Temporal Reasoning for a Collaborative Planning Agent
in a Dynamic Environment*

Meirav Hadad
Department of Mathematics and Computer Science
Bar-Ilan University
Ramat-Gan 52900, Israel

Sarit Kraus
Department of Mathematics and Computer Science
Bar-Ilan University
Ramat-Gan 52900, Israel

Institute for Advanced Computer Studies, University of Maryland
College Park, MD 20742
ph.: 972-3-5318863

Yakov Gal
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

Raz Lin
Department of Mathematics and Computer Science
Bar-Ilan University
Ramat-Gan 52900, Israel

March 18, 2002

Abstract

We present a temporal reasoning mechanism for an individual agent situated in a
dynamic environment such as the web and collaborating with other agents while inter-
leaving planning and acting. Building a collaborative agent that can flexibly achieve its
goals in changing environments requires a blending of real-time computing and Al tech-
nologies. Therefore, our mechanism consists of an Artificial Intelligence (AI) planning

*This material is based upon work supported in part by the NSF, under Grant No. I1S-9907482.

1

subsystem and a Real-Time (RT) scheduling subsystem. The AI planning subsystem
is based on a model for collaborative planning. The AI planning subsystem generates
a partial order plan dynamically. During the planning it sends the RT-Scheduling
subsystem basic actions and time constraints. The RT scheduling subsystem receives
the dynamic basic actions set with associated temporal constraints and inserts these
actions into the agent’s schedule of activities in such a way that the resulting schedule
is feasible and satisfies the temporal constraints. Our mechanism allows the agent to
construct its individual schedule independently. The mechanism handles various types
of temporal constraints arising from individual activities and its collaborators. In con-
trast to other works on scheduling in planning systems which are either not appropriate
for uncertain and dynamic environments or cannot be expanded for use in multi-agent
systems, our mechanism enables the individual agent to determine the time of its ac-
tivities in uncertain situations and to easily integrate its activities with the activities
of other agents. We have proved that under certain conditions temporal reasoning
mechanism of the AI planning subsystem is sound and complete. We show the results
of several experiments on the system. The results demonstrate that interleave planning
and acting in our environment is crucial.

1 Introduction

Cooperative intelligent agents acting in uncertain dynamic environments should be able to
schedule their activities under various temporal constraints. Temporal constraints may arise
when an agent plans its own activities, or when an agent coordinates its activities with other
collaborating agents.

Our work is based on the SharedPlan model of collaboration [23] that supports the design
and construction of collaborative systems. It includes planning processes that are responsible
for completing partial plans, for identifying recipes, for reconciling intentions, and for group
decision making. Determining the execution times of the single-agent and multi-agent actions
in SharedPlans is difficult because actions of different agents must be coordinated, plans are
often partial, knowledge of other agents’ activities and of the environment is often partial,
and temporal and resource constraints must be accommodated.

In this paper, we present a mechanism that enables cooperative agents to interleave
planning for a complex activity with the execution of the constituents of that activity. Each
agent reasons individually while interacting with other agents. Each agent dynamically
determines the durations and time windows for all the actions it has to perform in such a
way that all of the appropriate temporal constraints of the joint activity will be satisfy. The
execution times and the durations of the constituent activities need not be known in advance.
That is, an agent may change its timetable easily if it identifies new constraints arising from
changes in the environment or communication with other agents. Furthermore, if the agent
determines that the course of action it has adopted is unsuccessful, then it can easily revise
its timetable of future actions. The mechanism in this paper focuses on temporal scheduling.
Thus, to simplify, the planner does not take into consideration preconditions and effects.

Our mechanism’s ability to schedule an agent’s actions under uncertainty contrasts with
other planners, who rely on perfect domain knowledge throughout plan development and
execution [34, 16, 11, 4]. Others, who can plan under uncertainty, are complex and cannot

2

Dynamic
Environment

AGENT :

Al subsystem ‘" RT subsystem
A A

dispatch

Seheculing decision
mechanisim basic-actions

Figure 1: The structure of individual agent in the system.

be easily extended for use in cooperative multi-agent environments [70, 19]. Our mechanism
is simple and appropriate for uncertain, dynamic, multi-agent environments, and enables
agents to reason about their timetables during their planning process and thus to interleave
planning and acting.

Though our mechanism is appropriate for collaborative multi-agent environments, it en-
ables each agent to determine its own timetable independently. Thus, unlike other collabora-
tive multi-agent systems, which either suggest broadcasting messages among team members
to maintain the full synchronization [59, 65] or suggest that a team leader be responsible for
determining the timing of the individual actions [27], our mechanism does not restrict the
activity of the individual agents.

As will be described in section 2.1, building a collaborative agent that can flexibly achieve
its goals in changing environments requires a blend of real-time computing and Al technolo-
gies [44]. Thus, our system consists of an Al planning subsystem and a Real-Time (RT)
scheduling subsystem. Figure 1 illustrates the structure of an individual agent in our sys-
tem. Given an agent’s individual and shared goals, the Al planning subsystem plans the
agent’s activities. It computes incremently a set of basic actions® and temporal constraints
on them. Before sending the basic actions to the RT scheduling subsystem, the AI planning
subsystem determines consistency of the various types of the temporal constraints. The RT
scheduling subsystem determines the exact time in which the basic actions will be performed
in such a way that the constraints are satisfied.

In the next section we survey the related research fields on temporal reasoning and
scheduling, and we compare these fields with our work. The SharedPlan model that is
the basis of the AI planning subsystem is briefly described in section 3. The temporal
reasoning algorithm of the AI planning subsystem for the individual case is presented in

!We define a basic action as an action which must fulfill three conditions: (a) it does not involve more
than one agent; (b) it must be performed in one sequence without preemption; and (c) there is only one way
to perform the action.

section 4. In section 5 we display the theorem of the correctness of this reasoning algorithm
and discuss its complexity. Then, in section 6, we present a heuristic algorithm for scheduling
by the RT scheduling subsystem. This heuristic tries to find a feasible schedule in which
all tasks meet their appropriate deadlines. In section 7 we present the results of several
experiments performed on our system. We conducted these experiments in order to evaluate
the performance of the system and to study the influence of several parameters on the
system’s performance. Finally, in section 8, we show how to expand the individual case into
the multi-agent case.

2 Background

2.1 AI vs RT Systems

Much traditional and current AI research revolves around building powerful search-based
planning mechanisms that can find useful plans of action in complex domains that include
goal interactions, uncertainty and temporal information [65, 23, 36, 30, 43]. Unfortunately,
the traditional Al systems have been developed without much attention to critical temporal
limitations that motivate RT systems research. However, as these Al systems move to real-
world applications, they also become subject to the temporal constraints of the environments
in which they operate. Thus, the needs of real applications are generating the integration
of the RT and Al system design technologies. This section discusses the issues arising from
attempting to combine RT methods and Al methods.

A real-time AI problem solver must operate under certain temporal constraints imposed
by the environment. The control system of a real-time Al problem solver must perform its
search process in such a way that the temporal constraints of the problem are satisfied. Real-
time Al problem solvers differ from conventional RT systems. For example, in conventional
real-time domains, the system must know all the tasks that need to be executed, as well
as their worst-case resource requirements before they can be completed. In addition, the
system must be able to finish building the schedule of the tasks before any of the tasks
begin to be executed. Real-time AI problem solvers aim at dealing with other constraints
of the environment, such as uncertainty and incomplete knowledge about the environment,
dynamics in the world, bounded validity time of information, and other resource constraints
[25].

Musliner et al. [44] compare the features of RT and Al systems and present a table which
summarizes these features (see columns 2 and 3 in Table 1). As we can see in this table, their
comparison reveals a conflict between the constraints involved in making RT guarantees and
the characteristics of traditional Al methods.

The characteristics of RT systems (e.g., [32, 71, 9, 56, 62, 72, 39]) are summarized in
the second column of Table 1: an RT system assumes an environment that may be dynamic
(in the sense that the tasks required may vary at run time), but at least has knowledge of
the worst-case task requirements (e.g., the deadline, release time, and duration of the task).
Most RT systems run numeric control algorithms with well-understood resource requirements
and performance. Using these worst-case measures, it is possible to build task schedules that
allocate a system’s limited execution resources and provide guaranteed response times. Thus,

Real-Time system | Traditional AI planner Our system
Environment | dynamic, static, closed-world, dynamic, uncertain,

known worst-case predictable incomplete information
Tasks classical control, search, look ahead

numeric algorithms | planning partial planning
Resources limited assumed sufficient limited
Response time | guaranteed high-variance or unbounded | high-variance planning,

guaranteed

Table 1: Comparing features of Al and RT systems.

RT research has focused on developing methods that guarantee that a particular set of tasks
can be executed under domain’s temporal constraints [63, 40, 6].

The third column of Table 1 outlines characteristics of traditional Al planning systems
and reveals a sharp contrast with RT systems. Most Al systems (e.g.,[26, 69]) are based on
the “closed world” assumption: the Al-controlled agent is the only source of change in the
world. Within this environment, the Al system’s task is to plan some future course of action
using projection (look ahead) and search. Most planners assume that the agent executing
the plan will have essentially unlimited sensing and processing resources [50, 54, 55, 7|. As
a result, the time needed to find a plan in the worst case scenario may be several orders of
magnitude longer than the average case. This means that allocating resources to guarantee
the worst-case response time will be very costly and will lead to very low utilization of a
system’s resources. Furthermore, Al systems with powerful knowledge representation or
learning abilities ([17, 64]) may have unbound worst-case response times. In these cases, it is
impossible to allocate sufficient resources in advance, and thus RT guarantees are unfeasible.

The fourth column in this table, which combines characteristics from both domains,
describes the characteristics of our system. In our system, which is based on the SharedPlan
model, the agent has a description of its goals, its environment, and its possible actions. The
system uses partial planning methods to choose the correct action for any particular situation
within the unbound world model. These agents, which act in dynamic environments, are
uncertain about their own actions and have incomplete information about other agents and
the environment. That is, the worst case requirements of their tasks may be unknown.
Furthermore, agents which act in a cooperative environment may have limited resources. In
addition, the agents must plan their activities under constraints and provide a guaranteed
response time.

To meet these challenges, we combine AI and RT techniques into a single system.
Musliner et al. [46] describe three fundamental approaches for integrating Al and RT
systems. The first approach forces AI computation to meet deadlines identical to other
real-time tasks. The goal, then, is to be “intelligent in real time.” For example, Hamidzadeh
and Shekhar [25] use this approach in their DYNORAII real-time planning algorithm. As
we will describe in section 6, the scheduling problem that our RT scheduling subsystem faces
is NP-complete. Thus, in some cases, the RT scheduling subsystem finds a feasible schedule

by using the simulated annealing algorithm [55], which is a well known search method from
the AT field.

The second approach essentially assumes that the overall system employs typical Al
search-based deliberation techniques, but under certain circumstances these techniques will
be short-circuited in favor of real-time reflexive action. This type of system is suitable for
domains where deliberative action is the norm and mission-critical, real-time reactions are
rare. The Soar system [33] is one example of these types of systems.

The third approach, which has motivated the design of our system, tries to retain each
system’s strength by allowing separate RT and Al subsystems to cooperate in achieving
overall desirable behaviors. The subsystems must be isolated so that the AI mechanisms do
not interfere with the guaranteed operations of the RT subsystem, but the subsystems must
also communicate and judiciously influence each other. Thus, cooperative systems can be
seen as being “intelligent about real time,” rather than “intelligent in real time.” Examples
of such architectures include Arkin’s Autonomous Robot Architecture (AuRA) [3], Simmons’
Task Control Architecture (TCA) [57], Miller and Gat’s three-layer ATLANTIS system [41],
and the CIRCA system [45].

However, in all of these systems, the RT subsystem is a reactive system that is embedded
in the dynamic environment and responds by taking actions that affect that environment
without using any planning on reasoning methods. However, when it facing a problem
(for example, a mobile robot facing an obstacle), the job of the AI subsystem is to resolve
the problem by building a plan and sending the constituent primitive actions to the RT
subsystem. That is, the Al subsystem in these works does not include any ability to reason
about the temporal constraints of the high-level actions and the primitive actions in the
problem. As a result, although these systems work in uncertain and dynamic environments,
the AI subsystem works as a traditional AI problem solver which is appropriate only for
“closed world” environments. In our work, the AI-P subsystem is embedded in the dynamic
environment and interacts with it. Our AI-P subsystem enables the agent to commit to
goals as well as to actions that will enable it to achieve those goals under several kinds of
temporal constraints. It then builds a partial plan to achieve those goals. Each primitive
action in the plan is sent to the RT scheduling subsystem for execution under appropriate
temporal constrains.

An additional example of a system that belongs to the third approach is the RealPlan
system [60]. This system consists of a planner and a scheduler. The planner uses traditional
Al methods for reasoning about the way to allocate resources. After the planning is complete,
the scheduler decides which resources to actually allocate based on resource allocation policies
proposed by the planner. The resource allocation polices proposed by the planner are given
in terms of constraints on values of scheduling variables. The RealPlan system does not
produce an exact timetable, but, rather, merely determines the order of the execution of the
planned actions in such a way that 2 actions will not use the same resource during the same
interval. Thus, they do not consider critical temporal limitations as we do.

2.2 Temporal Reasoning and Scheduling in AT Systems

As mentioned above, contrary to our dynamic Al environment, the RT subsystem assumes
that the worst-case task requirements are known. Namely, the task data in an RT system
consists of its performance requirements, including specific deadlines, precedence constraints,
and duration time. However, in our uncertain dynamic environment, these performance re-
quirements are typically unknown. Thus, we suggest that the Al planning subsystem must
be able to reason about incomplete knowledge. That is, the Al planning subsystem must
be able to reason about the temporal requirements of basic actions. When the Al plan-
ning subsystem sends a basic action to the RT scheduling subsystem, it provides temporal
requirements as well.

Representing and reasoning about incomplete and indefinite qualitative temporal infor-
mation is an essential part of many Al systems for individual agents. Several formalisms
for expressing and reasoning about temporal knowledge have been proposed, most notably,
Allen’s interval algebra [2], Vilain and Kautz’s point algebra [68], and Dean and McDermott’s
time map [13]. Each of these representation schemes is supported by a specialized constraint-
directed reasoning algorithm. At the same time, extensive research has been carried out on
problems involving general constraints as in [42]. Some of these have been extended to prob-
lems involving temporal constraints [14, 5]. Since all of these algorithms require their input
to include all the constraints on the events, and since these constraints cannot be changed
during the run of the algorithms, these works can be applied only in “static” environments
in which the occurrence times of events and their durations are known beforehand.

