r, b, i, j, k): In recipe r , b is the subaction which is the ith member of the recipe

starting at relative time j and ending at relative time k (i.e., relative, or as an
offset, to the time at the beginning of the action). For example, the formula
Mem(r1,get_flt_info,1,1,2) states that get_flt_info is the first action for recipe
r1 and that it starts at time 1 and ends at time 2, where these times are relative to
the initiation of the recipe.

In the next group we deal with other relevant concepts about agents: their beliefs, abili-
ties to do actions, and means of communication with other agents.

Bel(t, n, f ): At time t agent n believes the statement expressed by formula f (i.e., f is
the name of the statement).

CanDo(t, n, a): At time t agent n can do (or at least start) action a.
For example, if at 14:31, G believes that it can do at 15:00 the action aaat, then the
formula indicating this will be Bel(14:31:00,G, “CanDo(15:00:00,G,aaat)”).

Tell(t, n,m,f ): At time t agent n tells agent m the statement expressed by the formula f .
The formulas are the formulas of the agent language, LA. These are the formulas
that are meaningful to the agents. Each such formula has a name (its quoted ver-
sion) in the meta-language LM .
For example, Tell(14:35:00,H,G, “Int(14:35:00,H,G, search_web,_,15:06:
00)”) means that at 14:35, agent H tells agent G that it intends to search the
web at 15:06.

Two predicates deal with the agents actually doing the actions, both the initialization
and completion.

Ini(t,m,n, a): At time t agent m directly assisting agent n initiates action a.
For example, Ini(15:00:00,G,_,aaat) indicates that at time 15:00 agent G initi-
ates the action aaat.

Done(t, a): At time t action a has just been done successfully.

There is a predicate indicating that a subaction failed to be done stopping the perfor-
mance of the action.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 173
Stop(t,m,n, b, a): At time t agent m directly assisting agent n is instructed to stop action
b in the context of action a. As with Ref , Stop includes the appropriate commu-
nication.

Both Stop and Ref are applied to terminate an action. However, Ref is applied to ter-
minate an action during the intention formation process, while Stop is applied during the
execution of the action.

Finally we include two predicates used in an integrity constraint.

Prefer(t, n, a, b): At time t agent n prefers to do action a over action b.
Conf (t, n, a, b): At time t for agent n action a conflicts with action b.

Communication is important in team activity in general, and in subcontracting in par-
ticular. We apply one explicit communication predicate—Tell. In addition, as discussed
above, several other predicates require communication: ATD, Ref and Stop. The axioms in
which these predicates appear could have been stated using the Tell predicate, but introduc-
ing special predicates to these communication related activities simplified our meta-logic.
Communication may also be necessary in the initialization process. We assume that an
agent can observe whether an action, possibly performed by another agent, preceding its
own action has been done, and comment on the need for further communication when such
observation is not possible.

2.2. Minimal model semantics

The axioms of the meta-theory will typically have the form ∀�x(α1& · · ·&αn → β),
where �x is the sequence of variables in the formula, each αi and β is an atom, and the
time of the relevant αis is t and the time of β is t + 1. The axioms of the meta-theory can
be shown to be consistent by constructing a model for them. In [18, p. 361] we prove that
the meta-theory given in that paper is consistent by showing how to construct a minimal
model for it. The proof does not depend on the specific axioms given there, only on the
form of the axioms. Hence the same process can be used to construct a model for the meta-
theory presented in this paper. In general, there will be many models for such a first-order
theory that have only a tenuous relationship to the application of our interest. We wish to
interpret the axioms in such a way that for any instantiation of the formula, where all the
αi are true in the model, β is derived. This way, we will be able to use the axioms to derive
in the meta-theory the beliefs, intentions, and actions of the agents at time t + 1, given
information about the situation at time t .

In addition to axioms, we allow integrity constraints in the meta-theory as well. Integrity
constraints have the form ∀�x¬(α1& · · ·&αn). Integrity constraints are not used to derive
results about agent beliefs, intentions, or actions over time; their purpose is to eliminate
possible models that do not make sense. Typically, integrity constraints involve time only
in a general way. For example, one integrity constraint states that for every action the
ending time must come after the starting time.



174 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
Consider now that first-order logic formulas may be written in many logically equivalent
forms. For example, a formula of the form

∀�x(α1& · · ·&αn → β)

can be written in a logically equivalent form as

∀�x(α1& · · ·&αn−1&¬β → ¬αn).

For our purpose, however, it would not be useful to use this version of the axiom deriving
something about the agent at time t from something that did not happen at time t + 1.
However, these two formulas have the same models.

This analysis prompts us to restrict consideration to only some of the models of the
meta-theory. The first restriction is to consider only Herbrand models, i.e., models that
contain only elements that are ground terms of LM . The second restriction is to consider
only minimal models where we minimize each predicate for one time period at a time
starting with time 0 and then proceeding by induction on time. Because of the structure of
the axioms, there will be only one such model. We can construct this model by a process
that is similar to the construction of the unique perfect model of a locally stratified theory
in logic programming. See [18] for details. Such a theory is also called XY-stratified and
discussed on p. 247 of [58].

In order to have a sharp sense of how our agents behave, we simply define them to
be processes that behave as in this unique minimal model. This has the desired effect of
providing certain converses of the axioms as true statements in this model. In effect we
are making an assumption of complete information (akin to a closed-world assumption)
about agent behavior; for example an agent comes to have a particular potential inten-
tion at time t , if and only if our axioms require that agent to have that potential intention
at that time, and thus this potential intention will be true in the unique minimal model.
Similarly, for example, agent G will ask agent H at time 11 to get a taxi at time 58, iff
ATD(11,G,H,get_taxi,aaat,58) is true in the minimal model. This is a restriction of
sorts; after all, much of commonsense reasoning involves situations that are usually taken
to be too complex to fully axiomatize. But our view is to suppose that the complexities
primarily arise from the external world and that the agent behaviors are completely char-
acterized by the axioms, once the external inputs are given.

Later, by studying the minimal model under certain initial conditions, known facts about
agent beliefs and abilities and the structure of recipes, we will prove several meta-theorems.
These theorems typically state that given the beliefs and abilities of agents, and given
“enough” time as defined by a formula involving information about the recipes, the agent
or agents will be able to plan and execute the requested action.

3. Modeling multiple agents with single-recipe actions

In this section we model agents that have only one way, a single recipe, to perform
actions. We present a theory T over LM which consists of the axiom schemas that describe
the desired intentions and behavior of a team of cooperative agents and how their intentions
change over time. We do not present the basic axioms of belief, time, etc. that are given



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 175
in [18]. We also state and prove several general theorems about the meta-theory. These
theorems show that, under the appropriate conditions, the meta-theory characterizes the
agent activities in a reasonable manner.

3.1. Axioms of the meta-theory

We divide the axioms into three groups: the intention formation axioms, the subcon-
tracting axioms, and the performing axioms. We also have integrity constraints. Before
specifying the axioms, we sketch the general scenario for the agent potential intentions,
intentions, subcontracting and doing actions. We note that in any application of the theory
there will be additional domain specific facts (axioms) that need to be invoked.

When an agent is asked to do an action a at a particular time, in the next time period it
adopts a potential-intention to do it. If the agent believes that it can do the action a, then in
the basic level case, in the next time period it will adopt an intention to do it. In the case of
a complex action, it will look for a recipe and in the next time period will adopt potential
intentions for all the immediate subactions, some of which may themselves be complex, of
the recipe.

If after adopting a potential intention the agent comes to believe that it cannot do the
action a, in the next time period it will ask another agent, that it believes can do a, to do
a. If at a particular time period an agent has a potential intention to do a complex action,
it will adopt in the next time period an intention to do the action if for each subaction
in the recipe it either adopted an intention to do it or it has found another agent with an
intention to do it. Even after the initial adoption of an intention, during the waiting phase,
the process of checking the needed associated intentions and beliefs and the adopting of an
intention will be repeated while the agent still has the potential intention and the time to do
the action has not passed.

Each request to perform an action has a time associated with it. If all the needed in-
tentions have been adopted for an action in time, then at the specified time the agent will
initiate the action. This will lead to the performance of all the basic actions in the recipe
tree at the appropriate times, assuming that the agents can actually do the actions. Failure
may occur either in the intention formation phase, the waiting phase or during the execu-
tion phase. Each such failure should be reported to the relevant agents, i.e., the assisting
agents and the asking agent.

In writing the axioms we use the convention that all free variables are assumed to be
universal quantified. The axioms typically have the form α → β where the time of α is t

and the time of β is t + 1. This is because the axioms characterize the way the mental state
of the agent and the state of the world change over time. This way we capture the property
that agent reasoning and actions take time.

Additional convention has been introduced to simplify the axioms. When a given propo-
sition is included in the databases of all the agents, the belief predicates will be omitted,
e.g., we write BL(a, d) instead of ∀m∀tBel(m, t, “BL(a, d)”). The belief predicate is ex-
plicitly specified only when the meta-theory refers to the belief of a specific agent, e.g.,
Bel(t,m, “CanDo(t ′,m,b)”).



176 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
3.1.1. Intention formation axioms
We list here the axioms involved in agent intention formation. Although the subcon-

tracting axioms are not included here, we write the axioms in a general way so that they
are applicable both to the case where a single agent does all the work and the case of mul-
tiple agents. We explain in English the use of each axiom before writing it in logic. At the
end of the subsection we write some applications of the axioms using our example.

A1. Asked to do becomes potential intention. If agent n asks agent m to do an action,
agent m adopts a potential intention for it. When the first agent is initially asked
to do the action, n = _ and m is the agent.

