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Abstract

This paper describes a new multi-player computer game,
Colored Trails (CT), which may be played by people, com-
puters and heterogeneous groups. CT was designed to en-
able investigation of properties of decision-making strate-
gies in multi-agent situations of varying complexity. The pa-
per presents the results of an initial series of experiments of
CT games in which agents’ choices affected not only their
own outcomes but also the outcomes of other agents. It com-
pares the behavior of people with that of computer agents
deploying a variety of decision-making strategies. The re-
sults align with behavioral economics studies in showing
that people cooperate when they play and that factors of so-
cial dependency influence their levels of cooperation. Pre-
liminary results indicate that people design agents to play
strategies closer to game-theory predictions, yielding lower
utility. Additional experiments show that such agents per-
form worse than agents designed to make choices that re-
semble human cooperative behavior. The paper describes
challenges raised by these results for designers of agents,
especially agents that need to operate in heterogeneous
groups that include people.

1. Introduction

This paper addresses the problem of the design of com-
puter agents that make appropriate decisions in groups com-
prising both human and computer agents. It investigates set-
tings in which agents’ choices affect the outcomes of other
agents. In the absence of explicit utility benefits to coop-
eration, standard economic game theory analyses predict
that no cooperation will ensue. A wide-range of results in
behavioral economics and psychology contradict these re-
sults [7, 8, inter alia]. Prior research in multiagent systems
has shown the benefits of cooperativeness to social welfare
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[12, 3, 6, 9, inter alia]. We aim to develop models that sup-
port the design of self-interested agents that cooperate ap-
propriately with both humans and other agents.

As a first step toward this goal, we undertook exper-
iments based on a new computer game that highlights
decision-making in group settings. The game provides
a framework for investigating human-decision-making,
the effects of different automated decision-making strate-
gies, and comparisons between the two. It also provides
a vehicle for examining the ways in which people de-
sign computer agents and the performance of different
agent designs. The results of these experiments con-
firm that people cooperate even in the absence of direct
utility benefits, that doing so is beneficial and that social de-
pendencies influence behavior.

The remainder of this introduction presents the new
game specification and the design desiderata underlying it.
Section 2 discusses social dependency factors and the ex-
perimental design in which they are explored. Section 3
presents the results of initial experiments of people and
computer agents playing the game in different settings; it
compares people to computer agents as well as analyzing
the effects of different automated strategies. The conclud-
ing section discusses implications of the experimental re-
sults.

1.1. Testbed for Investigating Decision-Making in
Group Contexts

The game Colored Trails (CT) was designed to enable
investigation of properties and consequences of decision-
making strategies in multi-agent contexts in which agents’
choices affect not only their own outcomes but also the out-
comes of other agents. It allows for specification of different
reward structures, enabling examination of such trade-offs
as the importance of the performance of others or the group
as a whole to the outcome of an individual and the cost-
benefits of collaboration-supporting actions. The game pa-
rameters may be set to vary environmental features such as



task complexity, availability of and access to task-related in-
formation, and the dependencies between agents.

A key determinant of CT design was the goal of provid-
ing a vehicle for comparing the decision-making strategies
people deploy when they interact with other people with
those they deploy when computer systems are members of
their groups. We wanted people to be challenged in play-
ing the game and interested in building agents that could
play it. The CT architecture allows games to be played
by groups comprising people, computer agents, or hetero-
geneous mixes of people and computers. As a result, CT
may also be used to investigate learning and adaptation
of computer decision-making strategies in both human and
computer-agent settings [4].

As a test-bed environment for decision-making strate-
gies, CT provides several features not present in other multi-
agent games and simulation environments [13, 5, 11, inter
alia]. It highlights the possible influences of inter-agent re-
lationships on decisions, rather than focusing on plan exe-
cution, modification or group performance. The complexity
of the game may vary across several dimensions including
the number of players; the information about the environ-
ment available to different players; information about indi-
vidual agents available publicly to all players, to subgroups,
or only privately; the scoring rules; the types of communi-
cation possible among agents; and, the negotiation protocol.
CT’s wider variety of parameters also means it can model
more complex scenarios than the games typically used in
behavioral economics [2, 10, inter alia].