Recently, several works have developed techniques for “real world” environments, taking
into account changes in the environment while executing a plan. Although they suggest
an intelligent control system that can dynamically plan its own behavior, they do not take
temporal constraints into consideration. Examples of such works include M-SHOP [49]
which is focused on domain-independent planning formalization and planning algorithms;
the Zeno system [29], which suggests a method for building a decision-making mechanism
for a planner in an uncertain environment; and the SGP contingent planning algorithm [12],
which handles planning problems with uncertainty in initial conditions and with actions that
combine causal and sensory effects. It also includes the planning model of the constraint-
based EXCALIBURE planning system [47, 48] and so on. The main goal of this paper is to
handle temporal constraints of the activity.

Other recent planners such as O-plan [11], ZENO [51], ParcPlan [16, 34] and Cypress [70]
are able to handle temporal constraints. However, they do not produce an exact timetable,
but rather only determine the order of the execution of the planned actions. Thus, most of
them (e.g., [11, 51, 16, 34]) do not interleave planning and execution. Therefore they cannot,
for example, backtrack in case of failure during execution. Even though Cypress [70] is built
from a planning subsystem (i.e., SIPE-2) and an execution subsystem (i.e., PRS-CL) and
therefore interleaves planning and execution, its execution subsystem is unable to handle
temporal constraints. As a result, this system cannot perform planning and scheduling,
as does our system. In addition, since these works do not determine explicit times for the
planned actions, using such systems in a cooperative multi-agent environment is problematic.

Vidal and Ghallab [67] extend classical temporal constraint networks to handle all the

types of temporal constraints presented by Allen [1] in uncertain environments. While they
handle a wider range of constraints than we do, they do not study how their mechanism can
be used by a planner.

In other works that combine planning and scheduling methods [8, 66, inter alia], the
planner builds a complete plan of the actions that it intends to perform before it begins
executing any of them. Also, in most cases, both the duration and the time window of each
action that the planner needs to schedule are known in advance. These restrictions and
requirements are not needed in our mechanism’s applications.

In our work, we use networks of binary constraints [42], which are special cases of a gen-
eral class of problems known as constraint satisfaction problems. Our development extends
the previous works on temporal reasoning, as in [14]. However, in contrast to these previous
works, our algorithm is also appropriated for distributed, dynamic, and uncertain environ-
ments. The AI planning subsystem in our work consists of a component for determining
consistency of temporal data and procedures for discovering or inferring new facts about
this data. Our planning system is based on the SharedPlan model for collaborative agents.
Using this model enables us to build reasoning mechanisms for collaborative multi-agent
environments. The building of the temporal reasoning component is difficult because the
SharedPlan model deals with agents that may have only partial knowledge of the way in
which to perform an action.

2.3 Scheduling in RT systems

As we mentioned in section 2.1, several works [44, inter alia] propose a blending of real-time
computing and Al technologies in which a RT system is responsible for the execution of the
actions generated by a planner. However, the RT systems in these works are based on existing
real-time developments. As a result, they do not pay attention to the unique properties of the
tasks which are generated by the agent and are associated with uncertainty. In the literature
on real-time, computing a schedule at run time is often called “dynamic scheduling,” in
contrast to pre-run or “static scheduling,” which assumes complete knowledge of all tasks
before run time. Because our system must meet hard timing and precedence constraints, the
predictability of the system becomes an important concern.

Most existing RT' scheduling systems rely on pre-run static scheduling to achieve this,
because computing the schedule at run time cannot, in general, guarantee that a feasible
schedule is found [73]. For example, Xu and Parnas [72] present a static scheduling algorithm
that finds an optimal schedule on a single processor for a given set of processes with arbitrary
release times, deadlines, precedence and exclusion relations, through a branch and bound
algorithm. The computation time to produce the schedule they present grows exponentially
as the problem size increases. Most research dealing with dynamic scheduling of tasks has
focused on preemptive scheduling or periodic task sets ([58] inter alia), or distributed systems
[53, inter alia], both of which do not match the requirements of task sets generated by our
cooperative intelligent agents, which are non-preemptive and a-periodic. Other works [21]
do not consider precedence relations between the tasks, which is considered to be a very
important requirement in the AI environment of a planner, in which several actions are
preconditions of other actions. Feasible dynamic scheduling in such an environment has

been classified as an NP-Hard problem [18]. A practical scheduling algorithm must be based
on heuristics that are practical and adaptive.

Stankovic and Ramamritham [61] have developed the Spring Algorithm, which schedules
non preemptive tasks at run-time. The Spring system treats the scheduling problem as
a search tree, and directs each scheduling move to a plausible path by choosing the task
with the smallest possible value of a heuristic function. Whenever a task is added to the
partial schedule and deemed infeasible, backtracking must be performed in order to find
a different task to append to the partial schedule which might lead to a feasible schedule.
This algorithm leads to good results for domains such as operating systems, in which several
processes compete for a set of resources. We tried this algorithm in our domain; however, in
our domain this algorithm provided poor results.

As will be described in the following section, the tasks in the set which are sent to the
RT scheduling subsystem are the constitutes of a complex action that was separated into
its basic components. Thus, the constraints to which the high-level action was subjected
will also influence the constraints of its constitutes. As a result, all of the basic actions
which are constitutes of a specific complex action must be scheduled in the time interval of
this complex action. Thus, it is probable that if we build an initial schedule by using the
“Earliest Deadline First” (EDF) algorithm, we will attain an initial schedule which will be
close to the desirable schedule. This factor led to the development of our own scheduling
algorithm, which consists of two major parts. The first is a primary EDF scheduler. The
second is a simulated annealing heuristic which which has been proved to be efficient for
other scheduling problems [15, inter alia]. The algorithm is described in section 6.

3 The SharedPlan Model

When agents form teams, new problems emerge regarding the representation and execution
of joint actions. A team must be aware of and concerned with the status of the group effort
as a whole. To rectify this problem, it was proposed that agents have a well-grounded and
explicit model of cooperative problem solving on which their behavior can be based. Several
such models have been proposed [35, 30, 27], including the SharedPlan model [23], which is
the basis of our work.

The SharedPlan formalization [23, 22| provides mental-state specifications of both shared
plans and individual plans. SharedPlans are constructed by groups of collaborating agents
and include subsidiary SharedPlans [36] formed by subgroups as well as subsidiary individual
plans formed by individual participants in the group activity. The full group of agents must
mutually believe that the subgroup or the agent of each subact has a plan for the subact.
However, only the performing agent(s) itself needs to hold specific beliefs about the details
of that plan.

Actions in the model are abstract complex entities that have been associated with various
properties such as action type, agent, time of performance, and other objects involved in
performing the action. Following Pollack [52], the model uses the terms “recipe” and “plan”
to distinguish between knowing how to perform an action and having a plan to perform
the action. When agents have a SharedPlan to carry out a group action, they have certain

individual and mutual beliefs about how the action and its constituent subactions are to be
implemented.

The term recipe [52, 37] is used to refer to a specification of a set of actions, which is
denoted by G; (1 < i < n), the performance of which under appropriate recipe-constraints,
denoted by p; (1 < j < m), constitutes performance of a.? The meta-language symbol R, is
used in the model to denote a particular recipe for a.The subsidiary actions 3; in the recipe
for action a, which are also referred to as a subact or subactions of a, may be either basic
actions or complex actions.

Basic actions are executable at will if appropriate situational conditions hold. A complex
action can be either a single-agent action or a multi-agent action. In order to perform some
complex action, 3;, the agents have to identify a recipe Rp, for it. There may be several
recipes, Rg,, for 8;. The recipe Rg, might include constituent subactions d;,. The J;, may
similarly be either basic or complex. Thus, the general situation considering the actions
without the associated constraints p;, is illustrated in Figure 2, in which the leaves of the
tree are basic actions. We refer to this tree as “a complete recipe tree for a.” The SharedPlan
formalism uses Select _Rec and Select_Rec_GR to refer respectively to the planning actions
that agents perform individually or collectively to identify ways to perform (domain) actions
by extending the partial recipe RE for a. This hierarchical task decomposition method of the
partial order planning is known in the literature of AI planning systems as (HTN)-style [28].

//

Ma1a N - - 11p KA1 Kkn2

Figure 2: Recipe tree. The leaf nodes are basic actions.

Figure 3 presents an example of a possible recipe for some complex level action a. As
shown in this figure, the recipe structure consists of subactions, temporal constraints, and
may also include other entities. Each subaction may be either an individual action or a
multi-agent action and is associated with temporal intervals; each interval represents the
time period during which the corresponding subaction is performed. The recipe includes two
types of temporal constraints, precedence constraints and metric constraints. The parameters
of an action may be partially specified in a recipe and in a partial plan. For the agents to
have achieved a complete plan, the values of the temporal parameters of the actions that

2The indices 7 and j are distinct; for simplicity of exposition, we omit the range specifications in the
remainder of this document.

10

(make-recipe :action-type ’a

:name 'R,
:time-period ‘unknown
:subactions (1) (B, Agenty Ty ---)

(2) (/82 Agentl Tg .)
(3) (Bs (Agent, Agents) Ts ---)
(4) (Ba Agenty Ty ---)
(5) (Bs (Agent; Agents) Ts---)
:precedence-constraints [3; before [, [31 before 33
2 before 34 2 before [
33 before 5
finish-time T»— start-time 77 < 20minutes),
start-time T4 — finish-time T» < 40minutes),
finish-time Ts— start-time T3 < 60minutes),
start-time T3 after 5:00)

:metric-constraints

PR

Figure 3: Recipe of the Complex Action a.

constitute their joint activity must be identified in such a way that all of the appropriate
constraints are satisfied.

The problem with reasoning about the temporal parameters of the actions that the
agent is committed to perform results from the dynamic decomposition of the actions in the
SharedPlan model. When a high-level action is broken up into sequences of subactions and
finally into basic actions, the time available to achieve the high-level action must also be split
into intervals for each subaction. Doing this correctly would require the SharedPlan system
to have a predictable mechanism of how long it takes to solve the subactions. Unfortunately,
building such a predictable model is difficult because the SharedPlan model deals with
agents that may only have partial knowledge on the way in which to perform an action.
That is, as a result of the dynamic nature of plans, any of the components of its plan may
be incomplete and the agent does not know the duration of the complex actions before it
finishes constructing its plan. In this paper we describe the technique of temporal reasoning
mechanisms which we propose to use in our system in order to build this type of predictable
mechanism which may reason in a dynamic fashion.

In the following section we present a temporal reasoning algorithm that enables the
identification of the values of the temporal parameters. First the mechanism for an individual
agent is presented; then we describe how it can be expanded into a collaborative environment.

4 The Algorithm for Temporal Reasoning

To execute an action «, an agent has to execute all of the basic actions in a complete recipe
tree for a under the appropriate constraints. The goal of the temporal reasoning algorithm
of the AI planning subsystem is to develop a complete recipe tree and to find the temporal
requirements associated with the basic actions. However, initially an agent may not be able
to develop the entire recipe tree and to identify its constraints: it may only have partial
knowledge about how to perform an action; it may have incomplete information about the

11

environment and other agents; and it may have to wait to receive temporal constraints of
other agents. For example, the agents may only have a partial recipe for the action; or they
may not yet have decided who will perform certain constituent subactions and therefore
they may have no individual or collaborative plans for those acts; or, an agent may not have
determined whether potential new intentions are compatible with its current commitments
and if they can be adopted. As the agents reason individually, communicate with one
another, and obtain information from the environment, portions of their plans become more
complete. Furthermore, it may need to start executing some of the basic actions before it
has been able to construct the entire tree. In addition, if an agent determines that the course
of action it has adopted is not working or receives a new temporal constraint from another
agent, then the recipe tree may revert to a more partial state. The AI planning subsystem
enables the agent to construct the recipe tree incremently and to backtrack when needed.

As soon as it is identified, each basic action [is sent to the RT scheduling subsystem?®
along with its temporal requirements (Dg, dg, 73, pg), where Dy is the Duration time, i.e., the
time necessary for the agent to execute the basic action 5 without interruption; ds denotes
the deadline, i.e., the time before the performance of the basic action should be completed;
rg refers to the release time, i.e., the time at which the basic action becomes ready for
execution; pg is the predecessor actions, i.e., the set {5,|(1 < j < n)} of basic actions whose
execution must end before the beginning of the execution of 3. Note that a basic action may
be performed before the agent completes its plan to perform a.

Let A = {8;|(1 < i < m)} be the set of all the basic actions which were sent dynamically
to the RT scheduling subsystem as part of the performance of action «a. It is important to
note that the Al planning subsystem’s algorithm does not check if there is a schedule for
A that satisfies the temporal constraints and meets all the deadlines, since this problem is
NP-complete [18]. However, the algorithm ensures that performing g;s under the associated
constraints will constitute performing o without a conflict. Thus, a feasible schedule exists
if actions can be performed in parallel. The task of finding a feasible schedule (if such a
schedule exists) is left for the RT scheduling subsystem. If the RT scheduling subsystem
fails to schedule certain basic actions, it informs the AI planning subsystem of its failure.
However, because the Al planning subsystem ensures that the temporal requirements of all
the basic actions do not conflict, the agent may ask another agent to execute the problematic
basic action in parallel with other actions.

The temporal reasoning mechanism is based on previous work on the temporal constraint
satisfaction problem (TCSP) [14, inter alia]. Formally, TCSP involves a set of variables,
X1,...,X,, having continuous domains?*; each variable represents a time point. Each con-
straint is represented by a set of intervals: {I1,...,I,} = {[a1,b1],--.,[@m,bm]}. A unary
constraint, 7;, restricts the domain of variable X; to the given set of intervals; namely, it
represents the disjunction (a; < X; < b))V -V (a,, < X; < by,). A binary constraint,
T;j, constrains the permissible values for the distance X; — X;; it represents the disjunction
(al SX]—XZS bl)v"'v(amSXj_XiSbm)-

A network of binary constraints (a binary TCSP) consists of a set of variables, X1,..., X,,
and a set of unary and binary constraints. Such a network can be represented by a directed

30ur RT scheduling subsystem can handle only basic actions.
4In our mechanism we do not force the assumption that the domain is continuous.