ATD(t, n,m,b, a, t ′) & t + 1 < t ′ → PotInt(t + 1,m,n, b, a, t ′)

A2. Inheritance of potential intention. We distinguish between the inheritance of the po-
tential intention to do an action b and the adoption (and later inheritance) of the
potential intentions of the subactions in the recipe for b.

A2.1: self. If an agent has a potential intention for b and is not refrained from
doing b, then it will inherit the potential intention.

PotInt(t,m,n, b, a, t ′) & ¬∃m′Ref (t,m′,m,b, a, t ′) & t + 1 < t ′

→ PotInt(t + 1,m,n, b, a, t ′)

A2.2: child. If an agent has a potential intention for b and believes that it can
do b, it will get a potential intention for every subaction of b for the
appropriate time (based on the times of the subactions in the recipe).

PotInt(t,m,n, b, a, t ′) & Bel(t,m, “CanDo(t ′,m,b)”)

Rec(b, r) & Mem(r, c, i, j, k) & t + 1 < t ′

→ PotInt(t + 1,m,m, c, b, t ′ + j)

A3. Potential intention becomes intention. If an agent has a potential intention for b (in
the context of a) and believes that it can do b and has the intention to do all the
subactions (if any) in the recipe for b, then it will get the intention to do b. In the
next subsection we will present a more general version of this axiom including
subcontracting as B3.

PotInt(t,m,n, b, a, t ′) & Bel(t,m, “CanDo(t ′,m,b)”) & t + 1 < t ′ &

∀r, c, i, j, k(Rec(b, r) & Mem(r, c, i, j, k) → Int(t,m,m, c, b, t ′ + j))

→ Int(t + 1,m,n, b, a, t ′)

A4. Inheritance of refrain. Refrains cancel potential intentions. Thus, as in the potential
intention case, the axiom associated with the inheritance of refrains of an action
b has two parts: one has to do with the refrain of b itself, and one with respect to
the subactions in the recipe for b.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 177
A4.1: self. Refrain is inherited by an action unconditionally.

Ref (t,m,n, b, a, t ′) & t + 1 < t ′ → Ref (t + 1,m,n, b, a, t ′)
A4.2: child. Refrain of an action is inherited by all the subactions in the recipe.

Ref (t,m,n, b, a, t ′) & Rec(b, r) & Mem(r, c, i, j, k) & t + 1 < t ′

→ Ref (t + 1, n,n, c, b, t ′ + j)

In the examples, for convenience, we write the time values as integers instead of as clock
times but leave the agent names as G and H . Returning to the main example, suppose that
at time 10 agent G is asked to do aaat at time 50. In the meta-language this is represented
as the statement ATD(10,_,G,aaat,50).

• Axiom A1 entails PotInt(11,G,_,aaat,_,50).
• A2.1 entails PotInt(12,G,_,aaat,_,50) assuming that the corresponding Ref is not

invoked.

Now, assume

Bel(11,G, “CanDo(50,G,aaat)”),

Rec(aaat, r0) and Mem(r0, estimate_time_to_leave,3,6,7)

are already known, where r0 is the recipe of Fig. 2 and estimate_time_to_leave is the third
subaction that is supposed to start at 6 time units after the beginning of aaat and ending at
7 units after it.

• A2.2 entails PotInt(12,G,G, estimate_time_to_leave,aaat,56).
• A3 entails Int(13,G,G, estimate_time_to_leave,aaat,56), assuming

Bel(12,G, “CanDo(56,G, estimate_time_to_leave)”)

and knowing BL(estimate_time_to_leave,1).

3.1.2. Subcontracting axioms
Subcontracting is the process that leads to an agent adopting an intention to do an action

motivated by a request from another agent. It is initiated by a request of the contracting
agent to the assisting agent, continues with the adoption of the potential intentions and
later an intention by the assisting agent. The subcontracting process can terminate by a
failure either during the intention formation process or waiting period (e.g., refrain). Both
the adoption of the relevant intention by the assisting agent and the failures are reported to
the contracting agent.

We write four axioms for subcontracting between agents. In order to keep the numbering
analogous to the numbering of the A axioms, we start the numbering with B2. Two of the
axioms involve explicit communication between agents.

B2. Subcontracting an action to an agent. This axiom deals with subcontracting an action
to one of the agents that can do it. This happens when an agent has a potential



178 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
intention to do an action, but does not believe that it can do it. Unless it will
ask another agent, this potential intention will not become an intention. The an-
tecedents of this axiom are that the agent has a potential intention to do an action
and does not believe that it can do it and believes that agent m is the “first” agent
that can do it and it has not previously asked m to do it. The consequence is that
the agent will ask m to do the action.

PotInt(t, n,n′, b, a, t ′) & ¬Bel(t, n, “CanDo(t ′, n, b)”) &

Bel(t, n, “CanDo(t ′,m,b)”) &

∀m′(Bel(t, n, “CanDo(t ′,m′, b)”) → m � m′) &

∀t ′′(t ′′ < t → ¬ATD(t ′′, n,m,b, a, t ′)) & t + 1 < t ′

→ ATD(t + 1, n,m,b, a, t ′)

B3. Potential intention becomes intention (subcontracting version). If an agent, assisting
another agent, has a potential intention to do an action and believes that it can
do the action (possibly with help) and if each subaction in the recipe is either
intended by the agent or an assisting agent, then the agent will have the intention
to do the action and tell that intention to the agent it is assisting.

PotInt(t, n,n′, b, a, t ′) & Bel(t, n, “CanDo(t ′, n, b)”) &

Rec(b, r) & t + 1 < t ′ &

∀c, i, j, k(Mem(r, c, i, j, k) → (Int(t, n,n, c, b, t ′ + j) ∨
∃mTell(t,m,n, “Int(t,m,n, c, b, t ′ + j)”)))

→ Int(t + 1, n,n′, b, a, t ′) & Tell(t + 1, n,n′, “Int(t + 1, n,n′, b, a, t ′)”)

B4. Inheritance of refrain by an assisting agent. If an agent is refrained from doing an ac-
tion and this agent has an assisting agent, then the assisting agent will be refrained
from doing the action.

Ref (t, n′, n, b, a, t ′) & Rec(b, r) & Mem(r, c, i, j, k) &

∃t ′′(t ′′ < t & ATD(t ′′, n,m, c, b, t ′ + j)) & t + 1 < t ′ + j

→ Ref (t + 1, n,m, c, b, t ′ + j)

B5. Communication of assisting agent about refrain. If an agent has a potential intention
to do an action for a requesting agent and is refrained from doing it, then the agent
will tell the requesting agent that it does not have the intention to do the action
and the requesting agent will believe that the assisting agent cannot do the action.

PotInt(t,m,n, b, a, t ′) & Ref (t,m′,m,b, a, t ′) &

∀t ′′(t ′′ < t → ¬Tell(t ′′,m,n, “¬Int(t ′′,m,n, b, a, t ′)”))
→ Tell(t + 1,m,n, “¬Int(t + 1,m,n, b, a, t ′)”) &

Bel(t + 2, n, “¬CanDo(t ′,m,b)”)



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 179
In both axioms B4 and B5 there are communications. In B5 the communication is stated
explicitly while in B4 it is associated with the refrain. In addition, when an agent is re-
frained from doing an action there is a difference between how it influences the assisting
agents of subactions and the requesting agent, as is reflected in axioms B4 and B5 respec-
tively. All the assisting agents are also refrained since there is no need any more for them
to carry out the subactions. The requesting agent is told about the refrain and it will ask
another agent, if possible, or refrain.

Continuing with our example, suppose that at time 12 G has a potential intention to
do get_taxi and believes that H can do this subaction. In our meta-language this is rep-
resented as PotInt(12,G,_,get_taxi,aaat,58) and Bel(12,G, “CanDo(58,H,get_taxi)”).
Also suppose that G does not believe that it can do this subaction and has not asked H

previously to do it. Thus the theory contains ¬Bel(12,G, “CanDo(58,G,get_taxi)”) and
¬ATD(t,G,H,get_taxi,aaat,58) for every t < 12. Then,

• B2 entails ATD(13,G,H,get_taxi,aaat,58).

3.1.3. Performing axioms
Next we present four axioms involving agents doing actions. The first shows how the

root of the recipe tree is initiated. When a basic level action is initiated by an agent, it gets
done in d time units if the agent can do it. For a complex action, the agent must start by
initiating the root of the recipe tree. Each node will have to be initiated in turn. Several
agents may be involved in doing various subactions. We use the initiation of complex
actions as a bookkeeping device to make sure that all the subactions get done at the proper
time and in the right order.

C1. Initiation of requested action. If an agent has an intention to do an action for a second
agent at the next time period, which is not a subaction of an action the agent
intends to do, then the agent will initiate the action. A special case arises when
the second agent is _; this initiates the root action.

Int(t,m,n, b,_, t + 1) → Ini(t + 1,m,n, b)

C2. Inheritance of initiate for first subaction. If an agent initiates an action, it will initiate
the first subaction in the recipe in the next time step.

Ini(t,m,n, a) & Rec(a, r) & Mem(r, b,1,1, k) → Ini(t + 1,m,m,b)

C3. Inheritance of initiate for later subaction. If the previous subaction is done at the
right time and the agent doing action a has subcontracted this subaction to an-
other agent, then this second agent will initiate the next subaction. The special
case is where the same agent does this later subaction. Note that we assume an
agent can observe the performance of the actions that are needed for the initi-
ation of its own actions, and that its observations lead to beliefs. If not, further
communication is needed, as discussed below.

Ini(t,m,n, a) & Rec(a, r) & Mem(r, b, i + 1, j ′, k′) &

Mem(r, c, i, j, k) & Bel(t + j ′ − 1,m′, “Done(t + k, c)”) &

Int(t + j ′ − 1,m′,m,b, a, t + j ′) → Ini(t + j ′,m′,m,b)



180 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
C4. Done for actions.