1.2. Colored Trails Game Specification

Colored Trails (CT) is played by two or more players on
an NxM board of colored squares with a set of chips in col-
ors chosen from the same palette as the squares. For each
game of CT, one or more squares are designated as goal
squares. Each player’s piece is located initially in one of
the non-goal squares, and each player is given a set of col-
ored chips. The goal squares, distance to the goal and num-
ber of chips may vary for different players. A piece may
be moved into an adjacent square, but only if the player
turns in a chip of the same color as the square. The scor-
ing function and corresponding player-objectives1 of a CT
game may be varied to provide for testing of different kinds
of decision-making contexts, but these objectives are all of
the general form that certain players or a certain number of
players end up in a specified goal square. Chips may be ex-
changed, and the conditions of exchange varied to model
different group dynamics and decision-making situations.

1 In this paper, “goal” will be used only to refer to those squares on the
board designated as goals. Players may have many objectives besides
getting their pieces in the goal square. To avoid confusion, the paper
will use ”objectives” rather than ”goal” to refer to this larger set.

The scoring function is a parameter of CT game in-
stances and may be set to reflect different possible so-
cial policies and utility trade-offs. This function establishes
a context in which to investigate the effects of different
decision-making mechanisms. For example, by varying the
relative weights of individual and group good in the scor-
ing function, collaborative behavior may become more, or
less, beneficial.

Two parameters of a CT game may be used to vary the
inter-dependence of players. First, the scoring function may
stipulate areward dependenceby having the scores of a
player depend in some way on the scores of other agents.
Second, there is atask dependencethat arises whenever
players lack the chips they need to reach their goals and
must depend on other players supplying those chips. The
term “task dependence” reflects the similarity with agents
depending on others for the performance of their tasks.

The CT framework allows agreements between players
to be either enforceable or not. If a player’s score depends
on that player’s performance alone, then the combination
of unenforceable agreements and a finite horizon leads to
a theoretical equilibrium result that no chips will be ex-
changed. These results apply whether or not players have
information about each other’s chips and follow from an ar-
gument similar to those for the repeated prisoners’ dilemma
with a finite horizon.

CT satisfies the design desideratum of providing an
appropriate abstraction of the general task and decision-
making situations faced by computer agents in multi-agent
system situations. Play of CT models approximately the
performance of actions by a group of agents. Colors corre-
spond to agent capabilities and skills required by tasks; pos-
session of a color chip corresponds to having a skill avail-
able for use at a time; not all agents get all colors much as
the agents of a group activity have different capabilities and
availability. Paths through the board correspond to complex
tasks the constituents of which are individual tasks requir-
ing the skills of the corresponding color.

Player objectives may be set to impose a need for play-
ers to make task allocation agreements. For instance, if the
objectives for a game specify only that a certain number
of agents get to a particular goal square without specify-
ing individual goals for each agent, the players need to
agree about which agents will head to different goal squares.
The game environment may also be set to model differ-
ent knowledge conditions. For example, varying the amount
of the board an agent can “see” corresponds to varying in-
formation about task constituents or resource requirements,
whereas varying the information players have about each
other’s chips corresponds to varying information agents
have about the capabilities of others.

Various requirements on player-objectives, goal squares
and paths correspond to different types of group activities
and collaborative tasks. To distinguish collaborative team-



work from settings in which agents act independently, the
scoring function may have a significant reward-dependence
factor. To model the need for agents to be helpful, play-
ers may be task dependent; helpful behavior occurs when a
player who has a chip needed by another player gives the
chip to that player in some reasonably balanced exchange.

2. Experimental Design: Social Dependency

Our initial investigation using CT examined “helpful be-
havior choices”, the decisions agents need to make about
assisting others in their individual responsibilities, either to
make possible another agent’s completion of a task or to im-
prove the quality or decrease the costs of another agent’s
task performance. In general task situations, the circum-
stances under which one agent will decide to help another
vary and may depend on such factors as whether the agents
are on a team or acting completely independently.

The initial experiments examined the performance of in-
dividuals in different reward-dependence conditions
(cf. [13]). Although we are ultimately interested in team be-
havior, teams comprise individuals. To determine team
influences on behavior and performance, baseline mea-
sures of the performance of individuals in different en-
vironments are required, both for people playing one
another and for games in which computer agents partici-
pate.