12

constraint graph, where nodes represent variables and an edge (7, j) indicates that a constraint
T;; is specified; it is labeled by the interval set. Each input constraint, 7;;, implies an
equivalent constraint 7j;; however, only one of them will usually be shown in the constraint
graph. A special time point, X, is introduced to represent the “beginning of the world.” All
times are relative to Xy. Thus we may treat each unary constraint 7; as a binary constraint
Toi (having the same interval representation). A tuple X = (z1,...,2,) is called a solution
if the assignment {X; = zi,...,X,, = z,} satisfies all the constraints. The problem is
consistent if at least one solution exists.

The general TCSP problem is intractable, but there is a simplified version, simple tempo-
ral problem (STP), in which each constraint consists of a single interval. This version can be
solved by using the efficient techniques available for finding the shortest paths in a directed
graph with weighed edges such as Floyd-Warshall’s all-pairs-shortest-paths algorithm® [10].
In our work we also use a temporal constraints graph, which consists of the temporal con-
straints associated with action o (including precedence constraints and metric constraints).
However, because of the uncertainty and dynamic environment of the agents, in contrast to
previous works, the constraints graph which is built by our agents may include only partial
knowledge; i.e., our algorithm enables the agents to build this graph incremently and to
backtrack when needed. In addition, the agents are able to determine the action for which
the temporal parameters are known and to execute them.

4.1 Definitions and Notations for the Temporal Reasoning Mech-
anism

In order to present our technique for temporal reasoning, we will first define some basic
concepts that will be used throughout our reasoning mechanism.

Definition 4.1 (Time interval of an action) Let o be an action. We denote the time
interval of a by [Sa, fa], where s, is the time point at which the execution of action a starts
and f, s the time point at which the execution of action o ends.

There are two types of temporal constraints in the system. The first type is metric,
where we treat the duration of an event in a numeric fashion. The temporal range of the
starting point and finishing point, the length of time between disjoint events, and so forth,
are numbers which may satisfy specific inequalities or various measurable constraints. For
example, “f> has to start at least 20 minutes after 3; would terminate.” The second type is
relative, in which events are represented by abstract time points and time intervals; i.e., the
temporal constraints make no mention of numbers, clock times, dates, duration, etc. Rather,
only qualitative relations such as before, after, or not after are given between pairs of events;
e.g., “the subaction (3; has to occur before 3,.” The techniques which are used to reason
about these two types of constraints are different [20]. In the following we give more details
about the usage of these types of constraints in our system and describe them formally.

As illustrated in figure 3, in certain cases the subactions, f,...,3,, of a recipe R, have
to satisfy certain precedence relations which are relative constraints. The precedence rela-
tionships between the subactions is specified in our system using events. An event represents

5Floyd-Warshall’s algorithm efficiently finds the shortest paths between all pairs of vertices in a graph.

13

a point in time that signifies the completion of some actions or the beginning of new ones.
The time points at which execution of action a starts and finishes are thus described by
two events. In the system, events are represented by nodes, and the activity of action f;
is represented by a directed edge between the time points at which the execution of action
(; starts and finishes. A directed edge between the finishing time point of an action 3; and
the starting time point of another action [3;, denotes that the execution of §; cannot start
until the execution of 3; has been completed. The label of the edge needs to be proportional
to the duration either of the activity of some action (;; or the delay between two different
actions [3; and 3;, and is referred to as the temporal distance between them [38]. As we will
see in the remainder of this section, this graphical representation will enable us to build the
temporal network (TCSP) which is mentioned in the earlier section. We have termed this
graphical form of the precedence relations the precedence graph. The formal definition of
the precedence graph which we use in our SharedPlan system is presented in the following
definition:

Definition 4.2 (Precedence graph of a, G},) Let a be a complex action, and let R,
be a recipe which s selected for executing a. Let (31,...,[03, be the subactions of the recipe
Ro and 0% = {(1,7)|8; < B;;1 # j} are the precedence constraints associated with R,. The
precedence graph of «, Gr%a = (V. }];Q,E%a) with reference to R, and its precedence constraints
0% satisfies the following:

1. There 1s a set of vertices Vga = {Sp1y---+58,, [pr---+ [5.,} where the vertices sg, and
fa, represent the start time and the finish time points of B; 1 < i < n, respectively’.

2. There is a set of edges B}, = {(u1,v1), ..., (Um,vm)}, where each edge (up,vr) € B
1 <k <m is either:

(a) the edge (sg,, fs,) that represents the precedence relations between the start time
point sg, and the finish time point fg, of each subaction B;. The edge is labeled by
the time period for the execution of the subaction (3;; or

(b) the edge (fs,,sp;) which represents the precedence relation B; < 3; € 6% , which
specifies that the execution of the subaction (B; starts after the execution of the
subaction [3; ended. This edge is labeled by the delay period between [3; and [3;.

All of the edges of the precedence graph are initially labeled by [0, co].

An example of precedence graph is given in the following:

Example 1 :

Figure 4 illustrates a precedence graph Gri, =(Vg E},). In this Figure the subactions of the
selected recipe R, are 3; (1 <1 <5), and the precedence relations are 65 = {f1 < 2,01 <
B3, B2 < Ba, P2 < Bs,03 < Bs}. These precedence relations are appropriated to the precedence
constraints in the recipe of a, which is shown in figure 3.

14

(5e9

time(B1)

del
aljlz/ delay,,
G2) e

¢ti me(B2) time(B3)

time(34) ¢ti me(Bs)

Figure 4: A precedence graph G}, .

As depicted in Figure 4, the precedence relations do not induce a total order on all
the subactions. For example, the agent can begin the execution of action (33 before the
completion of action (3 and vice versa. In such cases these actions can be executed also in
parallel: e.g., agent (G; can begin to perform action 3, and another agent, (G5, can begin to
perform action (3 in the same time interval.

Definition 4.3 (parallel actions) Let Gry, =(VE E},) be the precedence graph of an ac-
tion a. Let 8; and B3, © # j, be two subactions in R,. The subactions B; and [3; are called
parallel actions if Gr’lfzav does not include a path either from sg, to sg, or from sg, to sg,, i.e.
there is no precedence constraints between (3; and 3;.

In Figure 4, actions (33 and (3» are parallel actions, as are actions (34 and (5.

Definition 4.4 (beginning points, beginning actions, ending points, ending actions)
Let Gr%a, be the precedence graph of the complex action o and let R, be the selected recipe
for executing . Let 31,...,[3, be the subactions of recipe R, .

1. The set of vertices {sp, ,---,Sp,, + C Vi, with in-degree 0 of the graph Gry, —are called
beginning points. The actions B, ..., [0, are called beginning actions.

2. The set of vertices fg, ,-.., fa.,, C sz’a with out-degree 0 of the graph Gr”;zav are called
ending points. The actions (e, ..., ., are called ending actions.

5We will use the notation and will refer to a node which is labeled by s as node s.

15

This definition is illustrated in the following example:

Example 2 :

In the precedence graph of a Gry, in Figure 4, the vertex sp, is the only vertex with an in-
degree of 0. Thus, only action 31 is a beginning action and the time point sg, 1s a beginning
point. Since vertex s, has no predecessors the agent can start evecuting action o by executing
subaction 3,. The vertices fg, and fg,, which have no successors, are called ending points.
Thus, actions B4 and (s are ending actions and the agent finishes executing action a when
it finishes the execution of subactions B4 and 5.

As a result of the dynamic nature of the planning process, the agent may have only
partial knowledge of how to perform a complex level action. Thus, the agent may not know
the duration of the execution time which is required for performing a complex level action
until its plan for this action becomes complete. However, we assume that the time period
during which a basic action is executed is always known. Thus, in our reasoning mechanism,
we distinguish between complex and basic actions in the graph, as described in the following
definition.

Definition 4.5 (basic edge, basic vertex, complex edge, complex vertex) :

Let Grly =(V§ B}) be the precedence graph of an action a. Let (sg,, fg,) be some edge in
E% which denotes relations between the start time point, sg,, and the finish time point, fg,,
of subaction [3;.

1. If subaction (3; is a basic action, the edge (sg,, fs,) is called a basic edge and the vertices
sg; and fg,, are called basic vertices.

2. If subaction [3; is a complex action, the edge (sg,, fg,) is called a complex edge and the
vertices sg, and fg,, are called complex vertices.

Examples of such actions and edges are as follows:

Example 3 :

Suppose that subactions By and Bs of R in Figure 3 are basic level actions and that the other
subactions; i.e., f1, B3 and By, are complex actions. Thus, the edges (sg,, fs,) and (sps, fas)
wn Figure 4 are called basic edges. The time points sg,, fs,, Sgs, [, are called basic vertices.
The other edges are called complex edges, and the other vertices are called complex vertices.

One of the requirements of our system is the ability to deal with metric information. We
consider time points as the variables we wish to constrain. A time point may be a start or a
finish point of some action «, as well as a neutral point of time such as 4:00p.m. Malik and
Binford [38] have suggested constraining the temporal distance between time points. Namely,
if X; and X, are two time points, a constraint on their temporal distance would be of the
form X; — X; < ¢, which gives rise to a set of linear inequalities on the X;’s. In the following
we give the formal definition of the metric constraints in our system.

16

Definition 4.6 (Metric constraints) Let {a, (1, -,0,} be the actions that agent G has
to perform, where a 1s the highest level action in the recipe tree which consists of these
actions. Let V. = {54,588, 58, far fpr "5 fan} U {Sape.) be a set of variables where
sy and f, represent the start and finish time points of some action y € {o,f1, -+, 0n}
respectively, and the variable s,,,,, represents the time point when an agent G starts to plan
action a. Let v;,v; € V be two different variables. The metric constraints between these
variables consists of a set of inequalities on their differences, namely 67 = {v;,v;(1 < 14,5 <
VDlai; < (vi —v;) < bi}-

An example of metric constraints is described in Example 4.

Example 4 :

The recipe in Figure 3 consists of the following metric constraints:
(finish-time To— start-time T} < 20minutes),
(start-time Ty— finish-time Ty < 40minutes),
(finish-time Ts— start-time T3 < 60minutes),
(start-time T3 after 5:00),
where T, represents the time interval of the execution of action a. If we assume that the
agent starts to plan o at 4:00 o’clock, then the agent may transfer these temporal constraints
to the following metric constraints’: ™ = {0 < fg, — s, < 20,0 < sg, — fg, < 40,0 <
fﬁs — 54, S 60,60 S SpB3 S OO}

As mentioned in section 4, we shall use constraints networks in our system. These
networks are frequently used in Al to represent sets of values which may be assigned to
variables. In order to build a temporal constraints network, we have to build the temporal
constraints graph which will consist of all the temporal constraints that are associated with
an action « (including precedence constraints and metric constraints). However, because
the environment of the agents is uncertain and dynamic (i.e., the agent may have only
partial knowledge of how it will perform action «), the temporal network which we build
will consist of only partial knowledge. When this knowledge becomes more complete, the
agent will update the temporal network accordingly. That is, the agent builds the temporal
network dynamically. At the beginning, when the agent adopts the intention of performing a
high level action, «, it builds an initial temporal network with the initial information which
it has on «, and it expands this initial network dynamically. The graph which consists of
the initial constraints associated with action « is called, in our terminology, the initial graph
of a, InitGr,, as described in the following definition.

Definition 4.7 (Initial graph of «, InitGr,) Suppose that agent G has the intention to
do an action o.. Let a be the highest level action in the recipe tree and 0" = {v;,vj|a;; <
(vi—v;) < b;;} be the temporal metric constraints associated with . The initial graph of &,
InitGr, = (Vinit, Binit), satisfies the following.

"The method of transferring metric information, which is given as natural points for a set of inequalities,
can be found in several references, including Dechter et al. [14].

17

1 [0,210]
[0,150] X

7/

#

Figure 5: Example InitGr,.

1. Vipr = {saplan,sa,fa} 1s a set of vertices. The vertex Sapian € Viniz denotes the time
point at which the agent starts to plan action a. This point is a fized point in time
which is called the origin. The vertexr s, is the time point at which the agent starts
executing a, and f, is the time point at which the agent finishes executing o.

2. Einit = {(Sapians 5a)s (8as fa)s (Sapian> fa)} 15 @ set of edges, where each edge
(vi,vj) € Einit 1s labeled by the following weight:

[aij,bis] if vi,v; € 67
weight(v;,v;) =
[0,00) if v, v; ¢ 07

An example of InitGr, for some action « is given next.

Example 5 :

Suppose that o is associated with the following temporal constraints: (a) the performance
of a has to be terminated in 150 minutes; (b) the performance of a has to start after 4:00
o’clock; (c) the performance of o has to end before 7:30 o’clock. We also assume, as in
example 4, that the agent starts to plan o at 4:00 o’clock. Thus, the agent may transfer these
temporal constraints to the following metric constraints, 07 = {(0 < so — fo < 150),(0 <
(fa— Sapain S 210)}, and to build the initial graph of action o, which is given in Figure 5.

When working on action a, the agent maintains a temporal constraint graph of a. This
graph may be changed during the agent’s planning. The following definition presents a
formal description of this temporal constraint graph.

Definition 4.8 (Temporal constrains graph of o, Gr,) Let {a,[(1,--,0.} be a set of
basic and complex level actions that agent G intends to perform, where a is the highest level
action in the recipe tree which consists of these actions. LetV = {sa, 4., Spns fas [y -+ [, JU

18

{Sapzan} be a set of variables, where s, and f, represent the start and finish time points of
some actiony € {a, 1, -, Bn}, respectively, and the variable Saya, TEPTESENLS the time point
that an agent G starts to plan action a. Let 0}, = {(5;,5;)|8: < Bj;1 # j} be the set of all the
precedence constraints which are associated with all the recipes of the actions {a,B1, -, Fn}-
Let 07" = {v;,v;|a;; < (vi —v;) < b;;} be all of the temporal metric constraints that are
associated with {a, 1, -+, B,} and their recipes.

1. If a 1s a basic level action, then the temporal constraints graph of o, Gro, = (Vi Ea),
is the initial graph InitGra = (Vipit, Einit)-

2. If a is a complez level action, then the temporal constrains graph of a, Gro = (Vy, Ea),
satisfies the following:

€ Va.