C4.1: basic level. If an agent initiates a basic level action at time t and can do it
then the action will get done.

BL(a, d) & Ini(t,m,n, a) & CanDo(t,m,a)

→ Done(t + d, a)

C4.2: complex. If an agent initiates a complex action and all its subactions in
the recipe get done, then the action will get done. (Note: b is the last
subaction of a.)

Ini(t,m,n, a) & Rec(a, r) & Mem(r, b, i, j, k) &

∀r, c, i′, j ′, k′(Mem(r, c, i′, j ′, k′) → (i′ � i & Done(t + k′, c)))
→ Done(t + k, a)

C5. Action performance observed. If an action is done, then all agents come to believe
this fact (via observations).

Done(t, a) → Bel(t, n, “Done(t, a)”)

Although for simplicity we assume that all agents observe all actions; in fact, only two
agents, the requesting agent and the agent intending to do the next action really need to
know. In multiagent systems in which agents cannot observe the activities of other agents,
communication is needed to establish the performance of actions. There are many com-
munication models that can be applied, such as broadcasting, blackboards and directed
messages. For each communication model C5 could be replaced by appropriate axioms.

Again, continuing with our example from the previous subsections, suppose at time 49
G has the intention to do aaat, represented as Int(49,G,_,aaat,_,50). Then,

• C1 will entail Ini(50,G,_,aaat), thereby initiating the root action.
• C2 will then entail Ini(51,G,G,get_fl_info).

Considering another subaction, suppose that estimate_time_to_leave is a basic level
action taking one unit of time that G initiates and can do at time 58, written as,
BL(estimate_time_to_leave,1), Ini(58,G,G, estimate_time_to_leave), and CanDo(58,G,

estimate_time_to_leave), then

• C4.1 entails Done(59, estimate_time_to_leave) and C5 entails Bel(59,H, “Done(59,

estimate_time_to_leave)”).
• From Ini(50,G,_,aaat), Rec(aaat, r0), Mem(r0,get_taxi,4,10,14), Mem(r0,

estimate_time_to_leave,3,8,9), Bel(59,H, “Done(59, estimate_time_to_leave)”), and
Int(59,H,G,get_taxi,aaat,60), C3 entails Ini(60,H,G,get_taxi).

That is, H will initiate the get_taxi subaction at time 60 for G.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 181
3.1.4. Axioms for failure to perform
Here we present three axioms for the case when the performance of an action fails.

Failure begins when an agent fails to perform a basic level action, as indicated by the
negation of the appropriate Done. This leads to a Stop action process that will release the
agents waiting to perform various actions from their commitments, that is, their intentions.
This is accomplished in the following way. In the recipe tree the Stop action process is
propagated upwards. At the same time the Stop action becomes a Refrain going down in
the recipe tree along the branches that come after the branch that failed.

D1. Initiate stop action in case of failure. If an agent fails to do a basic level action, it tells
the requesting agent and initiates a stop action process on the node of the recipe
tree above this basic level action.

BL(b, d) & Ini(t,m,n, b) & ¬Done(t + d, b)& Int(t − 1,m,n, b, a, t) &

∃t ′n′a′(t ′ < t − 1 & Int(t ′, n,n′, a, a′, t ′ + 1))

→ Stop(t + d + 1, n,n′, a, a′)

D2. Stop action propagated up. If an agent initiates a stop action on a node, the stop action
is propagated to the parent node.

Stop(t,m,n, b, a) & ∃t ′(t ′ < t & Int(t ′, n,n′, a, a′, t ′ + 1))

→ Stop(t + 1, n,n′, a, a′)

D3. Stop triggers refrain down. A stop action triggers a refrain for those subactions that
come after the branch that failed.

Stop(t,m,n, b, a) & Rec(b, r) & Mem(r, c, i, j, k) &

t ′ > t & Int(t,m′,m, c, b, t ′)
→ Ref (t + 1,m,m′, c, b, t ′)

The above actions apply both the Stop predicate and Ref . Stop is used for actions that have
been initiated, while Ref is used for actions that one of the agents intends to perform, but
their performance time has not yet arrived.

3.1.5. Integrity constraints
In addition to the axioms we can include integrity constraints in our theory. Integrity

constraints differ from axioms in that they eliminate certain models from consideration,
models that would not make sense given the meaning of our predicates. We give only a
few integrity constraint here, but in other contexts more may be needed. We write the
integrity constraints using logic programming notation.

IC1. Preference among conflicting actions An agent that prefers action a to conflicting
action b cannot both potentially intend to do a and believe that it can do b at the
same time. (Agents are assumed to have preferences among conflicting actions.)



182 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
← Conf (t, n, a, b) & Prefer(t, n, a, b) & PotInt(t, n,m,a, c, t ′) &

Bel(t, n, “CanDo(t ′, n, b)”)

IC2. Consistency of recipe subactions. In a recipe the starting time of the i +1st subaction
must be greater than the ending time of the ith subaction.

← Rec(a, r) & Mem(r, b, i, j, k) & Mem(r, b′, i + 1, j ′, k′) & j ′ � k

IC3. Consistency of recipe timing. For any member of a recipe the starting time must be
less than the ending time.

← Mem(r, b, i, j, k) & k � j

IC4. Uniqueness of recipe information. There cannot be more than one ith subaction in a
recipe.

← Rec(a, r) & Mem(r, b, i, j, k) & Mem(r, b′, i, j, k) & b 	= b′ (1)

A subaction may appear only once in a recipe. This constraint is not included in
the case of repetitive actions in a recipe.

← Rec(a, r) & Mem(r, b, i, j, k) & Mem(r, b, i′, j, k) & i 	= i′ (2)

A subaction must start at a unique time.

← Rec(a, r) & Mem(r, b, i, j, k) & Mem(r, b, i, j ′, k) & j 	= j (3)

A subaction must end at a unique time.

← Rec(a, r) & Mem(r, b, i, j, k) & Mem(r, b, i, j, k′) & k 	= k′ (4)

3.1.6. Parallel actions
Up to now we have assumed that the actions in a recipe must be done in a serial order.

So, for example, in our running example of aaat (arrange for arriving at airport on time)
the four subactions must be done in the order given in Fig. 2. In particular, “find when
to arrive” must be done before “estimate time to leave”. However, there are cases where
several actions can be done in parallel. Continuing with the travel example, we may have
an action “pack suitcase” which consist of “get suitcase”, “gather objects to be taken”, and
“put objects in suitcase”. The “put objects in suitcase” subaction must be done last, but
the first two subactions can be done in either order or in parallel. We now show that our
framework can handle recipes with parallel actions; only a few small changes have to be
made to the axioms.

The first change is in the uniqueness of recipe information constraints. IC4 (1) must
be changed by changing i to 1. That is, we allow several different subactions, say
bi1, bi2, . . . , bik to be done in parallel after the subaction bi−1. So we consider the ith
subaction to be a set of subactions. We do not allow a subaction to appear more than once
in such a set. However, the first subaction still must be treated in a special way because the
agent that believes it can do it believes that it can do the action itself (possibly with help).
Hence there can be only one first subaction. We may also remove IC4 (3) and (4) in case
different parallel actions may start and end at different times.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 183
The second change is the modification of axiom C3. In the original version of this axiom
the (i + 1)st subaction is initiated after the ith subaction is done and the assumption is that
there is a single ith and (i + 1)st subaction. In the parallel version we need to write, see
below, that the (i + 1)st subactions are initiated after all the ith subactions are done.

Ini(t,m,n, a) & Rec(a, r) & Mem(r, b, i + 1, j ′, k′) &

∀c, i, j, k(Mem(r, c, i, j, k) → Bel(t + j ′ − 1,m′, “Done(t + k, c)”) &

Int(t + j ′ − 1,m′,m,b, a, t + j ′)
→ Ini(t + j ′,m′,m,b)

3.2. Consistency and meta-theorems

Consider a meta-language L and a theory T in L that contains the axioms we presented
in Section 3.1 as well as additional specific axioms related to the agents, such as the beliefs
of the agents.

We first prove that any such theory T is consistent.

Theorem 1. T has a model and is therefore consistent.

Proof. The proof is essentially the same as that of Theorem 1 of [18], so we omit some of
the details. We note that most of the predicates have as their first argument a time value t .
Those predicates that do not contain such a time value, such as BL, represent statements
that are always true. Suppose that we are given a specific language L. The atoms of the
Herbrand universe for L can be divided into groups based on the time value t ; use t = 0
for atoms without such a time value.

The construction of the model uses the statements of T . These statements are either
atoms or implications where the time component of the consequent is greater than or equal
to the time components in the antecedent. Start with the statements whose time value (either
explicitly or implicitly) is 0. Proceed by induction on these time values, thus assuming that
at time t + 1 all the atoms with time t have already been constructed. Then, use the axioms
to generate the atoms at time t + 1 in those cases where by the appropriate substitutions
the antecedent of the axiom is already true in the model. This construction yields a model
that is also a minimal model and which we take to be the intended model. Every positive
fact in this model must be there because of the applications of the axioms. �

We take this minimal model as the intended model. By studying this minimal model
under certain initial conditions and known facts about agent beliefs and abilities and the
structure of recipes, we can prove various results. The proofs consist of tracing the steps of
the agents over time in the model. We include three results here: two positive, one negative.
The two theorems show that if there is “enough” time allowed for the intention formation
process associated with a complex action all of whose subactions a single agent can do
(Theorem 2) or subcontract some to other agents (Theorem 3), then the agent will do it.
The proposition shows that if one basic level action in the recipe of a complex action cannot
be done by any agent, then no agent will get the intention to do the complex action. There



184 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
are some models of the meta-theory where this result fails, but it is true in the intended
model.