To vary reward dependence and thus establish different
social environments, a “social dependency factor” (SDwt)
was included in the scoring function. In particular, for
playerPi the experiments used the scoring function,

score(Pi) = base(Pi) + SDwt

∑
j∈{1,...,N},j 6=i

base(Pj)

(N−1) ,

where base(Pi) is determined by the performance ofPi

alone andN is the number of players. If SDwt is zero, a
player’s score is independent of the performance of other
players; if it is non-zero, a player’s score combines that
player’s individual-performance score and a weighted av-
erage of the individual scores of the other players.

The game protocol comprised two phases, a communi-
cation phase and a movement phase. Agreements reached
during the communication phase were not binding. Players
could send chips to other players throughout the communi-
cation phase. However, to simulate simultaneous sending of
chips, the game controller only delivered chips at the end
of the communication phase. To allow comparison of CT
play with the no-exchange game theoretic equilibria, chip
exchange agreements were not enforceable.

The initial experiments investigated the following two
hypotheses: (1) Higher SDwt will lead to an increase in
helpful behavior. In particular, when SDwt was higher, we
expected agents to give other agents chips more frequently
and to ask for fewer chips in exchange. (2) If players can
reach the goal without the help of others, they will give

chips to others less frequently and will ask more in ex-
change. However, players able to reach the goal on their
own, will be more helpful if SDwt is higher.

For these experiments, the CT games were played by
groups of four players, the board was 6x6, the palette was
5 colors, and there was a single goal square for all players.
This setting was chosen to be relatively simple but complex
enough both to study the effects of SDwt within group en-
vironments and to provide a good set of baselines for subse-
quent investigations of team behavior. The four-player set-
up allows for multiple sources of potential help for players
missing chips. It also provides a baseline for comparison
in subsequent research with games played by two teams of
two players each, which is the smallest possible team size.
The 6x6 board size was chosen to restrict the complexity of
path-finding for both people and computer agents, and the
palette was set to enable interesting chip distributions.

Most of the games were played with players able to see
the full board (board visibility), but not provided with any
information about the chips held by other agents (nochips
visibility). Full board visibility limits the knowledge ac-
quisition needs of players. They are able to compute the
chips they require individually to reach the goal and also the
chip needs of other players. The restriction of chip distribu-
tion information separates, to some degree, decisions about
chip exchanges from scoring information, thereby making
helpful behavior distinct from score optimization computa-
tions. If players have complete knowledge of the chip dis-
tribution as well as the scoring function, they can com-
pute for each possible chip (re)distribution the change in
their own scores and the change in all other agents’ scores.
Thus, chip-exchange decisions could become simply deci-
sions about relative score improvements. This possibility
has three problems. First, there is the computational cost
of examining the set of possible chip re-distributions in an
attempt to “optimize”. Second, it turns “helpfulness” into
a utility function computation rather than separating out a
helpfulness “characteristic” factor for examination. Third,
full chip visibility corresponds in the task-analogue to full
knowledge of other agents’ capabilities, which is an unre-
alistic assumption. As the remaining sections of this paper
reveal, though relatively simple, this setting was complex
enough to generate interesting results, lead to a range of sys-
tems design choices, and yield varying behavior on the part
of both people and computer agents.

Three classes of experiments were performed, one in-
volving 4-player groups of people and the other two in-
volving 4-player groups of computer agents. Subjects for
the human player groups were drawn from a population of
upperclass and master’s computer science students at Bar
Ilan University who were not experts in negotiation strate-
gies nor in economic theories directly relevant to agent de-
sign (e.g., game theory, decision theory). Two types of com-
puter agents were deployed: peer-designed agents (PDAs)



and controlled-design agents (CDAs). The PDAs were de-
veloped by subjects drawn from the same population as,
but distinct from, those who played in the 4-person ex-
periments. One goal of this experiment was to determine
whether the subjects would design agents differently de-
pending on whether SDwt was a factor in the score or not.
A secondary goal was to determine whether they would de-
sign agents to play the way their peers did.

The CDAs were designed to be tunable with respect to
the level of cooperativeness of agents as reflected by their
willingness to trade chips and the kinds of exchanges they
made. Three CDA types were designed, low-cooperative
(LC), medium-cooperative (MC), and highly cooperative
(HC) agents. The LC agents’ strategy was close to the
no-exchange game-theory equilibrium strategy. They never
gave chips to other agents. HC agents embodied a strategy
at the other extreme. They almost always responded to re-
quests or offered chips to other agents. When they were able
to reach the goal without help, they would offer 1:1 chip ex-
changes. If they needed to obtain chips from other agents
to reach the goal, they would propose 2:1 deals in which
they offered twice as many chips as they requested. They
never asked for more chips than they were willing to give.
MC agents had a strategy between LC and HC. Like the HC
agent, they exchanged chips, but they attempted to obtain
more chips than they gave on each exchange. They would
propose 1:1 exchanges only if a chip they required to reach
the goal was needed for their next move.