(b) There is a set of basic vertices Vigsic = {Sgb, - - Sgo, fobrs---» fan } C Va and a
set ofbasic edges Ebasic = {(Sﬂblu fﬁbl); ey (Sﬁbk’ fﬂbk)} g Ea, where ﬂbi (1 S 1 S
k) is some basic level action in the recipe tree of o, and each edge (sgp,, fo,)} € Ea
15 labeled by the time period of By, .

(a) There is a vertex which represents the origin time point s

Aplan

(c) There is a set of complex vertices Vipmiez = {Spcrs-- -1 S8er focts -3 [} C Va
and a set of complex edges E.omprex = {(Sgers fer)y -+ - (Spers [oe)} © Eo where
each edge (Sgcj, fﬁcj) € Eeomplez, 1 < J <1 15 labeled by the following weight:

,

[aij, bi;] if (spe;, fpe; € 07)and the

the time period of fc; if (spc;, fpe; ¢ On)and the
time period of B¢c; is known
weight(sﬁcj,fﬂcj) =Y
[aij,bij] N (the time period of Bc;) if (spe;, fpe; € 04)and the
time period of B¢c; is known

[0, 00) if (sgc;s fpc; ¢ 04)and the

\
(d) There is a set of delay edges Egeiay = {(u1,v1),- -, (Un,vn)} C Eqa, where u;,v; €
Va, (1 <1< n). The vertices u;,v; may be of the following forms:
i. u; s the start time point of some action (§,, and v; ts some beginning point
in the precedence graph Grglne” of action 3,.
1. u; s some ending point in the precedence graph Grg:ne” of some action [3,,
and v; s the finish time point of action f3,.
1t u; 1S the finish time point of some action (3,, and v; is a start time point of
time,,

another action 3,, where 3,0, € 05

Each edge (vi,v;) € Egeray is labeled by the following weight:

19

time period of Bc; is unknown

time period of Bc; is unknown

[am-, bi’]'] Zf Vi, Uy S GZL
weight(v;,v;) =
[0,00) tfv,v; & O

(e) There is a set of directed edges Eeiric = {(u1,v1),-. ., (Un,vn)} C E, labeled by
its metric constraints, where u;,v; € Vg, (1 < 1 < n), but (u;,vi) ¢ Epgsic U
Ecomplez U Edelay-

Example 6 :

Figure 6 illustrates an example of a temporal constraints graph of a. Action a is a complex
level action, and thus the vertices s, and f, are complex vertices. The edge (S, fa) is
a compler edge. The vertex s,,,, 1s the origin time point which represents the time 4:00
o’clock, at which time the agent has begun its plan for a. The actions (1, P2, (3, (1, and
0By are the subactions in the recipe which is selected for performing a. As a result, all of
the vertices which represent the start and finish time points of these subactions appear in
the path between s, and f,. Some of these subactions may be multi-agent actions, and the
others are single agent actions. In this example we assume that (1 is a single agent action
and that the recipe which is selected for performing this action consists of subactions vy11 and
Y12, which are basic level actions. Thus, the vertices {Sy,;, fy1s Syras fy1n} are called in our
terminology basic vertices, and the edges (Sy,,, fou1)s (Syizs frns) are called basic edges. Note
that the time period during which a basic action is executed is always known. As a result,
the weights of these basic edges are fized (exactly 5 minutes). However, since the duration
of complex level actions is not known in advance and may change over time, the weights of
the complex edges in the graph are not fizred. The next section describes the building of this
graph.

As mentioned above, some of the vertices in the temporal constraints graph may be
fixed; i.e., these vertices denote a known time which cannot be modified. The vertex s,
represents the time point at which an agent G starts to plan action «; it is a fixed vertex.
The value of this vertex in Figure 6 is 4:00 o’clock. Other fixed vertices may be initiated,
for example, by a request from a collaborator. The vertex sg, is also a fixed vertex, which
represents the time 5:00 o’clock. We define fixed time points as follows:

Definition 4.9 (fixed time point) A fixed time point is a known time which cannot be
modified.

In section 3 we illustrated the recipe tree for action a. This recipe tree may be derived
from the temporal constraints graph of a and in our terminology is called the implicit recipe
tree. This tree is described in the following definition.

Definition 4.10 (Implicit recipe tree, Tree,:) Let Gr, be a constraints graph. Let A
= {o,B1,...,0.} be the set of the actions whose start and finish time points are represented by
the vertices in Gr,. The implicit recipe tree, T'ree,, in Gr, satisfies the following: each node
in the recipe tree represents an action from the set A, where the root of this tree is action «.

20

[65,120]

[15,20] [120,120]

[25,150] [0,5] [0,115]
delay,, delay
&

[10,10] [125,210]

time(B3)

[10,10] ¢ [5.60]
time(B4) time(Bs)

@

[0,85]
delay,

‘ basic vertex

[0,125]

delay,,

Figure 6: An example of a temporal constraints graph Gr,.

There is an edge between a node z € A to another nodey € A (i.e., yis a child of z in the tree)
if Gro consists of the following vertices path (Sy, ... Sy, fy,- .. fz) and there is no other action
z € A that exists, such that Gr, consists of the path (Sg, ..., 85 ..., Sy, fyy-vns fareevs fa)-

21

Example 7 :

Figure 7 presents the implicit recipe tree of the graph Gr, which is shown in Figure 6. It is
obvious that A = {a,B1, -+, Bs,711, Y12} In this tree, for example, y11 is the son of By since
Gr, consists of the path (Sg,, Syys fuis f8:)-

Figure 7: Implicit recipe tree example.

4.2 The Algorithm

Figure 8 presents the major constituents of the temporal reasoning algorithm which is
used by the Al planning subsystem. The algorithm obtains as an input an action a and an
initial graph InitGr,, that is defined in definition 5. As shown in Figure 8, the algorithm
consists of two major constituents. In the first constituent, the agent initializes the relevant
parameters. In particular, it forms the graph Gr,. Then, in the second constitute it runs
a loop until all the subactions of a tree for a are performed. Figure 9 describes these
constituents in more detail. The initialization constituent includes an initialization of the
temporal constraints graph Gr, by the initial graph InitGr,. It also includes initialization
of the status of the vertices in this graph. In addition, it initializes two flags, where the

I) Initialization and formation of the temporal graph of a (Gr,);
g
(IT) Planning and executing Loop:
(I1.1) Planning for a chosen subaction 8 from Gr,:
(IT.1.a) (3 is a basic level action;
(I1.1.b) (3 is a complex level action;
(I1.2) Obtaining messages on execution from the RT scheduling subsystem;
(TI1.3) Backtracking, if needed;

Figure 8: The major constituents of the temporal reasoning mechanism for performing a
complex action a.

22

(T) Initialization : Initialize the values of the relevant parameters, including the set of Indepen-
dent Unexplored vertices and the value of the temporal constraints graph of «, Grg;

IT) Planning and execution LOO[): Run the following loop until all the basic actions have been
executed:

(IL.1) Planning for a chosen action 3 : If the plan for o has not been finished, choose
some vertex, sg, from the IU set which is associated with an action 3.

(IL.1a) If 8 is a basic action : identify its parameters, send them to the RT schedul-
ing subsystem and start again from (IL.1).

(IL.1b) If B8 is a complex action :

(IT.1b1) Select a recipe Rg for 3;
(IL.1b2) Construct the precedence graph Gr%a for B and add it to Gr,.
(IL.1b3) Add the metrics constraints of the recipe of 8 to Gr,.

(II.1b4) Check consistency of the updated graph using Floyd-Warshall’s all-pairs-
shortest-paths algorithm.

(IL.1b5) If not consistent then remove G’I‘R and all the metric edges added in
(II.1b3) from Gr, and proceed to (II. 1b1) to select a new recipe. If such a new
recipe for B does not exist, then return failure in the current plan.

(I1.2) Obtaining messages from the RT scheduling on execution: Listen to the RT
scheduling subsystem as long as the agent did not execute all the actions and update
the graph according to the messages of the RT scheduling subsystem.

(I1.3) Backtracking, if need: If there is a failure in the current plan or a failure message
from the RT scheduling subsystem, then perform backtracking.

Figure 9: The description of the major constituents of the temporal reasoning algorithm.

first indicates whether or not the planning of a has terminated, and the second indicates
whether or not all the subactions of a have already been executed. It also initializes the set
of Independent Unexplored vertices that we discuss below.

The second constituent is a loop which runs until the agent has finished the execution
of all the basic level actions in the complete recipe tree for a. This loop consists of an
internal loop (IL.1) which is run until the agent has finished the planning of action . The
two nested loops are needed since in several cases the agent fails in the execution of some
basic level actions after the planning of o has been completed (i.e., after it finished building
the complete recipe tree of a). As a result, the agent has to backtrack, and it tries to find a
new plan for a by running the planning loop again.

In the planning loop an action [is chosen (the method of choosing this action will be
discussed below). The agent distinguishes between a basic level action [(II.1.a) and a
complex level action (II.1.b). If the action is a basic level action, it sends this action and its

23

associated time constraints to the RT scheduling subsystem, which schedules and executes
this action. If the action is a complex level action, the agent does not know the duration
of 3. Thus, the agent continues to plan the performance of this action by selecting a recipe
for this action. It also expands the temporal constraints graph Gr, according to the new
information. In the case of a failure in finding a recipe in the planning loop for a chosen (3
or in the case of receipt of a failure message from the RT scheduling subsystem, the agent
performs backtracking, as described in section 4.3.

The pseudo code of the reasoning algorithm’s main procedure is given in Figure 10. In
each line of the pseudo code we indicated the beginning of the appropriate constituent from
Figure 9. We demonstrate the algorithm using an example because it is complex.

To keep track of the progress of the expansion of Gr,, all the vertices start out as
unezplored (UE). When they are explored during the algorithm, the vertices of basic actions
become ezplored basic (EB), and the vertices of complex actions become exzplored complex
(EC). The algorithm also takes into consideration that if the performance of some action
depends upon other actions {v1,...,7.}, then the agent cannot determine the time needed
to perform [unless the finish time of {vi,...,7,} is known. A vertex whose time can be
determined and which does not depend on other actions is called an Independent Vertex
(IndV), and it belongs to one of two disjoint sets. The first set, IU, contains the Independent
Unexplored vertices, i.e., the vertices whose values can be identified, but have not yet been
handled by the algorithm. The second set, IE, contains the Independent Fxplored vertices,
i.e., the vertices whose values have been identified. Table 2 provides a summary of the
notation used in the temporal reasoning of this paper.

To exemplify the running of the algorithm in Figure 10, we suppose that the agent
has adopted an intention of performing an action a which is associated with the met-
ric time constraints given in example 5: ie., 7 = {(0 < s, — fo < 150),(0 < (fa —
Sapam < 210)}. We also assume that, initially, the length of the interval of the exe-
cution of action « is unknown. In order to start the temporal reasoning process, be-
fore applying the algorithm IDENTIFY_TIMES_PARAM, the agent first builds an initial tem-
poral graph (see definition 4.7) denoted by InitGr, = (Vipit, Finit), which includes the
initial information of the time constraints of the highest level action a. In the exam-
ple, if we assume that the agent starts its plan at 4pm, then V,,;; = {saplm,sa, fa} and
Eiie = {(Saplan’ Say [0,00)), (Sas fas [0, 150]), (Saplan’ fay[0,210])} (see Figure 5). The initial
graph, InitGr, = (Vinit, Einit), is built according to definition 4.7 and is given as an input
to the procedure IDENTIFY_TIMES_PARAM.

In the initialization constituent (clause (I)) of the algorithm, the agent first checks if
the initial graph is consistent (line 1 of the main procedure of Figure 10). For simplicity,
we assume that each edge in the graph is labeled by a single interval. As a result, we can
apply Floyd-Warshall’s all-pairs-shortest-paths algorithm [10] in the CHECK_CONSISTENCY
procedure®. After applying the Floyd-Warshall’s algorithm, the new intervals of the edges
in the example will be Einit = {(Sa,140s Sas [0, 210]), (5a; fas [0, 150]), (Sa,un» fas [0,210])} (see
the dashed edges in Figure 12).

If the initial graph is consistent, as in our example, InitGr, is assigned to Gr, (line

8The general problem of edges being labeled by several intervals can be solved using heuristic algorithms,
as suggested in [14].

24

(N

(1
(11.1)

(1.1a)

(I1.1b)

(1.1b1)
(11.1b2)
(11.1b3)
(11.1b4)

(11.1b5)

(11.2)

(11.3)

IDENTIFY_TIMES_PARAM (o, InitGr,)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

if CHECK _CONSISTENCY (InitGr,) is false then FAIL;
Gro,,.... < InitGry; |E < 0;
IU < (the fixed vertices in Gry,) ;
for each vertex u € V,, do status[u] < UE;
status[sq,,,,.] < EC;
finish_execute_all + false; complete_plan + false;
UPDATE_INDV SETS(Sq,,,,);
while(not finish_execute_all)
if (not complete_plan) then
select some vertex uw from IU;
p < action[u];
if 3 is a basic action then:
status[sg] < EB; status[fg] + EB;
UPDATE_INDV _SETS(sg, f3)
Dg < time_period(f3);
rg 4 time(sa,,,,) + M(8a,..+58);
dg time(Sapzan) + M(Sapzan > fﬁ)x
pp < FIND_PRECEDENCE_ACTIONS (3, G7q);
transfer (3, Dg,73,dg,pg) to RT scheduling subsystem
which tries schedule 3 and informs “succeed” or “fail”
if 3 is a complex action then:
found « false; Rg,,, , + 0;
while (not found)A(Rs — Rg,,.., # 0)
Select_Rec Rg for 3 not in Rg, ;_ ,;
add Rg to %ﬂtried;
Gr}, + CONSTRUCT_PRECEDENCE_GRAPH(Rp);
ADD_PRECEDENCE_GRAPH((sg, f), G},);
ADD_METRIC_CONSTRAINTS(Rg);
if CHECK _CONSISTENCY(G7,,) then:
status[sg] < EC; status[fg] < EC;
found < true;
UPDATE_INDV _SETS(s3);
else, Gr,, is not consistent, REMOVE(Rg);
end while;
if all the vertices in the graph are explored then:
complete_plan + true;
end if (not complete_plan);
message <— LISTEN_TO_THE_REAL-TIME_SUBSYSTEM,;
if the message is “succeed to execute an action 3" then
status[s,] - EXECUTED; status[f.] <+~ EXECUTED;
if the status of all the vertices in the graph are EC or EXECUTED
then finish_execute_all < true;
if (not found) or (RT scheduling subsystem sent “fail”)
then: if possible, BACKTRACK; otherwise FAIL;

end while;

Figure 10: The main procedure for identifying the time parameters of a where « is a single

agent action.