Theorem 2. Suppose an agent is asked at time t to do an action a starting at time t + s,
and suppose that the recipe tree for a has height h, takes k units of time, and s � 2h + 3.
Further suppose the agent believes that it can do each subaction (at the needed time) itself,
is not refrained at any time from doing the action or any subaction, and that it in fact can
do all of them. Then the agent will complete the task at time t + s + k. Moreover, any value
for s smaller than 2h + 3 will not be sufficient to start the action at time t + s.

Proof. It suffices to show that intention formation takes at most 2h + 2 units of time be-
cause then the agent can start doing the action at time t + s � t +2h+3 and since it can do
each step, it will finish at time t + s + k. We do this by showing abbreviated versions of the
key formulas that become true as time changes: we omit the agent name (there is only one
agent) and the times. We also omit the inherited formulas but add some comments about
them at the end. We also do not show other true formulas, such as BL(z1), that are assumed
to hold for all times.

t ATD(a)

t + 1 PotInt(a)

t + 2 PotInt(b1), PotInt(b2), . . . the children node of a

. . .

t + h + 1 PotInt(z1), PotInt(z2), . . . the nodes at the bottom level
t + h + 2 Int(z1), Int(z2), . . .

. . .

t + 2h + 1 Int(b1), Int(b2), . . .

t + 2h + 2 Int(a)

. . .

t + s Ini(a)

t + s + 1 Ini(b1)

. . . The times for the Ini and Done of the nodes depend on the tree structure
t + s + k Done(a)

We note that PotInt(a) will actually hold starting at time t + 1 and ending at time t + s − 1.
In fact, in this case all the potential intentions and intentions will hold from their earliest
time as indicated above (e.g., t + 2 for PotInt(b1), t + h + 2 for Int(z1)) until t + s′ − 1,
where the subaction is supposed to be done at time t + s′. Since s � 2h + 3, the agent will
be able to initiate the action at time t + s. Because Ini(a) must occur after Int(a), for any s

less than 2h + 2 + 1 = 2h + 3, there will not be enough time for the agent to obtain Int(a)

and hence cannot initiate the action at time t + s. �
In particular, in the aaat example h = 2, hence if only one agent is doing all the subac-

tions, 6 time units must be allocated for the intention formation process, so that the work
can start at 7 units after the initial request for the action.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 185
The next result generalizes the previous one to the case of multiple agents with sub-
contracting. We note, however, our assumption that each subcontracting between agents
is successful. This may be a reasonable assumption if each agent has knowledge of other
agents’ abilities (and their beliefs about them) and the agents are not busy doing other
tasks. We will show later what happens when subcontracting is not always successful.

Theorem 3. Suppose an agent is asked at time t to do an action a starting at time t + s,
suppose that the recipe tree for a has height h and takes k units of time, and s � 4h + 5.
Further, suppose for each subaction the agent either believes and can do it or can success-
fully subcontract it to the first agent that it believes can do it (at the needed time), and none
of the agents is refrained at any time from doing an action or any subaction, and in fact the
intending agent can always do the action or subaction. Then the agent, with the assistance
of the subcontracting agents, will complete the task at time t + s + k. Moreover, any value
of s smaller than 4h + 5 will not, in general, be sufficient to start the action at time t + s.

Proof. We use the proof of Theorem 2 and show where this proof differs from it. What
may happen at any node is that the agent subcontracts the subaction to another agent. Using
axiom B2 takes one step and then the second agent gets a potential intention by using A1.
Thus at each of the h + 1 levels at most two time steps must be added, so in the worst
case the potential intentions at the bottom level are reached at time t + 3h + 3 instead of
t + h + 1. Going back up the tree takes the same amount of time as before, that is, h + 1
time units. Hence the intention for a will be reached at time t + 4h + 4. The bound for s is
needed in case subcontracting takes place at each level. �

In our running example of aaat with 2 agents and s = 2, 4h + 4 = 12 units of time
must be allocated for the intention formation process, in order to initiate the action at time
t + 13.

Proposition 1. If there is a basic level action b in the recipe for a that no agent believes it
can do, then no agent will get an intention to do a.

Proof. No agent will ever get an intention to do b and hence to do a. �

4. Modeling multiple-recipe actions

The previous section dealt with the intention formation and subcontracting (and per-
forming) of actions, where each action has a single recipe. This leads to a single recipe
tree for a complex action. In this section we generalize the work for intention formation
and subcontracting to the case where actions (may) have multiple recipes. In this case we
may think of the recipe tree as an and-or tree with alternating levels of recipes and actions
where the recipes for an action are joined by “or” and the actions of a recipe are joined by
“and”.

The key difference in reasoning between the single recipe case and the multiple recipe
case is that the recipe tree becomes a complex and-or tree in the second case. When an



186 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
agent finds that one recipe will not work, it must find and apply another one. When all the
recipes for an action do not work, the agent must backtrack in the tree to the parent action
of that action and find another recipe for it. Another issue is that if a subcontracting agent
is determined as unable to do a task, another agent must be subcontracted. A second back-
tracking must then be introduced to represent the backtracking between the subcontracting
agents in addition to the backtracking between recipes.

In order to enhance the presentation we deal separately with the case of a single agent
and multiple agents. We show the details for the single agent case, in particular, the han-
dling of recipe backtracking, and sketch the modifications, including the backtracking
among agents, required by multiple agents.

4.1. The single agent case

As we deal with the case of a single agent, the agent names are not needed. We
omit them everywhere in order to make the axioms easier to understand. However, some
predicates now need to include the recipe name. For convenience we start by listing the
predicates used in this section, before presenting and explaining the axioms.

4.1.1. The predicates
The following predicates are important for single agent intention formation with multi-

ple recipes.

ATD(t, a, t ′): At time t the agent is asked to do a at time t ′.
PotInt(t, b, a, r, t ′): At time t the agent has the potential intention to do subaction b of

action a using recipe r at time t ′.
Int(t, b, a, r, t ′): At time t the agent has the intention to do subaction b of action a using

recipe r at time t ′.
Ref (t, b, a, r, t ′): At time t the agent is refrained from intending to do subaction b of

action a using recipe r at time t ′.

We assume that the recipes for an action form a list which is represented by the predicate
NextRec as follows:

NextRec(a, r, r ′): In the list of recipes for a, r is followed immediately by r ′.
Our convention is that the first recipe r is indicated by writing NextRec(a,_, r)

and the last recipe r by NextRec(a, r,_) (because _ is used as the empty recipe).

When a recipe fails, the agent needs to try another recipe. For this purpose we have the
following predicate.

FailedRec(t, a, r, t ′): At time t the recipe r for a to be done at time t ′ failed.

When the last recipe for a subaction fails, the agent needs to try another recipe for the
action. In order to allow the agent to work its way up the tree of recipes, we have the
following predicate.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 187
Parent(a, r, t, a′, r ′, t ′): The subaction a of action a′ is to be done using recipe r at time
t , while a′ is to be done using recipe r ′ at time t ′.

It may turn out that the agent tried all the recipes and cannot do an action it was asked to
do. At this point it should report the failure of the whole process. This is done by using the
following:

StopPlan(t, a, t ′): At time t the agent stops planning to do a at time t ′.

4.1.2. The axioms
As we did in Section 3.1 we list all the axioms with explanations. Some of the ax-

ioms are new versions of previous axioms; we indicate this by adding MR to the previous
designation.

A1-MR. Asked to do becomes potential intention. We do the version where the single
agent is initially asked to do the action. The difference is the addition of Parent in
the consequent.

ATD(t, a, t ′) & t + 1 < t ′ → PotInt(t + 1, a,_,_, t ′) &

Parent(a,_, t ′,_,_,_)

A2-MR. Inheritance of potential intention.

A2.1-MR: self. The difference here is that the potential intention is inherited with
the same recipe.

PotInt(t, b, a, r, t ′) & ¬Ref (t, b, a, r, t ′) & t + 1 < t ′

→ PotInt(t + 1, b, a, r, t ′)
A2.2-MR: child. The difference here is substantial. The second conjunct in the

antecedent indicates that this is a newly obtained potential intention.
The NextRec predicate identifies r ′ as the first recipe. As in A1-MR the
Parent predicate is set correctly in the consequent.

PotInt(t, b, a, r, t ′) & ¬PotInt(t − 1, b, a, r, t ′) &

Bel(t, “CanDo(t ′, b)”) & NextRec(b,_, r ′) &

Mem(r ′, c, i, j, k) & t + 1 < t ′

→ PotInt(t + 1, c, b, r ′, t ′ + j) & Parent(c, r ′, t ′ + j, b, r, t ′)

A3-MR. Potential intention becomes intention. The difference here is that the agent has
the intention to do all the subactions of some recipe for b.

PotInt(t, b, a, r, t ′) & Bel(t, “CanDo(t ′, b)”) & t + 1 < t ′ &

∃r ′, r ′′(NextRec(b, r ′, r ′′) &

(∀c, i, j, k Mem(r ′, c, i, j, k) → Int(t, c, b, r ′, t ′ + j))

→ Int(t + 1, b, a, r, t ′)



188 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
D1-MR. Chosen recipe fails. The chosen recipe has a subaction that the agent does not
believe it can do, hence the recipe fails. The Parent predicate is needed in the
antecedent for the starting time of a.

PotInt(t, b, a, r, t ′) & ¬Bel(t, “CanDo(t ′, b)”) & Parent(b, r, t ′, a, r ′′, t ′′)
→ FailedRec(t + 1, a, r, t ′′)

D2-MR. Potential intention inherited with different recipe. If a recipe, that is not the last
recipe of an action, fails, then the agent inherits the potential intention for the
action, but with the next recipe for the action.