The individual performance of a player of CT may be
measured according to different criteria, corresponding ap-
proximately to different ways of measuring task perfor-
mance. The scoring rule used for the experiments described
in this paper incorporates three factors in the individual-
agent score: (1) whether the player reached the goal state
(analogous to completing its tasks); (2) the distance of the
player from the goal square, if the goal is not reached (closer
is analogous to completing more of its tasks); (3) the num-
ber of chips the player possessed at the end of the game
(related to the cost of performing its tasks). Both the ex-
perimental set up for people and the instructions to agent
designers made clear that performance of individuals was
measured non-competitively; players were to try to maxi-
mize their own scores, not to minimize other agents’ scores.

In addition to comparing agents’ scores, we analyzed the
influence of SDwt on the players’ exchange rates, distin-
guishing three kinds of players with respect to exchanges in
a game: (1)reciprocal exchange players: players who both
sent chips to other players and received chips from other
players; (2)take exchange players: players who received
chips from other players, but did not send any chips to oth-
ers; and (3)give exchange players: players who sent chips,
but did not get any chips in return. In addition, we catego-
rize asidle players who neither sent not received chips.

The experiments used two different game boards. The

“all dependent” (AllDep) board was constructed so that ev-
ery player was task dependent. To reach the goal, all play-
ers needed at least one chip from another player, and each
player had some chips it could offer to help other players.
The “one self-sufficient” (OneSelf) board was constructed
such that one player was not task-dependent. This self-
sufficient player (theSelfSrole) was able to reach the goal
without help from any other player. The three other play-
ers were task-dependent on theSelfSplayer; they needed a
chip that only that player could provide.

3. Experimental Results

The experimental results will be presented separately for
the games played by people, PDAs, and CDAs. Some re-
sults will separate theAllDep andOneSelfboards, but oth-
ers will combine performance across these settings. Exper-
iments in which players had chip visibility will be referred
to as “full visibility” and those in which players could not
see each other’s chips will be referred to as “no visibility”.
To explore CT’s use in investigating a wider range of possi-
bilities, the initial experiments varied a number of features
of the experimental setting. As a result, in some cases, the
numbers of players for certain settings are not sufficient to
provide statistically significant results. We indicate the level
of significance when the p-value≤ 0.05. A small num-
ber of additional especially interesting results are given that
though suggestive require more extensive testing to estab-
lish significance.

3.1. Experimental Setting and Basic Results

In the experiments in which people played CT, 208 up-
perclass undergraduate and graduate computer science stu-
dents at Bar-Ilan University participated in 143 4-player
games. On average, each subject participated in 2.75 games.
Of these games, a total of 64 games were played with full
board visibility and 79 with no visibility. TheAllDepboard
games were played in two reward-dependency conditions,
SDwt=0 and with SDwt=0.1. TheOneSelfboard games
were played with SDwt=0 or SDwt=0.9. Subjects commu-
nicated and made moves through CT’s GUI using a strictly
controlled negotiation language and were not permitted to
interact otherwise. They were not told the identities of the
subjects with whom they played, nor were they able to to
see each others’ terminals.

The results, analyzed along a number of dimensions in
subsequent sections, are summarized in Table 1. The col-
umn labelled “# reached goal” gives the average number
of people reaching the goal in each game. “Private score”
gives the average base score of the agents. “Total Score” is
the average total score which includes any influence of other
agents’ performance.

The PDAs were obtained from 23 one- or two-person
teams of upperclass and master’s computer science students



# reached Private Total
goal score score

No AllDepSDwt=0 2.53 161.03 161.03
visi- AllDepSDwt>0 2.83 177.34 195.08
bility OneSelfSDwt=0 2.41 141.58 141.58

OneSelfSDwt>0 2.73 158.71 301.55

Full AllDepSDwt=0 2.44 156.04 156.04
Visi- AllDepSDwt>0 3.30 200.04 220.04
bility OneSelfSDwt=0 2.60 151.87 151.87