2), and the expansion of the graph continues. At the beginning, the first vertex Sa,

lan

is denoted as EC (line 7). Then, the IU and IE sets are updated by the procedure Up-

25

Notation Meaning Comments

a action Also: 3, 3;
R, recipe for o

Rs set of recipes for (3 Also: Rg, . .
Sa time point at which o starts definition 4.1
fa time point at which o ends definition 4.1
G agent

GR group

G'r%a = (Vfgn,E%n) precedence graph of o definition 4.2
9%0 precedence constraints in R,

0%. temporal metric constraints in R,

InitGry = (Vinit, Einit) | Initial graph of o definition 4.7
Gra = (Va, Eq) temporal constraints graph of a definition 4.8
on temporal metric constraints of o

0. temporal constraints of @ and a’s constitutes

Dg duration time of 3

g release time of (3

dg deadline of 3

P predecessor actions of (3

UE unexplored vertices

EB explored basic vertices

EC explored complex vertices

IndV independent vertex

1IE explored independent vertex

1U unexplored independent vertex

Table 2: Summary of notation used for special variables and constants.

DATE_INDV _SETS(s,,,,,). The procedure UPDATE_INDV _SETS (applied in lines 9, 15 and
33) is described in Figure 11. Suppose that UPDATE_INDV _SETS procedure receives as an
input a vertex u whose time (if it is a basic vertex) or a preliminary plan (if it is a complex
vertex) has just been identified. First UPDATE_INDV_SETS algorithm adds the vertex u
to the IU set. Then, for each adjacent vertex v of u (i.e., (u,v) € E), it checks if all the
vertices which enter v (i.e., for each vertex a such (a,v) € E) belong to IE. If so, it checks
if the status of v is an unexplored vertex (UE). If so, it adds v to IU. Otherwise (if the
status of v is either explored basic (EB) or explored complex (EC)), it runs the procedure
UPDATE_INDV _SETS(v) recursively on v. (We prove, in Appendix A, that if Gr, consists of
some UE vertices, then at least one of these vertices is an IndV.) Thus, at each stage of the
algorithm, the agent selects a UE vertex from IU and identifies the time value of this vertex.
After applying UPDATE_INDV _SETS(s,,,,,) (line 9), IU contains s, that is adjacent to the
unique vertex, which is a fixed vertex. Thus, the agent starts its execution and planning
loop (clause (IT)) by developing the temporal constraints graph of o from s,.

In the first part of the loop (clause (IL.1)) of developing the graph, the agent distinguishes
between vertices associated with basic actions (clause (II.1a)-lines 13-20) and vertices asso-
ciated with complex actions (clause (II.1b)-lines 21-35). In the example given, the vertex s,

26

UPDATE_INDV _SETS(u)
1 E<~IEUuIU+IU-—uy;
2 for each vertex (u,v) € E, do
3 BecomesIV « True;
4 for each vertex (a,v) € E, do
5 if a ¢ IE then BecomesIV « False;
6 if BecomesIV = True then
7 if status[v] = UE then IU « U U v;
8 otherwise: UPDATE_IV_SETS(v);

Figure 11: The procedure UPDATE_IV _SETS updates the sets of the Independent Vertices.

denotes a time point of a complex action. Thus, the agent selects some applicable recipe R,
for this action (clause (II.1bl)-line 25). Then, the agent builds the precedence graph of R,,
Gr%. , by running the CONSTRUCT _PRECEDENCE_GRAPH procedure (clause (I1.1b2)-line 27).
GrY, is built according to definition 4.2. In our example, we assume that the agent selects a
recipe R} which is associated with the subactions {3, 82, 33} and with precedence constraints
{61 < B2, B1 < B3} in which [is a basic level action. Thus, V? = {sg,,..., 58, fa1,---» [as}
EP = {(Sﬁu fﬁl)’ RS (Sﬁsa fﬁ3)> (f,Bl’ Sﬁz)’ (fﬁl’ Sﬁs)}'

After building Grf, , it is incorporated into Gr, by adding directed edges from s, to the
beginning points of Gr}, and adding edges from the ending points of Gr} to f,. That
is, it adds directed edges from s, to each vertex wvp,,...,v,, C VP with an indegree of 0
and adds edges from each vertex v.,,...v., C V? with an outdegree of 0 to f, (line 28).
A pictorial illustration of running the procedure ADD_RECIPE_SUBACTIONS on the example
is given in Figure 12. The precedence graph is incorporated into Gr,,, .. by adding the
edges (Sa, S8,)s (f2s fa), (fas, fa). After this, the agent also updates the metric constraints
which are associated with the appropriate recipe (Figure 13(A)). In the example, the metric
constraints given in R} are: {(sg, — f5, < 60), (sg, after 5:00) }.

When the agent continues with its planning for o, it has to ensure that all the time
constraints are satisfied (clause (II.1b4) - line 28). Thus, if the graph is inconsistent, it
returns to the previous graph which was consistent by removing the new edges and vertices
that have been added to the graph when the last Rg was chosen (clause (I1.1b5) - line 34).
Then, it tries to select another recipe for § (line 25), until it finds a consistent recipe or
fails.

If there is a failure at any stage of the planning, it is very easy to remove the edges and
the vertices of a specific recipe of a certain action 3 since, according to the construction
of the graph, all of them are between sz and fz. It is also easy to add new constraints
required by changes in the environment by adding appropriate edges. In both cases, the
Floyd-Warshall’s algorithm is used to update the weights. Thus, in the case of failure to
find a consistent recipe in the planning loop for a chosen 3 (i.e., in clause (II)), the agent
removes the appropriate edges and vertices from G, and changes the status of sz and fgz
back to UE. The agent’s backtracking mechanism is discussed in section 4.3.

In the example given, the graph is consistent; thus the agent continues to develop the
graph Gr, by selecting another unexplored (UE) independent vertex from the IU set. Sup-
pose that the vertex sg, is the fixed time point 6pm, the performance time of the basic action

27

4:00
vertices types:
O UE @ [0,210]
@)= [0,

time{(B1)

[0, o]

\
\

o=

[9.] [0, o]
del ay del ’ayls

Cp

¢_[o,oo1 o
time(p2) time(p3)

[0.«q]

[0.150] 110,210]

I

Figure 12: Example of running the procedure ADD_RECIPE_SUBACTIONS on InitGr,.

(1 is exactly 10 minutes, and [F> may take between 5 to 235 minutes. After applying the
procedure UPDATE_INDV _SETS(s,), the IU set contains sg, and sg,.

If the procedure selects a basic action from IU (clause (II.1a) line 13), it should identify
(Dg,rp,dg,pp). Dg is derived from the entities of the basic action (we assume that the
performance time of each basic action is known). dg and rg are derived from the distance
graph, which is returned by the Floyd-Warshall algorithm and is maintained in a matrix
M. pg is identified by the FIND_PRECEDENCE_ACTION procedure, which finds all the EB
vertices that are ancestors of § and adds their associated actions to pg. § and these values
are sent to the RT scheduling subsystem, and the decision regarding the exact time 3 will
be executed is left to the RT scheduling subsystem. In the example, if the basic action 3
is selected, then the status of sg, and fg becomes EB (Figure 13), Dy, = 10, 75, = 4pm,
dg, = 6pm, pg, = 0.

4.3 The Backtracking Method

As we have mentioned, our algorithm enables the agents to backtrack and to change their
timetables easily. In the current system, the agent backtracks in two cases. The first case
is when the agent is unable to continue its plan for performing a under the appropriate
time constraints of a. As a result, the agent has to backtrack in order to find another
plan for performing a. The second case is when the RT scheduling subsystem is unable to
schedule various basics actions under their identified constraints. As a result, these actions
are sent back to the AI planning subsystem, which tries to find a new way for planning and
performing a. In both cases, the agent runs the backtracking mechanism which is described
in Figure 14. In this mechanism we assume that the agent maintains the implicit recipe tree,
Tree,, which is defined in Definition 4.10.

28

verticestypes:

O ue
OEC
Q=

[0,150]
[15,15

[5,90] [0,140]

,%‘

) (B)

Figure 13: Examples of Gr,: (A) after applying the ADD_METRIC_CONSTRAINTS procedure
with the metric constrains {(sg, — fg, < 60), (sg, after 5:00) } on the graph in Figure 12; (B)
after applying the CHECK_CONSISTENCY procedure and updating status[ss] and status|fs].

Suppose that the BACKTRACK procedure (in Figure 14) receives action v, a problematic
action, as input. Also, we suppose that 3 is the father of v in the implicit recipe tree
of a, Tree,, which is developed until then. The agent selects a random node 7., from
Tree,. Then it compares the number of its descendants which are not leaves in Tree, to
the number of descendants which are not leaves of 3. It removes all of the descendants of
the node with the lower number of descendants. This method is based on the random hill
climbing algorithm, which is proved as a good heuristic in our environment.

After removing the descendants of the selected action (selected_action) from Tree,, it
removes all of the relevant information from Gr, by running the REMOVE procedure which
is described in Figure 24 in Appendix B. As shown in this figure, it is very easy to remove
the relevant information from the graph. The procedure just has to delete the vertices which
indicate the start and finish time points of the descendants of the selected_action. It also
removes these vertices from the IE and IU sets. Finally, it removes all the edges which
are connected to these vertices. Then it updates the independent vertices sets by using the
procedure UPDATE_IV _SETS (see Figure 11). After the changing of Tree, and Gr, it tries

29

BACKTRACK (v,Tree,)
1 [« the father of v in Treey;
2 ComplexSubactg < the number of the nodes which are descendants
of B in Tree, and are not leaves;
3 complex_nodesgses < all the actions in T'ree, which are not leaves;

4 Ny < select randomize node from complex nodesget;
5 complex_subact,,,,, < the number of the nodes which are descendants
of neyrr in Tree, and are not leaves;
6 If complex_subact,,,,, > complex_subactg
7 then selected_action < [,
8 else, selected_action < the action which is represented by the node n y;
9 descend,.; < all the descendants of selected_action;

10 Tree,,,, < cut all the descendants of selected_action from T'reey;

11 REMOVE(selected_action,descendset);

12 If selected_action has additional recipe Ry, which is consistent with
performing o under the time constraints 6, then

13 continue the planning for o by selecting R cw;

14 else,

15 If the selected_action represents action « (the root of T'ree,) then:;

16 return FAILURE;

17 else, 'yl < the action which is represented by the father of selected_action;
18 BACKTRACK (v ,Treea,.,);

Figure 14: Backtracking Mechanism.

to find a new plan by selecting a new consistent recipe for the selected_action. If such a
recipe does not exist, it continues to backtrack by selecting additional new nodes. If the
agent backtracks until the root of Tree, without finding any consistent graph, it fails to find
a plan for a.

5 The Correctness and the Complexity of the Algo-
rithm

In this section we present the theorem which states the conditions for the correctness and
completeness of the time reasoning algorithm in the AI planning subsystem which is described
in the former section. The proof of this theorem is based on the lemmas and the propositions
which are given in Appendix A.

Theorem 1 Suppose that the agent needs a plan for some action o with a given set of
constraints 0,. (1) If the IDENTIFY_TIMES_PARAM terminates, such that the agent has
identified a set of basic actions, {fi,...,0k}, and corresponding time requirements (i.e.,
(Dg,,7p;,dg;,pp), 1 <1 < k), then, the performance of {B1,...,0Bk} (possibly in parallel),
under all the identified constraints, constitutes performing o under ,. (2) Suppose that a
complete recipe tree for a exists which satisfies the appropriate time constraints and for which
the RT scheduling subsystem can find a feasible schedule consisting of the given basic actions

30

and their time constraints. Then, the IDENTIFY_TIMES_PARAM algorithm can identify the
basic actions of such a tree and their constraints. If there is no complete recipe tree for a
that satisfies the appropriate time constraints, or if the RT scheduling subsystem cannot find
a feasible schedule, then the algorithm fails.

Proof: (1) According to corollary 1 (in Appendix A), the algorithm terminates when the
agent has identified a set of basic level actions, {f1, ..., }, and according to proposi-
tion 2 (in Appendix A), the agent can identify all the time parameters of these actions
(i.e. (Cp,,7p;,dp,pp), 1 <1< k). Now we have to prove that performing {f1,..., 5}
under the identified constraints constitutes performing o under constraints 6,. But,
according to corollary 1, when the agent finishes developing its plan for «, all the leaves
in T'ree, are basic level actions. Thus, according to lemma 2 in Appendix A, perform-
ing the basic level actions, {f1,...,0k}, under the identified constraints, constitutes
performing o under constraints 6,,.

(2) Suppose that the agent did not find a recipe which constitutes performing o under
constraints 6, for some complex level action, while developing the implicit recipe tree
for a. The agent can then use some known backtrack method, on the implicit recipe
tree for a, which enables him to check all of the options of all the other appropriate
available recipes. As a result, if such a recipe does not exist, the agent will fail in its
plan. O

For the complexity analysis of the Al planning subsystem’s algorithm, the number of
nodes of the largest partial recipe tree that has been developed by the agent during the per-
formance of the algorithm is denoted by m. k denotes the number of times the Select _Rec
process was initiated by the algorithm. Since the complexity of the Floyd-Warshall algo-
rithm is O(n?), the complexity of the algorithm is O(km3). If no backtracking is needed
(e.g., there is one possible recipe for each action), then k is the number of complex actions
in the complete recipe tree for a, and the algorithm is polynomial in the number of nodes of
this tree. However, if backtracking is needed, £ may be exponential in the size of the tree,
and several heuristics can be used to limit the search.