Parent(a′, r ′′, t ′, a′′, r ′′′, t ′′) & FailedRec(t, a′, r, t ′) &

NextRec(a′, r, r ′) & r ′ 	= _ & Mem(r ′, b, i, j, k) & t + 1 < t ′

→ PotInt(t + 1, b, a′, r ′, t ′ + j) & Parent(b, r ′, t ′ + j, a′, r ′′, t ′)

D3-MR. Recipe failure induces refrain. If a recipe fails, then a refrain is induced for each
subaction of the recipe. This way the potential intentions will not be inherited via
A2-MR.

FailedRec(t, a, r, t ′) & Mem(r, b, i, j, k) & t + 1 < t ′

→ Ref (t + 1, b, a, r, t ′ + j)

D4-MR. Failure of the last recipe for an action.

D4.1-MR: non-root node. If the last recipe for an action fails, that failure propa-
gates upward in the recipe tree to the parent action. The condition a′ 	= _
is needed in the antecedent because otherwise a is the root action and
has no parent.

PotInt(t, a, a′, r ′′, t ′′) & FailedRec(t, a, r, t ′) & NextRec(a, r,_) &

Parent(a, r ′′, t ′, a′, r ′′′, t ′′) & a′ 	= _

→ FailedRec(t + 1, a′, r ′′, t ′′)

D4.2-MR: root node. If the last recipe for the root action fails, the agent stops
planning the action entirely.

PotInt(t, a,_,_, t ′) & FailedRec(t, a, r, t ′)&
NextRec(a, r,_) & t + 1 < t ′

→ StopPlan(t + 1, a, t ′)

4.1.3. Example
In this subsection we illustrate some of the axioms by using the example of Fig. 2 with

an additional recipe. To make things simple we again assume that there is only one recipe
for aaat, as given there, and one recipe for get_taxi, as given there. However, now there is
a second recipe for find_when_to_arrive, as shown in Fig. 3. Thus there are two ways for
an agent to find out when to arrive at the airport: first, it can find the url of the airline and



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 189
Fig. 3. Additional recipe tree.

then do a web search, or, second, it can find the airline phone number and then call. In this
illustration we concentrate on intention formation with these two recipes.

We also assume that there is only one agent, G, whose name will not be written in the
formulas in accordance with the convention for single agents. Again, we start with the ATD
statement, now written as ATD(10,aaat,50), that is, at time 10 the agent was asked to do
aaat at time 50.

• Axiom A1-MR entails two facts: PotInt(11,aaat,_,_,50) and Parent(aaat,_,50,_,

_,_).
• A2.1-MR entails PotInt(12,aaat,_,_,50).

Assume that the following statements are known:

Bel(11, “CanDo(50,aaat)”),

NextRec(aaat,_, r0), and

Mem(r0,find_when_to_arrive,2,3,7),

that is, the agent believes that it can do aaat, the first recipe for aaat is r0, and the second
member of this recipe is find_when_to_arrive, starting at relative time 3 and ending at
relative time 7.

• A2.2-MR entails

PotInt(12,find_when_to_arrive,aaat, r0,53) and

Parent(find_when_to_arrive, r0,53,aaat,_,50).

Recall that we have two recipes for find_when_to_arrive. The first recipe uses the web, the
second the phone. We write these as r1 and r2 respectively. Let us assume the following
four statements dealing with the action find_when_to_arrive:

Bel(12, “CanDo(52,find_when_to_arrive)”),

NextRec(find_when_to_arrive,_, r1),

Mem(r1,find_url,1,1,2), and Mem(r1, searchweb,2,3,4).



190 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
• A2.2-MR entails the following four statements:

PotInt(13,find_url,find_when_to_arrive, r1,54),

Parent(find_url, r1,54,find_when_to_arrive, r0,53),

PotInt(13, searchweb,find_when_to_arrive, r1,56),

Parent(searchweb, r1,56,find_when_to_arrive, r0,53).

Next suppose that Bel(13, “CanDo(56, searchweb)”) does not hold. This is the case where
the chosen recipe, r1 does not work. Hence

• D1-MR entails FailedRec(14,find_when_to_arrive, r1,53).

Now, using the statements

NextRec(find_when_to_arrive, r1, r2),

Parent(find_when_to_arrive, r1,53,aaat, r0,50),

Mem(r2,find_airlinephone,1,1,2) and

Mem(r2, call_airline,2,3,4).

• D2-MR entails

PotInt(15,find_airlinephone,find_when_to_arrive, r2,54) and

PotInt(15, call_airline,find_when_to_arrive, r2,56)

as well as some instances of the Parent predicate, not needed for this illustration, and the
process continues with this recipe. Note also that

• D3-MR entails

Ref (15,find_url,find_when_to_arrive, r1,54) and

Ref (15, searchweb,find_when_to_arrive, r1,56).

So some potential intentions will not be inherited. Assuming that recipe r2 is appropriate,
then,

• A2.2-MR and A3-MR entail Int(17,find_when_to_arrive,aaat, r2,55)

and if intentions are obtained for all the other members of r0

• Int(18,aaat,_, r0,50) will follow.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 191
4.1.4. Meta-theorem
Theorem 1, given for the case of a single recipe can be extended to the theory of the

multi-recipe case. Thus this theory also has an intended model and is consistent. Further-
more, it is possible to extend Theorem 2 to the case of multiple recipes. Before doing so,
we find it useful here to think of a recipe tree in an alternative manner. At the beginning
of Section 4 we indicated that in the case of multiple recipes the recipe tree becomes a
complex and-or tree. But here we think of a recipe tree as a regular tree, just as we used
the concept in the case of single recipe actions. Then with each action we associate a set
of recipe trees, where each recipe tree is obtained by choosing a specific recipe for each
complex action. In other words, a recipe tree is obtained from the and-or tree by choosing
one subtree for each “or” branch.

The generalization of Theorem 2 is as follows:

Theorem 4. Suppose an agent is asked at time t to do an action a starting at time t + s,
there are w recipe trees, the maximum height of all recipe trees is h, the maximum time
for any recipe is k units of time, and s � 2hw + 3. Further, suppose there is a recipe tree
for which the agent believes that it can do each subaction (at the needed time) itself, is not
refrained at any time from doing the action or any subaction, and that it in fact can do
them. Then the agent will complete the task at time t + s + k. Moreover, in the worst case,
any value for s smaller than 2hw + 3 will not, in general, be sufficient to start the action
at time t + s, and hence finish at time t + s + k.

Proof. As in Theorem 2 we show that intention formation takes at most 2hw + 2 units
of time by showing abbreviated versions of the key formulas that become true as time
changes. However, we only go to the point where the second recipe tree is started. To
consider the worst case we assume that all the w recipe trees are entirely different and have
height h.

t ATD(a)

t + 1 PotInt(a,_) a is not a child node for a recipe
t + 2 PotInt(b1, r1), PotInt(b2, r1), . . . the children node of a in recipe r1

. . .

t + h + 1 PotInt(z1, r1h1), PotInt(z2, r1h2), . . . the nodes at the bottom level for the first
recipe tree

t + h + 2 FailedRec(r1hk) a recipe fails at the next to bottom level
. . .

t + 2h + 1 FailedRec(a, r1) the first recipe tree fails
t + 2h + 2 PotInt(b1′, r2), PotInt(b2′, r2), . . . reasoning continues with the next recipe

. . .

Thus it takes 1 unit of time to get the initial potential intention for the root node and 2h

units to recognize the failure of the first recipe tree (in the worst case). Each recipe tree
may take up to 2h units including the wth (last) one, where instead of getting FailedRec
going back up the tree, Int will be entailed. For this last recipe tree one more time unit is



192 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
needed to get Int(a). Hence, altogether, the process may take up to 1+2hw+1 = 2hw+2
units. �

In the example for aaat, using h = 2 and w = 2, we obtain 2hw + 2 = 10, hence inten-
tion formation takes at most 10 units of time. Note also that the formula for s = 2hw + 3
reduces to 2h + 3 in case w = 1, which is the formula of Theorem 2.

4.2. Multiple agents

We only sketch the case of multiple agents and multiple recipes here. It was observed in
the previous section that in the case of multiple recipes a backtracking mechanism must be
introduced into the meta-language. We accomplished this by placing the recipes for each
action into a list using the NextRec predicate, explicitly stating that a recipe failed by using
the FailedRec predicate, and keeping track of where the agent’s reasoning is in the complex
and-or tree of recipes by using the Parent predicate.

We begin by considering the case of multiple agents with single recipes in a more gen-
eral way. In our work in Section 3 we assumed that an agent, say Agent0, subcontracts an
action a to the first agent, say Agent1, that it believes can do a. We did not deal with the
case where Agent1 itself does not believe that it can do a. In this case it would be reason-
able for Agent0 to try another agent, say Agent2, that Agent0 believes can do a. Setting up
this process involves backtracking in a way that is similar to the case of multiple recipes.
Namely, each agent will have a list of agents; if the chosen agent does not believe that it can
do the action, it will fail and the next agent will be chosen. Hence an agent backtracking
mechanism must be set up in a way that is similar to the recipe backtracking mechanism.

Consider now the case of multiple agents and multiple recipes where during the rea-
soning process there may be both failed recipes and failed agents. In this case a double
backtracking must be set up. A natural way to do this is to nest one backtracking inside the
other one. For example, using the recipes for the outer backtracking would mean that the
agent will always start with the first recipe, but then it may have to subcontract to several
agents before finding one that believes it can do the relevant action. Each subcontracting
agent, in turn, will start with the first recipe and try subcontracting to other agents, trying
the next recipe only if none of the agents believes that it can do the subcontracting action.