OneSelfSDwt>0 2.61 149.87 284.75

Table 1. Results of People Playing CT

# reached Private
goal score

PDA AllDep 1.2 94.67
OneSelf 1.1 70.13

CDA/LC AllDep 0 35.625
OneSelf 1 71.625

CDA/MC AllDep 2 136.75
OneSelf 1 72.5

CDA/HC AllDep 4 237
OneSelf 4 223

Table 2. Homogeneous Groups in games with No
Visibility, SDwt = 0 Condition: PDAs, CDA/LC:
Low Cooperation Controlled Design, CDA/MC:
Medium Cooperation, CDA/HC: High cooperation.

at Bar Ilan, peers of (but distinct from) the human players.
They were designed only for games with no chips visibility.
Eleven agent-design teams were given a scoring rule that in-
cluded SDwt. Twelve teams had no knowledge of possible
reward dependence; the game specification they were given
did not include SDwt. An analysis of the agent-design doc-
uments revealed that the scoring rule was seldom used di-
rectly in reasoning about exchanges; instead agents were
designed to attempt to reach the goal with as many chips as
possible. Thus, to our surprise, there were no significant dif-
ferences between agents designed with and without SDwt.
As a result, the experiments with PDAs focused on games
with SDwt=0. Of the 23 teams, 11 implemented agents that
could be used in CT experiments.

This agent-design experiment, although preliminary and
small in scale, suggests that superficial, implicit mention of
reward-dependence in the design specification may not af-
fect design behavior. In contrast, this same incidental men-
tion of SDwt in instructions to people playing the game did
engender different behavior as discussed below.

Table 2 summarizes the basic results of games played by

four, identical PDA agents (top section), and those played
by four, identical agents of each of the CDA types (remain-
ing sections). Each cell contains an average from the play
of at least 40 individual agents. These results are compared
with human performance in the next section. We then an-
alyze the results with respect to the social dependency hy-
potheses and the influence of visibility.

3.2. Analysis and Comparison: PDAs and Humans

We compared the performance in games with no visibil-
ity andSDwt = 0 of four-player games of homogeneous
PDAs with that in games played by people. We expected the
performance of these groups to be similar because the PDAs
were developed by students drawn from the same popula-
tion as the human players. Furthermore, we hypothesized
that the ability of PDAs to consider a larger set of possible
paths to the goal and to send and respond to a large num-
ber of messages more easily, would give the PDAs a slight
advantage over the human players.

To our surprise, people played significantly better than
the PDAs. More players reached the goal and private scores
were higher for human players than PDAs, as a comparison
of the first and third rows of Table 1 (people) with the top
row of Table 2 (PDAs) shows. (Total score cannot be used
for comparison, because it differs only in theSDwt > 0
settings.) In particular, the average private score for people
playing gamesAllDep andOneSelf(with no visibility and
SDwt=0) was significantly higher (t-test,p ≤ 0.05) than
the average private score of the PDAs in these games. Fur-
thermore, the average number of people reaching the goal in
these games was significantly higher than the average num-
ber of PDAs reaching the goal (χ2 test,p ≤ 0.001). CT play
on a 6x6 board does not require sophisticated movement
strategies, and both human players and PDAs were provided
with a path finder procedure that helped them find possi-
ble paths to the goal and the chips needed for these possible
paths. Thus, these differences in performance cannot be at-
tributed to computational demands on the automated agents.

We explored a number of hypotheses as potential ex-
planations for these results. Superficial possibilities did not
hold. PDAs sent significantly more messages in the games
than people sent, so lack of communication does not ex-
plain the lower performance of PDAs. The hypothesis that
the overall number of chips sent by players influences per-
formance was also not supported by analysis of the data.
The average number of chips sent by PDAs was similar to
the average number of chips sent by human players. How-
ever, especially in the no-visibility case, chips that are sent
may not be useful for advancing toward the goal. For in-
stance, a player desperate to get a chip to be able to move
immediately, may offer a large number of chips in exchange
for the one it needs. This kind of exchange increases the
overall number of chips exchanged, but may not increase



Figure 1. Chip-exchange Comparison of People and PDAs; y-axis is percentage of players of each exchange
type; Left: all games and players; Right: SelfSRole OneSelfGame.

the number of agents able to reach the goal compared with
1:1 exchanges.

Two analyses were undertaken to examine the hypothe-
sis that people achieved higher scores than PDAs because
they were more helpful. First, we examined the percent-
ages across all games of people and of PDAs in each ex-
change type—reciprocal-, take-, and give-exchange play-
ers and idle. Second, the performances of people and PDAs
were compared to the different types of CDAs.