6 The RT scheduling Subsystem

The RT scheduling subsystem is responsible for the scheduling and execution of the ba-
sic actions. The RT scheduling subsystem must schedule sets of actions generated by the
AT planning subsystem. Therefore, the RT scheduling subsystem does not have complete
knowledge about the action set and its constraints before starting the scheduling process.
Consequently, the scheduler does not assume any knowledge of the characteristics of actions
that have not yet been sent to the RT scheduling system; the schedule is computed on-line
as actions arrive (during run time). The RT scheduling subsystem also includes a dispatcher
responsible for executing the basic actions at the time determined by the scheduling process,
even before the scheduling and the planning process have ended. This technique enables the
agents to manage the times of critical tasks that have strict deadlines during the planning
process. In addition, due to changes that occur in the dynamic environment, a feasible

31

BUILD _FEASIBLE_SCHEDULE()
while(1)
A ew — get_basic_action_set from Al planning subsystem;
if A,,.,, then:
t. + read_current_time();
update the set 4 according to A,,c.;
Shest < BUILD_INITIAL _SCHEDULE(T);
Lz (Shest) < maximum lateness of Spest;
if Lo (Seest) > 0 then:
res < IMPROVE_SCHEDULE(Spest);
if res=FAILURE then find the actions whose deadline
were missed and send them back to the Al planning subsystem;

C LNtk WM

-

Figure 15: The pseudo code of the process in the RT scheduling subsystem which determines
the schedule Si.;. The variables A and S, are global. For simplicity, we refer to these
variables as sets. In addition, there is a dispatcher which executes the actions in Sp.,; when
their start time arrives. Then these actions are deleted from A and S, by the dispatcher
after it completes their execution.

schedule must sometimes be altered after having been previously determined. For example,
agents may determine that the course of action they have committed to is not working.
Therefore, a new course of action must be generated by the AI planning subsystem and a
new scheduling process must be engaged by the RT scheduling subsystem. The RT schedul-
ing subsystem must be able to find a new feasible schedule in response to the new changes.
However, because our system interleaves planning and execution, some actions belonging to
the former schedule may have already been executed by the RT scheduling subsystem. Thus,
the former schedule may influence the agents’ new planning. As a result, the RT scheduling
subsystem must send update messages to the Al planning subsystem and vice versa. In this
section we describe the scheduling algorithm which is used by the RT scheduling subsystem.

The goal of the scheduling algorithm is to find a feasible schedule for the basic ac-
tions set {G:;|(1 < i < n)}, where each [; is associated with the appropriate constraints
(Dg,,dgs,,rp,,0p,)- A feasible schedule of a set of tasks A at time t. represents a schedule
S, such that its maximum lateness is less than or equal to zero. The mazimum lateness of
S, Limaz(S), is the maz,;{fs, — dp, }, where fs, represents the time in which the execution of
action (3; € S will be completed. The algorithm consists of two major steps. In the first step,
it generates an initial schedule by using a predictable Earliest Deadline First (EDF) algo-
rithm (Figure 16). In the second step, it tries to improve the schedule by using a simulated
annealing technique (Figure 17). If the improving process also fails to find a feasible sched-
ule, the RT scheduling subsystem sends the actions which caused the maximum lateness to
be greater than zero back to the Al planning subsystem. Then the Al planning subsystem
decides what to do with these actions. For example, it may decide to ask for help from other
agents, or it may decide to change these actions’ time requirements.

The algorithm is described in Figure 15. In the algorithm we assume that A={g,..., 0.}
is the set of all the actions that should be scheduled which are known to the RT scheduling
subsystem at a given time. This set is updated when new messages arrive from the Al
planning subsystem. That is, the Al planning subsystem may send new actions, ask to delete

32

BUILD_INITIAL_SCHEDULE(tsched)
11 S« 0
12 while (A—- 8 #0)
13 A’ < all the ELIGIBLE actions at tsched;
14 Select action 3; from A’ which has earliest deadline;
15 Check if there is any task 3; € A such that §3;
is PREFERRED over 3; at tsched;

16 if an action 3; is found then:
17 ﬂsched — ﬂj;
18 else Biched < Bi;
19 if the time slot chosen for Bsched
is occupied by a “constant action” (.ot then:
20 ﬁsched — ,Bconst '
21 schedule action Bscpeq into S;
22 Lsched fﬁsched;

23 RETURN S;

Figure 16: The pseudo code of the EDF algorithm for building the initial schedule.

IMPROVE _SCHEDULE(Spest)
24 Scu'rr <~ Sbest;
25 B < random value between 0 to 1;
26 fork <+ 1to K do
27 if message arrived from Al planning subsystem then RETURN;
28 if L.yas(Spest) < 0 then RETURN;

29 S’ + a randomly selected candidate successor of S¢y..r;
30 if Lmaz(sbest) < L'maz(S’) < Lmam(Scu'rfrv) then:
31 Seurr — S
32 if Loas(Spest) > Liaz(S') then:
33 Shest S’; Seurr Sl;
34 if Loas(Sewrr) < Linaz(S') then:
35 U < random value between 0 to 1;
36 AE + Lmaz(scurr‘) - Lmaz(sbest);
37 if (U < exp”F/B) then:
38 Seurr — S
39 By,cw < random value less or equal than B
but greater than 0;
40 B+ B,ew ;

41 RETURN FAILURE;

Figure 17: The pseudo code of the simulated annealing algorithm, which is used in our
system in order to improve the initial schedule.

some actions as a result of backtracking, ask to change some of the time requirements, and
may also declare some actions to be “constant actions,” i.e., actions that must be scheduled
in a specific time slot (such “constant actions” may arise, for example, from a commitment
to other agents to perform this action in a specific time).

In definition 4.2, we defined the relation “8; < B to be true if action 3; must be
scheduled before action J;, i.e., if a precedence relation between them exists. The adjusted

. di . .
release time, 7‘;], of each action [; is defined as follows:
2

33

cadi _ [T if #3;such“g; < By
b =\ mas({rp} U {r§? + Dy |V, “B; < BI'}), otherwise;

That is, the adjusted release time is the actual time of which the execution of an action ;
may begin as a result of the precedence constraints. In its first step, the algorithm calls the
procedure BUILD_INITIAL_SCHEDULE(.A) (Figure 16) to build an initial schedule S by using
the predictable EDF algorithm. With this algorithm it first tries to build S from the actions
with release times that have already been reached (i.e., greater than the current time ¢.),
but all of their preceding actions have been scheduled. These actions are called ELIGIBLE
actions. Formally, we say that “action (3; is ELIGIBLE at a time point ¢” iff:

(t > i) A (5, < 1) A (B, such“; < 82) A (f, >).

In several cases, the arrival time of some action [3; may be earlier than its release time,
since the RT scheduling subsystem receives its knowledge from the Al planning subsystem,.
However, the algorithm will prefer to schedule action 3; before some other action 3;, although
the release time of (3, has already been reached, since executing action ; will cause [, to
miss its deadline. Formally, we say that “action [; is PREFERRED over the ELIGIBLE
action ; at a time point t” iff:

(g’ > r5) A (t + Dp, > dg, — Dy)N
(#Br such(“Br < 5})) A (fp, > 1)

The procedure BUILD_INITIAL_SCHEDULE(.A) also takes into consideration that some ba-
sic actions may be “constant actions.” However, the procedure BUILD_INITIAL_SCHEDULE(.A)
does not guarantee that a feasible schedule will be found. Thus, if S, which was found, is
unfeasible, the IMPROVE_SCHEDULE(S) procedure is initiated in the second step (line 9) to
try to improve the initial schedule. The best schedule found at any time is kept in Speq. In
addition, another component of the RT scheduling subsystem is a dispatcher that executes
the actions of Sy according to their appropriate start time. When an action is executed
by the dispatcher, it is deleted from the schedule Sj.,; and from .A.

The IMPROVE_SCHEDULE procedure runs, at most, K iterations® and tries to improve the
initial schedule using a simulated annealing search algorithm [55]. It builds the “candidate
successor” schedule S’ of S, by selecting 2 random actions (which are not constant) from
Seurr and by interchanging them. Then the maximum lateness, L., (S’), of the “candidate
schedule” is calculated, and if it is lower than the maximum lateness, L4z (Spest), of the
best possible schedule found so far, it will become the new best possible schedule. In some
cases, we will choose to adopt a “candidate schedule” whose lateness is larger than our best
known schedule. This is because we wish to avoid local minima. The chances of reverting to
a bad schedule are determined by a probability function that takes into account the number
of iterations, as well as our best known lateness. Therefore, the chances of reverting to a
very bad candidate schedule are slim, and will decrease even more as the iterations of the
function progress. This is achieved through the parameter B, which receives an initial value

9Tn our simulations, the value of K was 400 when a backtracking was allowed in the system, but when
the backtracking was not allowed, K was 10000.

34

and decreases as the iterations progress, thus limiting the possibility of reverting to a bad
schedule.

The IMPROVE_SCHEDULE procedure stops before it performs K iterations if it manages
to find a schedule in which the lateness is less than or equal to zero (line 28), or if a message
is received from the AI planning subsystem (line 27). In the first case, Sp.s+ Will be used by
the dispatcher (which is not described in the figure.) In the case of a message from the Al
planning subsystem, the RT scheduling subsystem will update the set A (line 5), and the
procedure BUILD_INITIAL_SCHEDULE(T) will construct a new initial schedule for the new
set of actions, taking into account constant actions. The IMPROVE_SCHEDULE notifies of
failure after K iterations because no feasible schedule was found. In this case, the algorithm
identifies the actions that miss their deadline and reports them to the Al planning subsystem
(line 10). The AI planning subsystem either backtracks and searches for a different plan or
requests help from other agents.

It is easy to show that the order of the actions in Sp.,; satisfies the release time and the
precedence constraints, since the algorithm schedules the actions according to their partial
order. That is, it first schedules the first action in the partial order, and so on. It also
schedules the actions in such a way that their start time in the schedule is greater than
their release time. As a result, if L,,40(Skest) < 0, then BUILD_FEASIBLE_SCHEDULE builds
a schedule which satisfies all of the temporal requirements of the actions in A.

7 Experimental Results

In this section we present the results of the experiments conducted using our system in a
simulation environment. In our simulations, we ran the algorithm on several different recipe
libraries which were created randomly. Each recipe library stratifies the following: (1) the
agent is able to build at least one “complete recipe tree” for action a, which constitutes
performing a under its associated time constraints 6,, and (2) there is at least one feasible
schedule which may consist of the all basic actions in the “complete recipe tree” of a and
their associated time constraints.

We assert that the agent succeeded in performing the highest level action « if: (1) the Al
planning subsystem finished the planning for a and built the complete recipe tree for a which
satisfies the appropriate time constraints 6,; and if (2) the RT scheduling subsystem found
a feasible schedule, which consists of all the basic level actions in the complete recipe tree of
a. A failure is defined as either a failure in the planning by the Al planning subsystem, or
as a failure in finding a feasible schedule by the RT scheduling subsystem. In the following
experiments, we make the simplifying assumption that all of the time constraints of the
agent’s action are associated either with the action-type or with its appropriate recipe.

In our simulation environments we built the recipe library according to the following
parameter settings: (1) the average number of the precedence constraints between subactions
in each recipe in the recipe library; (2) the average number of the metric constraints of all
the actions in the recipe tree; (3) the depth of the recipe tree; (4) the number of the total
basic actions in the recipe tree, where the duration of each basic action may be between 1
to 10 minutes; and (5) the idle time, which indicates the average time (in seconds) between
two basic actions that may be “empty” in the scheduler.

35

In order to study the implications of the above parameters, we ran 4 sets of experiments.
The goal of the first set of experiments was to identify environments in which our system
always succeeds. In the second set of experiments we study how different parameters influence
the performance of our algorithm. After verifying in the second set of experiments that the
number of the basic level actions in the full plan and the average idle time are the most
influential parameters, we ran a third set of experiments. In this set of experiments we
studied the average idle time that is necessary for a given number of basic actions to achieve
a high percentage of success. In the first, second, and third sets of our experiments, we
checked the algorithm in a simple environment of a single agent without the possibility of
backtracking. In the fourth set, we enabled the agent to backtrack, while the goal of the
experiments, was to test the performance of the system when the agent is able to backtrack.
The results of all the experiments are described below.

7.1 Experiments with Single Agent without Backtracking

In the first set of experiments, we ran 100 examples. The examples are created as described
above. Our experiments proved that if the execution of all the basic actions begins 60
seconds or more after the planning process has started, and if the total number of the basic
actions is less than 70, then the system almost always succeeded (close to 100%), given that
the idle time is at least 120 seconds. In addition, if the ideal time is very high (more than
500 seconds), the system always succeeds, regardless of the values of the other parameters,
given that the system does not need to start the planning and the execution simultaneously.
Similarly, we attained a 100 percent rate of success when the average number of metric
constraints was high (an average of at least 1.4 constraints per action), regardless of the
values of the other parameters, given that the system does not need to start the planning
and the execution simultaneously.

The major goal of the second set of the experiments was to check how the value of
each parameter influences the success rate of our system. Thus, in this set, we did not
consider environments that were identified in the first set of experiments as environments
in which the system almost always succeed. We ran 246 experiments. In each run, the
above parameters were drawn from the following given range: (1) the average number of
the precedence constraints was between 0 and 12; (2) the average number of the metric
constraints was between 0 and 18; (3) the depth of the recipe tree was between 0 and 9; (4)
the number of the total basic actions in the recipe tree was between 60 and 120; and (5) the
tdle time was between 50 and 500 seconds. In addition, in all the runs there was no delay
between the start time of the planning and the beginning of the execution time. That is, the
release time of some of the basic level actions was concurrent with the time of the beginning
of the planning.