We now sketch a scenario for the example given in Fig. 3. Recall that there are two
recipes for find_when_to_arrive. In the previous subsection we had only one agent, but
let us go back to the case of two agents G and H from Section 1.3. Suppose also that
when G tries to subcontract the searchweb action to H , H does not believe that it can do
it. In that case, since there are no other agents, the first recipe for find_when_to_arrive
will fail and the second recipe must be tried. Since H finds phone numbers, the ac-
tion find_when_to_arrive will be subcontracted to H which may then subcontract the
call_airline action back to G.

Our goal now is to generalize Theorem 2 to the case of multiple agents and multiple
recipe trees. We start with the case where there is only one recipe tree and at least two
agents, that is, w = 1 and z � 2.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 193
Theorem 5. Suppose an agent is asked at time t to do an action a starting at time t + s,
there is one recipe tree, the height of the recipe tree is h, the maximum time for any recipe is
k units of time, there are z agents, z � 2, and s � (h+ 1)(3z− 1)+ 1. Further, suppose the
agent believes that it can do each subaction (at the needed time) itself or can successfully
subcontract it to some agent that it believes can do it (at the needed time), and in fact there
is always such an agent, and neither agent is refrained at any time from doing the action
or any subaction, and that it in fact can do it. Then the agent will complete the task at time
t + s + k. Moreover, any value for s smaller than (h + 1)(3z − 1) + 1 will not, in general,
be sufficient to start the action at time t + s.

Proof. As in Theorem 3 we show a portion of the intention formation process in the worst
case using abbreviated versions of the key formulas. Agents are represented by the numbers
1, . . . , z.

t ATD(1, a) the first agent is asked to do a

t + 1 PotInt(1, a)

t + 2 FailedAgent(1, a) the first agent does not believe that it can do a

t + 3 ATD(2, a) the second agent is asked to do a

t + 4 PotInt(2, a)

t + 5 FailedAgent(2, a) the second agent does not believe that it can do a

. . .

t + 2 + 3(z − 2) FailedAgent(z − 1, a) the next-to-last agent does not believe that it
can do a

t + 2 + 3(z − 2) + 1 ATD(z, a) the last agent is asked to do a

t + 2 + 3(z − 2) + 2 PotInt(z, a) the last agent believes it can do a

t + 2 + 3(z − 2) + 3 PotInt(z, b), PotInt(z, c), . . . where b and c are the children nodes
of a

. . .

The calculation of the time periods is as follows (in the worst case). At each level the first
agent is asked and fails: that is 2 units. The next z − 2 agents take 3(z − 2) units, and the
last agent takes 2 time units. Altogether this is 3(z − 2) + 4 = 3z − 2 units. This process is
repeated for the h + 1 levels, taking (h + 1)(3z − 2) time units to reach and succeed at the
bottom level. To this must be added h + 1 units, going back up the tree with the intentions.
Thus the reasoning takes (h + 1)(3z − 1) time units. �

In the example for aaat assuming a single recipe tree and two agents, that is, z = 2 and
h = 2, we obtain (h + 1)(3z − 1) = 15 units that should be allocated for reasoning.

We end with the most general result for success where there are multiple recipe trees
and multiple agents.

Theorem 6. Suppose an agent is asked at time t to do an action a starting at time t + s,
there are w recipe trees, the maximum height of a recipe tree is h, the maximum time for
any recipe is k units of time, there are z agents, z � 2, and s � (h + 1)(3z − 1)w + w.
Further, suppose for some recipe tree the agent believes that it can do each subaction (at



194 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
the needed time) itself or can successfully subcontract it to some agent that it believes can
do it (at the needed time), and in fact there is always such an agent, and neither agent is
refrained at any time from doing the action or any subaction, and that it in fact can do it.
Then the agent will complete the task at time t + s + k. Moreover, any value for s smaller
than (h+1)(3z−1)w+w will not, in general, be sufficient to start the action at time t + s.

Proof. We just sketch here the calculation using the proof of Theorem 4. We start with
the same process of multiple agents for the first recipe tree. This takes (h + 1)(3z − 1)

units. This process is done for all the w recipe trees, adding one time unit to get to each
new recipe tree, finally obtaining (h + 1)(3z − 1)w + (w − 1) time units for the reasoning
process.

In the case of aaat with 2 agents and two recipe trees, the intention formation process
will take at most 3 × 5 × 2 + 1 = 31 time units. �

5. Related work

Intentions in the context of SharedPlans were studied in [19,20], but no semantics were
given. Our starting point in this paper was the axioms presented by Grosz and Kraus but
our requirements for an agent having an intention are much stronger than those presented
in [19] where an agent may have an intention also when having a partial plan. For example,
the agent may have only partial knowledge about a recipe, but a plan how to complete it;
it may have only potential intentions toward subactions. On the other hand, we require
that in order for the agent to have an intention, it must have a full detailed plan to do the
action and that it has adopted the appropriate intentions and beliefs. These requirements
together with our semantics enable us to state and prove various properties and theorems
about agent intentions and actions.

Since the definition of Int in our model is much stronger than the Int.To of SharedPlans,
the PotInt predicate of our model plays a more important role in the agent’s reasoning than
the Pot.Int.To does in [19]. In [19] Pot.Int.To is used only as an intermediate operator until
Int.To is adopted. In our model the PotInt is kept for the duration of the agent’s need for the
associated intention and is used during the intention formation process and for continuous
verification of the minimal requirements for having the intention.

The SharedPlan model of collaborative planning uses the mental state model of
plans [42]. Bratman [5] also argues for a mental-state view of plans, emphasizing the im-
portance of intentions to plans. He argues that intentions to do an action play three roles
in rational action: having an intention to do an action constrains the other intentions an
agent may adopt, focuses means-ends reasoning, and guides replanning. These roles are
even more important for collaborative activity than for individual activity. In our model Int
and PotInt play these roles.

Most of the models of intention of a single agent do not have context parameters (e.g.,
[44,51]). However, once agents are working in a group, such parameters are very impor-
tant to enhance cooperation [20]. Since we apply a syntactic approach, the introduction
of such parameters is not difficult compared with adding such parameters in modal logics
[25]. Thus, one of the parameters for both PotInt and Int is the agent that is assisted by the



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 195
performance of the intended action. Another parameter is the action in whose context the
intended action is performed. In [19], an intention has a general parameter of context which
includes the intentional context in which the intended action is being performed (among
other things). Since subcontracting is the main focus of our paper, and the intentional con-
text is very important for the interactions between the agents, our intentions have these
two explicit parameters. These parameters are different from relativized intentions such
as in Cohen and Levesque [8]. They allow an “escape clause” or “background condition”
parameter. Once this clause becomes false, the agent drops the associated intention. In our
case, explicit communication from the assisted agent may lead to dropping the intention,
as discussed above.

Castelfranchi [7] studies the notion of intention for describing and understanding the
activities of groups and organizations in the context of improving the exchange between
AI and social and management approaches to cooperative work. His motivation is different
from our aim of developing a formal logic of beliefs and intentions.

Others proposed models for team intentions (e.g., [9,32,50,52]) while we focus on the
intentions of individual agents that may subcontract to other cooperative agents.

There were several attempts to develop possible worlds semantics for agents’ intentions
[2,8,15,25,28,29,43,55]. Some problems arise with these attempts such as that in most
of them intentions are closed under Modus Ponens or under logical equivalence and that
the relations between the action’s recipe and the intention are not well defined. Using a
syntactic approach provides more freedom in modeling the way agents’ intentions and
beliefs change over time. See [55] for an excellent survey. We discuss here a few models
that address some of the problems that we consider.

Konolige and Pollack [25] use a special type of possible world models which they refer
to as cognitive structures. It is equivalent to Chellas’ minimal model semantics (that is dif-
ferent from our first-order minimal models). Using the cognitive structures, Konolige and
Pollack eliminate the closed under inferences problem with respect to intentions. How-
ever, their intentions are still closed under logical equivalence. In order to capture relations
between intentions, they introduce the concept of an embedding graph among intentions.
This extension allows them to model a static relationship between intention and beliefs, but
it is not appropriate for modeling a team of agents working together dynamically to plan
and perform a complex action.

Georgeff and Rao [15] consider the problem of intention maintenance in the context
of changing beliefs and desires. They extend the standard possible-world semantic logics
by introducing forms for only modalities of belief, desire, and intention along the lines of
Levesque’s only belief operator [31]. Intuitively, when moving from one time to another
they maintain as many old intentions as possible that satisfy some constraints of what
is a consistent set of intentions. They specify semantic constraints on their models that
reflect this intuition (but do not prove completeness). Intention maintenance is done in our
model via the inheritance axioms. We distinguish between PotInt and Int: PotInt is always
inherited unless the agent is explicitly refrained from doing the action. An intention to
do an action is inherited only if the associated PotInt is inherited, the agent continues to
believe that it can do the action, and if each subaction (if exists) in the recipe of the action
is either intended by the agent or an assisting agent.



196 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
Sonenberg and her colleagues [23,45,52] present a very comprehensive and interesting
possible-world semantics model for beliefs, intentions, and time, and propose the concepts
of a plan graph and a plan structure. We, on the other hand, propose a syntactic approach
for beliefs and intentions and time, and explicitly express them in our logic. They use
these concepts for defining joint intentions and for reasoning about team activity while we
focus on an agent’s individual intention and its capability to subcontract some actions to
other agents. Although their model enables the expression of much more complex plans
than ours, the lack of explicit terms for expressing time limits their ability to reason about
the ways agents’ intentions change over time. We also model explicitly the process of
backtracking in case of a failure.

Singh and Asher [51] present a formal theory of intentions and beliefs based on Dis-
course Representation Theory. As in our model, this theory does not assume that agents are
perfect reasoners. However, they do not model the formation of intentions and its relation
to planning.