The charts in Figure 1 compare human players and PDAs
with respect to chip exchange type, both overall (left) and
for theSelfSrole in theOneSelfgame (right). The percent-
age of people who were reciprocal- and give-type players
was significantly higher (χ2 test; p=0.01) than the percent-
age of the PDAs in these categories. The percentage of
PDAs that were idle (not involved in any chip exchange)
was significantly higher (χ2, p ≤ 0.001) than the percent-
age of people who were idle. These differences are more
pronounced for theSelfSrole in OneSelf. This role is one
in which the player, from the initial chip distribution at
the start of the game, does not need any chips from an-
other player to reach the goal. Any exchanges the player
participates in are helpful. Give-type exchanges are evi-
dence of benevolence, since the player in no way takes ad-
vantage of the other player’s weaker state. Reciprocal ex-
changes are also benevolent, because the player, by agree-
ing to give chips, takes a risk; it may not get any chips in re-
turn because agreements are not enforceable and exchanges
are simultaneous. No PDA playing theSelfSrole was of
the give-exchange type. Most PDAs playing this role were
idle (81%) while few of the human players were (11%).
Most people in theSelfSrole were reciprocal-exchange type
(81%).

The results in Table 2 show PDAs perform between LC
and MC inAllDepgames and close to LC inOneSelfgames.
The performance of the human players, as shown in the first
and third rows of Table 1, falls between that of MC and HC
in both games. Thus, people resemble the more highly co-

operative CDAs, whereas the PDAs resemble the less coop-
erative ones.

Both analyses support the hypothesis that people’s
greater helpfulness led to higher scores. These results re-
semble research in social psychology on contributions to
groups [1, 14].

3.3. The Influence of Reward Dependence

The first hypothesis in Section 2 was that higher SDwt
would lead to an increase in helpful behavior. We expected
agents to give other agents chips more frequently and to
ask for fewer chips in exchange when SDwt was higher. We
also hypothesized that task-independent players would be
more helpful if SDwt was higher. Our analysis of reward de-
pendence considers only human players, because the PDAs
were run only withSDwt = 0.

As discussed above, the total number of chips exchanged
in a game is not a good indication of helpful behavior. How-
ever, overall performance and the percentage of chip ex-
changes that are reciprocal- and give-type are.

A comparison of the results in Table 1 for human players
whenSDwt = 0 with those whenSDwt > 0 supports this
hypothesis for both the visibility and non-visibility games.
The average private score of all games played by people
with no visibility in which SDwt > 0 was higher than in
the games whereSDwt = 0. Similarly, the average private
score of people who played the games with visibility when
SDwt > 0 was significantly higher than whenSDwt = 0
(t-test,p= 0.032).2 Considering all the games, with and with-
out visibility the t-test result showed significant of p=0.057.
In addition, the number of human players who reached the
goal in games in whichSDwt > 0 was significantly higher
than for games withSDwt = 0 (χ2 test; p=0.01).

2 The slight decrease in private score for gameOneSelffor SDwt >
0 from that for SDwt = 0 is not significant. Inspection of the
game transcripts suggests the relatively poor performance statistics
for SDwt > 0 in this game setting resulted from small numbers and
player errors.



Figure 2. Exchange-type Comparisons for Human Players; y-axis is percentage of players in all games. Left:
SDwt; Center: Task Dependence. Right: Visibility;

Reward dependency also influenced the exchange types
of the human players. As shown in Figure 2 (left), a higher
percentage of players were reciprocal- and give-type when
SDwt > 0 than whenSDwt = 0 and a lower percentage
were take-type or idle.

3.4. The Influence of Task Dependence

The second hypothesis was that task-independent play-
ers, players that do not need other agents’ help, would
give chips to others less frequently and would ask more
in exchange. We thus predicted that such players would
be less frequently reciprocal- or give-exchange type play-
ers and more often take-type and idle players than would
task-dependent players. The analysis of theSelfSrole in
the OneSelfgame suggests that task dependency does in-
fluence the helpfulness of the players. Figure 2 (middle)
shows that reciprocal and idle portions of this hypothe-
sis holds for people. In particular, the percentage of task-
dependent players that were reciprocal was significantly
larger than the percentage of task independent players (χ2

test,p ≤ 0.001). The one surprising result is that the per-
centage of task-independent players that were give-type was
significantly higher than the percentage of task-dependent
give-type players (χ2 test,p ≤ 0.001). These results sug-
gest that human players are generous and willing to give
free chips even when they do not need anything in return.
The charts in Figure 3, which give exchange types both peo-
ple and PDAs for no-chip-visibility games andSDwt = 0
are similar.