The graph in Figure 18 presents the success rate we attained for each given range of
basic tasks in the “complete recipe tree.” As shown in the graph, the success of the system
depends on the number of the basic actions in the “complete recipe tree.” When the number
of the basic actions was low (70-80 actions), the success rate was about 76 percent. For
an intermediate number of basic actions of 80-90, the success rate was about 58 percent,
and for 90-100 basic actions, the success rate decreased to 53 percent. For a high number

36

—o—RealTime and Al with Interleaving
—=—RealTime and Al without Interleaving | Success Rate - Number of Tasks

—4— RealTime Stand-alone

0.8
0.7
o 061
& 05

60-70 71-80 81-90 91-100 101-110

Number of Basic Actions

Figure 18: The graph “RealTime and Al with interleaving” describes the success rate of
our system, which interleaves planning and execution. The “RealTime and Al without in-
terleaving” graph describes the performance of the system when the Al planning subsystem
first finishes the entire planning process for the action. Then, the scheduling and execu-
tion process is run on the basic actions. The “RealTime stand-alone” graph describes the
performance of the RT scheduling stand alone system when no planning is necessary.

of basic actions, the success rate was 43 percent. The reason why we attained a lower rate
(62 percent) of success in the first range of basic actions (60-70) is that the planner could
send the first tasks to the RT scheduling subsystem very quickly (in a matter of seconds).
As a result, the RT scheduling subsystem started the execution of these actions. However,
since our system performs non-preemptive basic-actions, we encountered situations in which
we started to execute basic actions that could have potentially been scheduled much later.
However, since they were the only available tasks at the moment, and since their release time
allowed us to begin their schedule, it caused other tasks, that were received several seconds
later, to be scheduled later. In turn, this caused a failure in those runs. But, if we provide
the schedule with a waiting time at the beginning of the schedule process (i.e., all the basic
actions which arrive at the RT scheduling subsystem have to begin 60 seconds (or more)
after the schedule process has been started), then the success rate of (60-70) basic actions
is 100 percent. However, if the Al planning subsystem would have always advised the RT
scheduling subsystem to delay the execution of the first basic level actions in 60 seconds,
the performance of the system when there are more than 70 basic actions will decrease
significantly.

To compare our method to other approaches that do not interleave planning and exe-
cution, the agent was not allowed to start the execution before a full plan was available.
Thus, in this experiment, we first ran the Al planning subsystem. Then, immediately after
the AI planning subsystem finished planning all the action, the scheduling algorithm (of the
RT scheduling subsystem) was operated on the basic level actions and their associated time
constraints (as in static environments). The outcome is given in the graph of Figure 18. As
indicated in the graph, the success rate of the case when the system has started the execution
only after a full plan had been identified is very low (less than 50 percent). The reason for the
low success rate is result from the fact that a high number of basic tasks (about 100 actions)

37

Success Rate - Precedent Constraints

2 08
©
14
g 06 o - &
3 o -
(%)
@ 04

0.2 ‘ ‘ .

0.4-05 0.5-0.6 0.6-0.7 0.70.8

Precedent Constraints Rate

Figure 19: Success rate - average number of precedent constraints.

cause the planning time to be high. Since the AI planning subsystem first completed the
planning and only then sent the basic actions to the RT scheduling subsystem, some basic
actions missed their deadline and the RT scheduling subsystem was unable to schedule them
under their temporal constraints. Thus, it is clear that interleaving planning and execution
is crucial in such environments.

In order to evaluate the performance of our RT scheduling subsystem, which is based on
a heuristic algorithm, we tested the success rate of the RT scheduling stand-alone system
on the same data, assuming that no planning is necessary. In this experiment, we ran the
scheduling algorithm (of the RT scheduling subsystem) without the planning process. That
is, all the basic actions were sent to the RT scheduling subsystem as an input at the beginning
of its scheduling process. To our surprise, as indicated from the graph, up until a level of 80
actions, the combined system that consists of both planning and execution is better than the
RT scheduling stand-alone system. We believe that this is because the Al planning subsystem
sends the basic actions to the RT scheduling subsystem according to their execution order.
This helps the RT scheduling subsystem identify a feasible schedule. We conclude that
when the number of basic actions is low, the planning time is small and does not delay the
overall execution. This conclusion extends the results of Knblock’s work [31] which built
a system integrating planning and access to external information source (called “sensing”).
His experiments show that in his domain of information gathering, the planning time is only
a small fraction of the overall execution time. But his work considers only scenarios with
10 actions maximum, while our results are correct for to up to 110 actions. However, when
the number of the basic actions increases to more than 110, the RT scheduling stand-alone
system outperforms our system. In such environments, the high planning time that leads to
a delay in sending the basic actions to the RT scheduling is more influential on the success
rate than is the implicit information provided to the RT scheduling subsystem by receiving
the actions in correct order.

Figure 19 shows the success rate we had in a given range of precedence constraints. The
“Precedent Constraints Rate” axis represents the average number of precedence constraints
per action in the complete recipe tree. We can see that the trend of the line is a straight
line, with a success rate that reaches almost 60 percent. We assume that the reason why the

38

Success Rate - Time Constraints

1 P

0.8 /
06 M/‘/

——e

L 2

0.4

Success Rate

0.2

0.7-0.8 0.8-0.9 0.9-1 1-1.1 1112 1213 1314 1415
Time Constraints Rate

Figure 20: Success rate - average number of time constraints.

Success Rate - Idle Time

1.2

08 /
_/

L

06 -—

04
02

Success Rate

0-100 101-200 201-300 301-400 401-500 501+
Idle Time (sec)

Figure 21: Success rate - idle-time.

success rate does not really change, even though the rate of precedence increases, is because
the precedence constraints cause the scheduling problem to be more difficult. On the other
hand, the precedence constraints provides more knowledge about the subactions slots. As a
result, the precedence constraints leads the scheduler to the correct solution (which always
exists in our examples).

The graph in Figure 20 presents the success rate as a function of the metric constraints.
When the average number of the metric time constraints per either complex or basic level
action in the “complete recipe tree” increases, the success rate of our system also increases.
The reason for this surprising result is that the metric time constraints provide the scheduler
with more precise knowledge about the scheduling slot of the basic actions.

The last parameter which was tested in this set of experiments is the idle-time. As
presented in the graph of Figure 21, when the idle-time was high (greater than 500 seconds)
the success rate was 100 percent. However, when the idle time was less than 500 seconds the
success rate was about 60 percent. It is clear that high idle time allows for a better method
of scheduling and more manipulation of the scheduled tasks.

The reason why we did not attain a 100 percent success rate in most of the experiments
of this set stems from the fact that when we tested the performance of one parameter we

39

Nearly 100% Success Rate

300

S 250
2 /
2 200 —
g 150 &
S /
'S 100 -—
S 50
0 : : : : :
40-50 51-60 61-70 71-80 91100 101-110

Number of Basic Actions

Figure 22: The average idle time that is necessary for a given number of basic actions for a
high percentage of success rate.

allowed the other parameters to have different values. However, the above results prove
that the major parameters which influence the success of the system are the number of
basic actions and the idle time. Thus, we ran a third set of experiments to check which
configuration set of these parameters attained about a 100 percent success rate. For this
purpose, we ran 120 examples (20 examples for each configuration). Figure 22 presents the
minimal idle time that is needed to attain about 100 percent success rate as a function of
the number of basic actions in the recipe tree. The values of the other parameters in this
set were drawn from the same range as the second set of experiments described above. As
illustrated in the results’ graph in Figure 22, when the number of basic level actions is small,
the idle time may be low. However, when the number of basic actions is large, the planning
process becomes slower. As a result, the idle time should be higher in order to guarantee
about a 100 success percent rate.

7.2 Single Agent Backtracking

In this set of experiments, we tested the effects of backtracking by allowing more than one
recipe for each complex level action in the recipe tree of a. We ran 43 different random
examples of recipe libraries for action a. We changed each example of a recipe library 9
times, as follows. At the beginning, the recipe library included only one recipe for each
complex level action (as in the case that backtracking was not allowed). Then, one complex
action had two recipes, two actions had two recipes, and so on (we increased the number of
recipes by one 9 times). The examples were drawn from environments with a high success
rate the value of the number of basic actions was between 50 and 70, and the value of the ideal
time was between 80 and 150 (the configurations set of these values were selected according
to the graph in Figure 22). The values of the other parameters were randomly selected
from the same range as the two former sets of experiments. The results of this experiment
are presented in Figure 23. It is clear that the backtracking causes the planning time to
be higher, thus the performance of the system decreases. On the other hand, when the
number of the additional recipes is high, in several cases, the agent has additional options

40

Success Rate - Backtrack

0.98

096 I m_— A

0.94

0.92
0.9 P — E—

0.88 m— ~. ~u |

0.86 - ~=a"

0.84

0.82
0.8

Success Rate

0 1 2 3 4 5 6 7 8 9
Backtracking Oppurtonities

Figure 23: Success Rate - in backtracking environment.

in the performance its plan, which may cause the system’s performance to improve. Since
our system interleaves planning and execution, in the backtracking, the agent may remove
a recipe which consists of subactions that already have been executed. In our experiments,
we analyzed the number of the basic actions that had been executed and then were removed
from the agent plan. We found that in most cases (94 percent), the agent removed actions
that had not been performed yet. However, we did not consider the effects of the executed
actions which were removed.

8 Expanding the Algorithm for the Multi-Agent Ac-
tivity

Although several collaborative multi-agent systems have been developed, they pay little at-
tention to time coordination problems. There are mainly two approaches. The first approach
suggests a synchronization method; i.e., the team members broadcast messages that ensure
that the execution of an action will not be attempted until all the team members are ready
[59, 65]. In the second approach [27], a team leader is responsible for the timing of the
individual actions. Both approaches restrict the activity of the individual agents, and the
second approach is not appropriate for uncertain dynamic environments.

The temporal reasoning mechanism for the multi-agent environment is very similar to
that of the individual case. Each individual agent G maintains a temporal constraints graph
and develops its graph during its planning. However, in this case, the leaves of the full
recipe tree may be complex actions to be performed by other agents. In particular, some
vertices in the incremently constructed graph may represent joint actions. As a result, each
agent maintains a different graph which consists of its constraints. Thus, Gr,, where a may
be either a joint action or an individual one of some agent (G, could include five types of
vertices: (1) vertices which denote complex actions that G needs to perform individually;
(2) vertices which denote basic actions that G needs to execute; (3) vertices which denote
complex actions, where G belongs to the groups which have to perform the actions; (4)
vertices that denote multi (or single) agent actions and where G does not belong to the

41

groups (or is not the agent) that have (has) to perform these actions, but where the value
of these vertices are already known; and (5) vertices that denote multi (or single) actions,
where G does not belong to the groups (or is not the agent) which have (has) to perform the
actions and where the value of these vertices is unknown. When a vertex status is changed
from unexplored to explored, the algorithm also determines to which of the cases described
above it belongs.

The concept IndV is also different from the individual case, because each vertex may
depend on either other actions or other agents. In the multi-agent version of the algorithm,
the first and the second types of vertices will be developed as in the individual case. In
the development of the third type, the agents have to exchange their time constraints on
the joint action, and all agents need to agree to the set of constraints. Then the agents
use the planning process Select_Rec_GR to jointly select the recipe for the joint action
and to assign subactions to individuals and subgroups. Based on these decisions, each agent
constructs the Gr%a graph of the joint action, incorporates it in Gr,, and continues its
planning process. We refer to the fourth type of vertex as fixed (with the assumption that
the agent may be asked to change the value). These values have been sent to the agent before
it reaches this state of its planning. The last type influences which vertices are independent;
i.e., if some of the ancestors of a certain vertex is of this type, then the agent can not continue
the development of this vertex until it receives the value of the vertex from the appropriate
agents.

To confirm the correctness of the multi-agent version of the algorithm, we have proved
that no deadlocks occur, since at each stage of the planning process at least one of the agents
in the group has a non-empty IU [24].

9 Conclusions

In this paper we have presented a mechanism for time planning in uncertain and dynamic
multi-agent systems, where the agents interleave planning and acting. This mechanism allows
each agent to develop its timetable individually and to take into consideration all types of
time constraints on its activities and on these of its collaborators. Thus, in contrast to other
works on multi-agent systems, which suggest that either the team members maintain full
synchronization by broadcasting messages or that a team leader determines the times of
actions, our mechanism enables the individual agent to determine its time individually, but
also to be easily integrated in the activities of other agents. We have proved that under
certain conditions the mechanism is sound and complete.

We have also presented the results of several experiments on the system. The results
proved that interleaving planning and acting in our environment is crucial. In our experi-
ments, we tested the influence of several parameters on the system’s performance. We showed
the configuration set of the parameters for the system provides an almost 100% success rate.
We found out that as the number of the basic actions increases, the performance of the
system decreases. However, this performance may be improved by improving the efficiency
of the algorithm in the AI planning subsystem. We have left the task of improving the
algorithm for future work.

42

The development of this mechanism has uncovered several interesting problems in design-
ing agents for collaborative activity. First, the planner does not consider the preconditions
of the actions while developing its plan. Second, the planner does not reason about resource
and resource conflicts in the context of time coordination. We also did not consider the side
effects which arise from executing the actions that were canceled as a result of the agent
backtracking. We have left each of these research problems for future work. The next major
steps that we envision includes developing strategies and protocols for elaborating partial
plans, including mechanisms for combining time information possessed by different agents, as
well as strategies for negotiating in the event of resource conflicts, and reaching a consensus
on how to allocate portions of the activity among different participants.

References

[1] James Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123-144, 1984.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26:832-843, 1983.

[3] R. C. Arkin. Integrating behavioal, perceptual, and world knowledge in reactive navi-
gation. Robotics and Autonomous Syst., 6:105-222, 1990.

[4] R. Arthur and J. Stillman. Tachyon: A model and environment for temporal reasoning.
M.S. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1992.

[5] Peter Van Beek. Reasoning about qualitative temporal information. Artificial Intelli-
gence, 58:297-326, 1992.

[6] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers,
1997.

[7] Alison Cawsey. Artificial Intelligence. Prentice Hall Europe, London, 1998.

[8] S. Chien, G. Rabideau, J. Willis, and T. Mann. Automating planning and scheduling
of shuttle payload operations. Artificial Intelligence Journal, 114:239-255, 1999.

[9] Wesley W. Chu and Kin K. Leung. Task response time for real-time distributed systems
with resource contentions. IEEE Transactions on software engineering, 17(10):1076—

1092, 1991.

[10] Thomas H. Cormen, Charles E. Leiserson, and Ronland L. Rivest. Introduction to
Algorithms. MIT Press, London, England, 1990.

[11] Ken Currie and Austin Tate. O-plan: the open planning architecture. Artificial Intel-
ligence, 52:49-86, 1991.

43

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

C. Anderson D. Weld and D. Smith. Extending graphplan to handle uncertainty and
sensing actions. In Proceedings of the Annual Conference of the American Association

for Artificial Intelligence (AAAI-98), pages 897-904, 1998.