Cohen and Levesque [8,10] have a notion of intention based on persistence goals
(P-GOAL). They assume that if an agent has a P-GOAL toward a proposition, then the
agent believes that this proposition is not true now, but that it will be true at some time in
the future. The agent will drop a persistent goal p only if it comes to believe that p is true
or that p is impossible. In their logic, time does not explicitly appear in the proposition;
thus, they cannot express a P-GOAL toward propositions that will be true at some specific
time in the future or consider situations where a proposition is true now, but which the
agent believes will become false later and therefore has to make a P-GOAL true again after
it becomes false. Our intentions are toward actions. Since time is explicit in our logic, we
can express intentions toward performing a given action at a specific time, in addition to
expressing Cohen and Levesque’s attitude P-GOAL. This can be done by defining in our
language predicates similar to those of Cohen and Levesque (e.g., BEL, GOAL, P-GOAL)
and adding to our theory appropriate axioms that characterize these predicates.

Sadek [46] who extended and refined Cohen and Levesque’s theory of intentions in-
troduced the concept of need or potential intention. In his model, the concept of need is
logically characterized from choice, belief and intention: an agent needs φ if the fact that
it does not believe φ is a sufficient condition for intending to believe φ. In our model po-
tential intention is a basic concept that means roughly that the agent has been given a task
and is determining whether it can do it (perhaps with help).

Goldman and Lang [17] also extended Cohen and Levesque’s work. They use Allen’s
temporal logic [1] as a foundation and also use syntactic models of belief. They are able
to formalize complex intentional actions, particularly with deadlines. Intentions are mo-
tivated by goals, but the process of intention foundation is not modelled, in particular,
subcontracting and communications between agents are not considered.

SRIs Procedural Reasoning System (PRS) [39] is a framework for constructing real-
time reasoning systems. Some of our concepts are similar to features of PRS. For example,
a PRS Act describes the steps of a procedure and hence is something like a simple recipe
in our terminology that consists of basic level actions. A PRS intention involves Acts and
Subacts and is a kind of combination of our intention along with a recipe. In PRS time is
not represented explicitly and there are important differences with our approach concerning
subcontracting and other concepts.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 197
Wooldridge and Jennings [56] provide a formal model of the cooperative problem solv-
ing process for multi-agent systems using a logical formalism that combines aspects of
modal, temporal, and dynamic logic. Verbrugge and Dunin-Keplicz [54] investigate the
notion of collective intention in the context of cooperative problem solving for multi-
agent systems. They formalize collective intentions in a multi-modal logical framework
and prove the completeness of the logic with respect to a class of Kripke models.

An intention in our model is toward an action and not toward a proposition as in most
of the models mentioned above. This somewhat limits intention, but it allows us to clearly
relate intentions and recipes. Our intentions can be converted to proposition by using an
operator like “Do”. The other models’ intentions can be converted to actions by using a
special action “Make-True”.

An interesting dual treatment of agents that, like ours, has both an agent language (“first-
person account”) [16] and a meta-language (“third-person account”) [30], uses the Golog
family of languages based on the situation-calculus. Those papers (unlike our own) are
more focussed on knowledge conditions than on intentions, and also do not take time-
taken-to-plan into account.

Wooldridge and his colleagues [48,57] are concerned with intention formation and in-
tention reconsideration. They focus on the issue of designing agents that can balance the
amount of time spent in reconsidering their intentions against the amount of time spent
acting to achieve them. They use a formal but non-logical approach and it is an open ques-
tion how the balance between intention reconsideration and acting could be modeled in our
logic.

Subcontracting was considered mainly in situations of self-interested agents where the
emphasis was on finding mechanisms for motivating the subcontractor to perform its task
as required (see a survey in [26]). In this paper we assume that the agents are cooperative
and willing to perform subcontracted actions if they can.

Since we followed the mental state approach for planning and focused on subcontract-
ing, we adapt a rather simple approach for reasoning about actions. There is a very rich
literature on reasoning about actions. For example, Konolige [24] formalizes reasoning
about the knowledge, belief, and actions of agents. He uses an object language to describe
agent beliefs and a meta-language to study the object language. Actions are described in
the situation calculus. But the intentions of agents are not considered. And although it
is syntactic (like ours), Konolige’s approach explicitly assumes closure under inference.
While the inference rules do not have to be traditional (strictly deductive) ones, neverthe-
less all the inferential conclusions (theorems) resulting from them are assumed known or
believed by the agent—they do not come in little by little over time as the agent manages
to prove them one by one—and so this is clearly not realistic. Our approach by contrast
employs an explicit time mechanism to track the evolution of an agent’s gradual process of
inference.

6. Summary and future work

We presented a formal logical calculus that can be regarded as a meta-logic that de-
scribes the reasoning and activities of agents. The explicit representation of evolving time



198 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
is an important feature of this approach. We dealt with the case where agents are as-
signed tasks for which a recipe is known. Recipes have a tree structure. An agent may
subcontract some of the actions/subactions to other agents. Our emphasis is on develop-
ing a framework that models the beliefs, intentions, and actions of agents as they change
over time. We present a syntactic approach, propose a minimal model semantics and
prove that the meta-theory is consistent and has a minimal model. The true statements
in the minimal model associated with the agents’ mental states and actions characterize
the agents that are described by the meta-logic. Using this semantics, rather than possi-
ble world semantics, allows us to model agents activity more realistically and to prove
several results to show that under the appropriate conditions the agents will act as de-
sired.

We plan to extend this work in several ways. At present we have results only for strongly
positive (agents always successfully subcontract actions/subactions, their beliefs about
their activities are correct, and communication always succeeds) and strongly negative
(there is a subaction that no agent can do) cases. We will consider more complex situa-
tions. Additionally we will deal with situations where agents have SharedPlans (and not
only subcontract actions).

Appendix A

For summary of predicates and axioms see Tables A.1–A.3.

Table A.1
A summary of predicates defined in Section 2.1. In all the definitions above t is the time of the proposition

Name Meaning

ATD(t, n,m,b, a, t ′) Agent n asks agent m to do action b in the context of action a at time t ′.
PotInt(t,m,n, b, a, t ′) Agent m directly assisting agent n has the potential intention to do action b in the

context of action a at time t ′.
Int(t,m,n, b, a, t ′) Agent m directly assisting agent n has the intention to do action b in the context

of action a at time t ′.
Ref (t,m,n, b, a, t ′) Agent m refrains agent n from intending to do action b in the context of action a

at time t ′.
BL(a, d) a is basic level, takes d units of time to complete.
Rec(a, r) r is the unique recipe for action a.
Mem(r, b, i, j, k) In recipe r , b is the subaction which is the ith member of the recipe starting at

relative time j and ending at relative time k.
Bel(t, n, f ) Agent n believes statement f .
CanDo(t, n, a) Agent n can do action a.
Tell(t, n,m,f ) Agent n tells f to agent m.
Ini(t,m,n, a) Agent m directly assisting agent n initiates action a.
Done(t, a) Action a has just been done successfully.
Stop(t,m,n, b, a) Agent m directly assisting agent n is instructed to stop action b in the context of

action a.
Prefer(t, n, a, b) Agent n prefers to do action a over action b.
Conf (t, n, a, b) For agent n action a conflicts with action b.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 199
Table A.2
A summary of predicates defined in Section 4.1.1 for intention formation with multiple recipes. In all the defini-
tions above t is the time of the proposition

Name Meaning

ATD(t, a, t ′) The agent is asked to do a at time t ′.
PotInt(t, b, a, r, t ′) The agent has the potential intention to do subaction b of action a using recipe r

at time t ′.
Int(t, b, a, r, t ′) The agent has the intention to do subaction b of action a using recipe r at time t ′.
Ref (t, b, a, r, t ′) The agent is refrained from intending to do subaction b of action a using recipe r

at time t ′.
NextRec(a, r, r ′) In the list of recipes for a, r is followed immediately by r ′.
FailedRec(t, a, r, t ′) The recipe r for a to be done at time t ′ failed.
Parent(a, r, t, a′, r ′, t ′): The subaction a of action a′ is to be done using recipe r , while a′ is to be done

using recipe r ′ at time t ′.
StopPlan(t, a, t ′) The agent stops planning to do a at time t ′.

Table A.3
A list of axioms

Axiom Title Section

A1 Asked to do becomes potential intention 3.1.1
A2 Inheritance of potential intention 3.1.1
A3 Potential intention becomes intention 3.1.1
A4 Inheritance of refrain 3.1.1
B2 Subcontracting an action to an agent 3.1.2
B3 Potential intention becomes intention (subcontracting version) 3.1.2
B4 Inheritance of refrain by an assisting agent 3.1.2
B5 Communication of assisting agent about refrain 3.1.2
C1 Initiation of requested action 3.1.3
C2 Inheritance of initiate for first subaction 3.1.3
C3 Inheritance of initiate for later subaction 3.1.3
C4 Done for actions 3.1.3
C5 Action performance observed 3.1.3
D1 Initiate stop action in case of failure 3.1.4
D2 Stop action propagated up 3.1.4
D3 Stop triggers refrain down 3.1.4
IC1 Preference among conflicting actions 3.1.5
IC2 Consistency of recipe subactions 3.1.5
IC3 Consistency of recipe timing 3.1.5
IC4 Uniqueness of recipe information 3.1.5
A1-MR Asked to do becomes potential intention 4.1.2
A2-MR Inheritance of potential intention 4.1.2
A3-MR Potential intention becomes intention 4.1.2
D1-MR Chosen recipe fails 4.1.2
D2-MR Potential intention inherited with different recipe 4.1.2
D3-MR Recipe failure induces refrain 4.1.2
D4-MR Failure of the last recipe for an action 4.1.2



200 J. Grant et al. / Artificial Intelligence 163 (2005) 163–201
References

[1] J. Allen, Towards a general theory of action and time, Artificial Intelligence 23 (2) (1984) 123–144.
[2] E. Alonso, A formal framework for the representation of negotiation protocols, 1997.
[3] W. Bibel, Automated Theorem Proving, Friedr Vieweg and Sohn Verlagsgesellschaft GmbH, Braunschweig,

1982.
[4] W.W. Bledsoe, D.W. Loveland, Automated Theorem Proving, American Mathematical Society, Providence,

RI, 1984.
[5] M.E. Bratman, Intention, Plans, and Practical Reason, Harvard University Press, Cambridge, MA, 1987.
[6] A. Bundy, The Computer Modeling of Mathematical Reasoning, Academic Press, London, 1983.
[7] C. Castelfranchi, Commitments: from individual intentions to groups and organizations, in: Proc. ICMAS

95, 1995.
[8] P. Cohen, H. Levesque, Intention is choice with commitment, Artificial Intelligence 42 (1990) 263–310.
[9] P. Cohen, H. Levesque, Teamwork, Noûs 25 (1991) 487–512.