3.5. The Influence of Visibility

We expected visibility to improve the performance of
players and to increase their willingness to help one an-
other. However, as Figure 2 (right) shows, the results only
partially support this hypothesis.

The average private score for people in games with chip
visibility was higher than their average score in games with
no visibility. However, the effect on the players’ exchange-
type was less consistent. The percentage of players who

were reciprocal-type increased with visibility and the per-
centage of those who were idle decreased, which supports
the hypothesis. However, the percentage of those who were
give-types was higher for no-visibility than for visibility.
This result may be explained by the fact that with chip vis-
ibility, players’ needs are known to each other, and as a re-
sult, players may be less willing to give out chips freely.

4. Conclusions and Future Work

The experiments presented in this paper demonstrate that
the Colored Trails game provides a rich framework for in-
vestigating decision-making strategies in multi-agent situ-
ations. The experimental results, in particular the superior
performances in games played by people and by highly co-
operative CDAs, indicate that cooperation is beneficial: it
increases the average score and the average number of play-
ers reaching the goal. These results suggest that systems
designers should build cooperative agents when construct-
ing agents that will engage in group activities with people,
not only because it improves performance, but also because
people exhibit and expect it.

However, game-theory as well as results of strategic ne-
gotiation work suggest a major potential concern: designers
of cooperative agents risk their agents being taken advan-
tage of by other, less cooperative agents. To examine this
worry, we ran games of 3 MC agents against each of the
PDA agents and games of 3 HC agents against each of the
PDA agents. The results of these games are reported in Ta-
ble 3. The values in the table without brackets are those of
the PDAs and the values in the brackets are those of the rel-
evant CDA.

We expected the performance of PDAs, which are essen-
tially non-cooperative, to improve when playing with MC
and HC agents and to do so at the expense of the CDAs
whose performance would degrade significantly. However,
the results support only the first part of the hypothesis
and a weak version of the second. The performance of the
PDAs increases significantly in all games they played with
HC agents (t-test, p=0.06) and theAllDep games with MC



Figure 3. Exchange-types for No Visibility, SDwt = 0 Condition. Left: Humans, Right: PDAs

# reached Private
goal score

With AllDep 1.72 127.25
MC (1.57) (138.42)

OneSelf 1 74
(1) (69.51)

With AllDep 2 151.05
HC (2.43) (193.13)

OneSelf 3.53 198.19
(2.27) (168.65)

Table 3. Results of CDA-PDA Play

agents (t-test,p ≤ 0.001). In theOneSelfgame when play-
ing with MC agents the average PDA scores did not change.

As expected, the average private score of the HC and MC
CDAs decreased when playing with a non-cooperative PDA
in the group, as did the number of the agents that reached
the goal. However, the decrease was not down to the level of
the PDAs or LC agents. HC’s average private score changed
from 237 to 193.13 inAllDep and from 223 to 168.65 in
OneSelfgames; both these scores reflect agents making it to
the goal a significant portion of the time. The private score
of MC agents slightly increased inAllDep games and only
slightly decreased inOneSelfgames. It is also noteworthy
that the HC agents had the highest scores among the three
type of agents even in this heterogeneous environment.

These results suggest that it is beneficial to design and
implement cooperative agents. Together with the main re-
sults of games played by people, they suggest that coop-
erative PDAs will benefit even more from being coopera-
tive in heterogeneous groups. Related CT-based investiga-
tions of social reasoning and learning indicate that agents
that model and learn the social factors important to people
are more successful than agents that adhere to the equilib-
rium strategy [4].

The initial CT experiments suggest several directions
for future research. Game variations other thanAllDep and
OneSelfare needed to further explore the conditions under
which people are cooperative. Games in which people and
computer agents play are needed to understand the ways in

which people will react to different types of agent strategies
as well as to formulate better strategies for agents in such
settings. In this experiment, the number of student-designed
agents was small; additional investigations of agent design
are needed to determine whether the contrast between agent
design and people’s play is idiosyncratic or a general phe-
nomenon.
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