[10] P.R. Cohen, H. Levesque, Rational interaction as the basis for communication, in: P.R. Cohen, J.L. Morgan,
M.E. Pollack (Eds.), Intentions in Communication, MIT Press, Cambridge, MA, 1990, pp. 221–256.

[11] P.R. Cohen, J. Morgan, M.E. Pollack (Eds.), Intentions in Communication, MIT Press, Cambridge, MA,
1990.

[12] E. Davis, Representation of Commonsense Knowledge, Morgan Kaufmann, San Mateo, CA, 1990.
[13] J. de Rivières, H. Levesque, The consistency of syntactical treatments of knowledge (how to compile quan-

tificational modal logics into classical FOL, Computational Intelligence 4 (1988) 31–41.
[14] J. Doyle, Y. Shoham, M. Wellman, A logic of relative desire, in: Proc. of the 6th International Symposium

on Methodologies for Intelligent Systems, 1991.
[15] M. Georgeff, A. Rao, The semantics on intention maintenance for rational agents, in: Proc. of IJCAI-95,

Montreal, Quebec, 1995, pp. 704–710.
[16] G. De Giacomo, Y. Lesperance, H.J. Levesque, S. Sardina, On the semantics of deliberation in IndiGolog—

from theory to implementation, in: Proc. KR-02, Toulouse, France, 2002, pp. 603–614.
[17] R.P. Goldman, R.R. Lang, Intentions in time, Technical Report TUTR 93-101, Tulane University, 1993.
[18] J. Grant, S. Kraus, D. Perlis, A logic for characterizing multiple bounded agents, Autonomous Agents and

Multi-Agent Systems J. 3 (4) (2000) 351–387.
[19] B.J. Grosz, S. Kraus, Collaborative plans for complex group activities, Artificial Intelligence J. 86 (2) (1996)

269–357.
[20] B.J. Grosz, S. Kraus, The evolution of sharedplans, in: A. Rao, M. Wooldridge (Eds.), Foundations and

Theories of Rational Agency, Kluwer Academic, Dordrecht, 1999, pp. 227–262.
[21] B. Grosz, C. Sidner, A reply to Hobbs, in: P. Cohen, J. Morgan, M. Pollack (Eds.), Intentions in Communi-

cation, Bradford Books/MIT Press, Cambridge, MA, 1990, pp. 461–462.
[22] A. Haass, The syntactic theory of belief and knowledge, Artificial Intelligence 28 (3) (1983) 245–293.
[23] D. Kinny, M. Ljungberg, A.S. Rao, E. Sonenberg, G. Tidhar, E. Werner, Planned team activity, in: C. Castel-

franchi, E. Werner (Eds.), Artificial Social Systems, Amsterdam, The Netherlands, in: Lecture Notes in
Artificial Intelligence, vol. 830, Springer, Berlin, 1994.

[24] K. Konolige, A first-order formalisation of knowledge and action for a multi-agent planning system, Machine
Intelligence 10 (1982) 41–72.

[25] K. Konolige, M.E. Pollack, A representationalist theory of intention, in: Proc. of IJCAI-93, Chambéry,
France, 1993, pp. 390–395.

[26] S. Kraus, An overview of incentive contracting, Artificial Intelligence J. 83 (2) (1996) 297–346.
[27] S. Kraus, Strategic Negotiation in Multiagent Environments, MIT Press, Cambridge, MA, 2001.
[28] S. Kraus, K. Sycara, A. Evenchik, Reaching agreements through argumentation: a logical model and imple-

mentation, Artificial Intelligence 104 (1–2) (1998) 1–69.
[29] S. Kumar, M.J. Huber, D.R. McGee, P.R. Cohen, H.J. Levesque, Semantics of agent communication lan-

guages for group interaction, in: Proc. AAAI-2000, Austin, TX, 2000, pp. 42–47.
[30] Y. Lesperance, On the epistemic feasibility of plans in multiagent systems specifications, in: Proc. ATAL-01,

2001.
[31] H. Levesque, All I know: a study in autoepistemic logic, Artificial Intelligence 42 (1990) 263–309.



J. Grant et al. / Artificial Intelligence 163 (2005) 163–201 201
[32] H. Levesque, P. Cohen, J. Nunes, On acting together, in: Proceedings of AAAI-90, Boston, MA, 1990,
pp. 94–99.

[33] K. Lochbaum, B. Grosz, C. Sidner, Models of plans to support communication: an initial report, in: Pro-
ceedings of AAAI-90, Boston, MA, MIT Press, Cambridge, MA, 1990, pp. 485–490.

[34] R. Montague, Syntactical treatments of modality, with corollaries on reflection principles and finite axioma-
tizability, in: Modal and Many-Valued Logics, in: Acta Philosophica Fennica, vol. 16, Academic Bookstore,
Helsinki, 1963. Reprinted in: R. Montague, Formal Philosophy, New Haven, 1974, pp. 286–302.

[35] R. Moore, A formal theory of knowledge and action, in: J. Hobbs, R. Moore (Eds.), Formal Theories of the
Commonsense World, Ablex, Norwood, NJ, 1985.

[36] L. Morgenstern, Foundations of a logic of knowledge, action, and communication, PhD Thesis, New York
University, 1988.

[37] L. Morgenstern, Inheritance comes of age: applying nonmonotonic techniques to problems in industry, in:
Proc. IJCAI-97, Nagoya, Japan, 1997, pp. 1613–1621.

[38] M. Morreau, S. Kraus, Syntactical treatments of propositional attitudes, Artificial Intelligence 106 (1998)
161–177.

[39] K.L. Myers, User guide for the procedural reasoning system, Technical Report, Artificial Intelligence Center,
SRI International, 1997.

[40] D. Perlis, Language with self references I: foundation, Artificial Intelligence 25 (1985) 301–322.
[41] R. Perrault, An application of default logic to speech act theory, in: P.R. Cohen, J.L. Morgan, M.E. Pollack

(Eds.), Intentions in Communication, Bradford Books/MIT Press, 1990, pp. 161–185.
[42] M.E. Pollack, Plans as complex mental attitudes, in: P.N. Cohen, J.L. Morgan, M.E. Pollack (Eds.), Inten-

tions in Communication, Bradford Books/MIT Press, Cambridge, MA, 1990.
[43] A. Rao, M. Georgeff, Deliberation and its role in the formation of intention, in: Proceedings of the Seventh

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 1991.
[44] A. Rao, M. Georgeff, Modeling rational agents within BDI architecture, in: Proc. of the Second International

Conference of Knowledge Representation, Morgan Kaufmann, San Mateo, CA, 1991, pp. 473–484.
[45] A. Rao, M.P. Georgeff, E. A Sonenberg, Social plans: a preliminary report, in: Decentralized Artificial

Intelligence, vol. 3, Elsevier Science, Amsterdam, 1992, pp. 57–76.
[46] M.D. Sadek, A study in the logic of intention, in: Proc. KR-92, Cambridge, MA, 1992, pp. 462–473.
[47] E. Sandewall, Features and Fluents, Oxford University Press, Oxford, 1994.
[48] M. Schut, M. Wooldridge, S. Parsons, Reasoning about intentions in uncertain domains, in: Proceedings of

the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU-2001), Toulouse, France, 2001.

[49] M. Shanahan, Solving the Frame Problem, MIT Press, Cambridge, MA, 1997.
[50] M.P. Singh, The intentions of teams: team structure, endodeixis, and exodeixis, in: Proceedings of the 13th

European Conference on Artificial Intelligence (ECAI), Wiley, New York, 1998, pp. 303–307.
[51] M.P. Singh, N.M. Asher, A logic of intentions and beliefs, J. Philos. Logic 22 (1993) 513–544.
[52] E. Sonenberg, G. Tidhar, E. Werner, D. Kinny, M. Ljungberg, A. Rao, Planned team activity, Technical

Report 26, Australian Artificial Intelligence Institute, Australia, 1992.
[53] R. Thomason, A note on syntactical treatments of modality, Synthese 44 (1980) 391–395.
[54] R. Verbrugge, B. Dunin-Keplicz, Collective intentions, Fundamenta Informatica 49 (2002) 271–295.
[55] M. Wooldridge, Reasoning about Rational Agents, MIT Press, Cambridge, MA, 2000.
[56] M. Wooldridge, N.R. Jennings, The cooperative problem-solving process, J. Logic Comput. 9 (4) (1999)

563–592.
[57] M. Wooldridge, S. Parsons, Intention reconsideration reconsidered, in: J.P. Muller, M. Singh, A. Rao (Eds.),

Intelligent Agents V, in: Lecture Notes in Artificial Intelligence, vol. 1365, Springer, Berlin, 1999.
[58] A. Zaniolo, S. Ceri, C. Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, R. Zicari, Advanced Database Sys-

tems, Morgan Kaufmann, San Mateo, CA, 1997.