T. L. Dean and D. V. McDermott. Temporal data base management. Artificial Intelli-
gence, 32:1-55, 1987.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61-95, 1991.

J. Dorn, M. Girsch, G. Skele, and W. Slany. Comparison of iterative improvement
techniques for schedule optimization. Furopean Journal on Operations Research, pages
349-361, 1996.

A. El-Kholy and B. Richards. Temporal and resource reasoning in planning: the parc-
Plan approach. In 12th European Conference on Artifical Intelligence (ECAI '96), pages
614-618, 1996.

R. E. Fikes, P.E. Hart, and N. J. Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3(4):251-288, 1972.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, California, 1979.

Keith Golden, Oren Etzioni, and Daniel Weld. Planning with execution and incomplete
information. Technical report, University of Washington, 1996.

Martin Charles Golumbic. Reasoning about time. Mathematical Aspects of Artificial
Intelligance, 55:19-53, 1998. Proceedings of Symposia in Applied Mathematics.

M. Graham and M. Florian. On scheduling with ready times and due dates to minimize
maximum lateness. Operations Research, 23(3), 1975.

Barbara Grosz and Sarit Kraus. Collaborative plans for group activities. In Ruzena Ba-
jesy, editor, Proceedings of the 1998 International Joint Conference on Artificial Intelli-
gence (IJCAI-93), pages 367-373, San Mateo, CA, 1993. Morgan Kaufmann Publishers,

Inc.

Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Ar-
tificial Intelligence, 86(2):269-357, 1996.

Meirav Hadad and Sarit Kraus. Intelligent information agents. In Matthias Klusch,
editor, Intelligent Information Agents, chapter SharedPlans in Electronic Commerce,
pages 204-231. Springer Publishers, Berlin, 1999.

Babak Hamidzadeh and Shashi Shekhar. Specification and analysis of real-time problem
solvers. IEEE Trans. on Computer, 19(8):788-803, August 1993.

44

[26]

[27]

28]

[29]

[30]

31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Kristian J. Hammond. Chef: A model case-based planning. In Proceedings of the
Annual Conference of the American Association for Artificial Intelligence (AAAI-86),
pages 267-271, 1986.

Nick R. Jennings. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75(2):1-46, 1995.

J. Hendler K. Erol, D. Nau. HT'N planning: Complexity and expressivity. In Proceedings
of the Annual Conference of the American Assoctation for Artificial Intelligence (AAAI-
94), pages 11231128, 1994.

Nikos I. Karacapilidis. Planning under uncertainty: A qualitative approach. Lecture
Notes in Computer Science, 990:285-296, 1995.

D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg, G. Tidhar, and E. Werner. Planned
team activity. In C. Castelfranchi and E. Werner, editors, Artificial Social Systems,
Lecture Notes in Artificial Intelligence (LNAI-830), Amsterdam, The Netherlands, 1994.
Springer Verlag.

Craig A. Knoblock. Building a planner for information gathering: A report from the
trenches. In Third International Conference on Artificial Intelligence Planning Systems,
1996.

Carsten Hojmose Kristensen and Niels Drejer. Evaluating distributed timing constraints
implementing run-time mechnisms. In 2ND IEEFE workshop on Real-Time Applications,

pages 157-162, Washington,DC., 1994.

John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33:1-64, 1987.

J. Lever and B. Richards. parcPlan: a planning architecture with parallel actions,
resources and constraints. Lecture Notes in Computer Science, 896:213-222, 1994.

H. Levesque, P. Cohen, and J. Nunes. On acting together. In Proceedings of the Annual
Conference of the American Association for Artificial Intelligence (AAAI-90), pages
94-99, 1990.

Karen Lochbaum. Using Collaborative Plans to Model the Intentional Structure of Dis-
course. PhD thesis, Harvard University, 1994. Available as Tech Report TR-25-94.

Karen Lochbaum, Barbara Grosz, and Candace Sidner. Models of plans to support
communication: An initial report. In Proceedings of AAAI-90, pages 485-490, Boston,
MA, 1990.

J. Malik and T.O. Biford. Reasonning in time and space. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI-83), pages 343-345, 1983.

Graham Mcmahon and Michael Florian. On scheduling with ready times and due dates
to minimize maximum lateness. Operations Research, 23(3):475-482, 1975.

45

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Pinedo Michael. Scheduling. Prentice Hall, 1995.

D. P. Miller and E. Gat. Exploiting known topologies to navigate with low-computation
sensing. In SPIE Sensor Fusion Conference, November 1990.

U. Montanari. Networks of constraints: fundamental properties and applications to
picture processing. Information Sciences, 7:95-132, 1974.

L. Morgenstern. Knowledge preconditions for actions and plans. In Proceedings of
1JACAI-87, pages 867-874, Los Altos, CA, 1987. Morgan Kaufman Publishers Inc.

D. J. Musliner, E. H. Dufree, and K. G. Shin. World modeling for dynamic construction
of real-time control plans. AI 74(1):83-127, 1995.

David J. Musliner, Edmund H. Dufree, and Kang G. Shin. Circa: A cooperative in-
telligent real-time control architecture. IEEE trans. on computer, 23(6):1561-1574,
November 1993.

David J. Musliner, James A. Hendler, Ashok K. Agrawala, Edmund H. Dufree, Jay K.
Strosnider, and C. J. Paul. The challenges of real-time Al. IEFE trans. on computer,
28(1):58-66, January 1995.

Alexander Nareyek. A planning model for agents in dynamic and uncertain real-time
environments. In AIPS Workshop on Integrating Planning, pages 7-14, 1998.

Alexander Nareyek. Open world planning as scsp. Technical Report WS-00-02, AAAI
Press, Menlo Park, California, 2000.

Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop and m-shop plan-
ning with ordered task decomposition. Technical report, University of Maryland, 2000.

Nils J. Nilsson. Principles of Artificial Intelligence, chapter 7 and 8. Tioga Publishing
Company, 1980.

J.S. Penberthy and D. Weld. Temporal planning with continuous change. In Proceedings
of the Annual Conference of the American Association for Artificial Intelligence (AAAI-
94), pages 1010-1015, 1994.

Martha E. Pollack. Plans as complex mental attitudes. In P.N. Cohen, J.L. Morgan,
and M.E. Pollack, editors, Intentions in Communication. Bradford Books, MIT Press,
1990.

Krithivasan Ramamritham and John A. Stankovicand. Dynamic task scheduling in hard
real-time distributed systems. IEEE Software, 1(3):65-75, 1984.

Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill, Inc., second edition,
1991.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Cliffs, NJ, 1995.

46

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

Terry Shepard and J. A. Martin Gagne. A pre-run-time scheduling algorithm for hard
real-time systems. IEEE Transactions on software engineering, 17(7):669-677, 1991.

R. Simmons. An architecture for coordinating planning, sensing and action. In Proceed-
ings of the Workshop on Innovative Approaches to Planning, Scheduling, Contr., pages
292-297, November 1990.

Hardeep Singh and Texas Instrument. Scheduling techniques for real-time applications
consisting of periodic task sets. In 2ND IEEE Workshop on real-time applications, pages
12-15, Washington,DC, 1994.

E. Sonenberg, G. Tidhar, E. Werner, D. Kinny, M. Ljungberg, and A. Rao. Planned
team activity. Technical Report 26, Australian Artificial Intelligence Institute, Australia,
1992.

Biplav Srivastava. RealPlan: Decoupling causal and resource reasoning in planning.

In Proceedings of the Annual Conference of the American Association for Artificial
Intelligence (AAAI-00), pages 812-818, 2000.

J. A. Stankovic and K. Ramamritham. The spring kernal: a new paradigm for real-time
systems. IEEE Software, pages 62-72, May 1991.

John A. Stankovic, Krithivasan Ramamritham, and Shengchang Cheng. Evaluation
of a flexible task scheduling algorithm for distributed hard real-time systems. [EFEFE
Transactions on computers, 34(12):1130-1143, 1985.

John A. Stankovic, Marco Spuri, Macro Di Natale, and Giorgio Buttazzo. Implications
of classical scheduling results for real-time syatems. IEEE computer, 28(6):16-25, 1995.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, 1990.

M. Tambe. Toward flexible teamwork. Journal of AI Research, 7:83-124, 1997.

Steven A. Vere. Planning in time: Windows and durations for activities and goals. In
James Allen et al., editor, Readings in Planning, pages 297-318. Springer Publishers,
Berlin, 1990.

T. Vidal and M. Ghallab. Dealing with uncertain durations in temporal constraint
networks dedicated to planning. In 72th Furopean Conference on Artifical Intelligence
(ECAI ’96), pages 54-48, 1996.

M. Vilain and H. A. Kautz. Constraint propagation algorithms for temporal reasoning.

In Proceedings of the Annual Conference of the American Association for Artificial
Intelligence (AAAI-86), pages 132-144, 1986.

D. Wilkins. Using pattern and plans in chess. Artificial Intelligence, 14(2):165-203,
1983.

47

[70]

[71]

[72]

[73]

D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Planning and reacting
in uncertain and dynamic environments. Journal of Fzperimental and Theoretical Al

7(1):197-227, 1995.

Jia Xu. Multiprocessor scheduling of process with release times, deadlines, precedence,
and exclusion relations. [EEE Transactions on software engineering, 19(2):139-154,
1993.

Jia Xu and David Lorge Parnas. Scheduling processes with release times, dead-
lines, precedence and exclusion relations. IEEFE Transactions on software engineering,
16(3):360-369, 1990.

Jia Xu and David Lorge Parnas. On satisfying timing constraints in hard-real-time
systems. IEEE Transactions on software engineering, 19(1):70-84, 1993.

48

A Lemmas and Propositions for the Correctness of the
Algorithm

In order to prove the correctness of the algorithm, we will first define the following new
concepts. All of the concepts refer to the algorithm and the definitions in section 4.2.

Definition A.1 (CloserFixVertex(v), CloserFixSet(v)) Let PathSet(v) be the set
{p1,...,Pm} which consists of all the paths from Sapa, L0 the verter v € V,. For each
pi € PathSet(v) (1 < i < m), the fized vertices in p; which is closer to v, is called
the Closer FizVertex(v) in p;,. That is, if p; is the sequence (ug, uy, us,...,u,) such that
Sayien = U0 AN UV = Uy, then, u; 0 < j < n s the Closer FizVertex(v) in p; if for all other
fized vertez u, in p; s < j. The CloserFizSet(v) is a set of all the vertices {vy,va,...,v}
such that each v; 1 < j <1< m is a Closer FizVertex(v) in some p;.

In each stage of the algorithm, the agent selects a vertex v which is an IndV in order to
identify the value of this vertex. In the following claims we will show that, according to the
algorithm, this vertex indeed can be identified (because all the vertices in the path from the
vertices in the Closer FizSet(v) to v have been identified). Then, we will show (in lemma 1)
that the algorithm always terminates, and finally we will prove that the algorithm is correct
and complete.

Proposition 1 Suppose that IDENTIFY _ID_TIMES_PARAMS builds a temporal constraints graph
of a, Gro = (Va, E,), from a given initial graph InitGr,. Let u be some vertez in V,. Then,
during the execution of IDENTIFY _ID_TIMES_PARAMS, if each vertex in the path from all the
vertices in the Closer FizSet(u) to u are explored (i.e., either EB or EC), then u is IndV.

Proof: The proof is by induction on the length of the longest path from Closer FizSet(u)
to u. Initially, when the vertex u is a fixed time point, the proposition certainly holds. Let
u be some vertex such that the path from all the vertices in the Closer FizSet(u) to u are
explored. If u is not a fixed vertex, then for each (v, u) € E, the Closer FizSet(u) is longer
than the Closer FizSet(v). Thus the path from all the vertices in the Closer FizSet(v) to
v 1s explored. Thus, according to the inductive hypothesis, each such v is IndV; that is,
v € IE. Now, it remains to show that the weight of each edge (v,u) € E, is known. Since,
according to the algorithm, this edge cannot be a complex edge,!’ then the weight of this
edge is known. As a result, the weight of the edge from the Closer FizSet(v) to v is known
and the value of v may be defined (i.e., v is IndV). O

In the following proposition we prove that all the values of the parameters associated
with the basic actions which are sent to the RT scheduling subsystem will not be changed
later by the planning process (with the exception of the case of backtracking). Thus, these
actions can already be scheduled and executed before the agent finishes its planning. This
fact enables the agent to interleave planning and acting.

10That is, in the building of the graph, it first adds the new vertices which are appropriated for the
selected recipe of the complex edge (v,u) between u and v. Then, it changes the statues of v and u to
explored vertices. As a result, there is path of unexplored vertices between u and v.

49

Proposition 2 Suppose that IDENTIFY_ID_TIMES_PARAMS runs and builds a temporal con-
straints graph of a, Gr, = (Va, E,). Let v € V be an IndV which represents a start time
point of some basic level action 3. Then, the final values of < Cg,dg,r5,p3 > can be iden-
tified, i.e.; these values will not be changed (unless the agent will backtrack and choose a
different recipe).

Proof: Because 3 is a basic level action it is obvious that the computation time, Cp, is
final.! Now, we have to show that if v represents a start time point of 3, and v is an IndV,
then 73 can be identified. Since v is IndV all the paths between the Closer FizSet(v) to v
are final, the weights of all the edges in these paths are final, thus the final value of 75 can
be identified. Similarly, the final value of dg can be identified. Also, all the basic edges in
the paths between the Closer FizSet(v) to v are final. Thus all the basics actions which are
precedent to v are final.O
In the following lemma we prove that the algorithm always terminates.

Lemma 1 Let Gr, = (V,, E,) be the temporal constraints graph of a, and suppose that
IDENTIFY_ID_TIMES_PARAMS runs and builds Gr, from a given initial graph InitGr,. Then,
during its execution:

1. If Gr, consists of some unexplored vertices, then at least one of these vertices is an
IndV start time point.

2. If all the vertices in the graph are explored, then the agent finished identifying all of
the time parameters in its individual plan for «.

Proof:

1. Because Gr, is a “directed acyclic graph (dag),” we can perform a topological sort of
the graph. Let v; be the first unexplored vertices in the order of the topological sort.
Then, it is clear that all the vertices in the paths from s, ,, to v; are explored. Thus,
according to proposition 1, v; is an IndV. According to the algorithm, the start time
point and the finish time point of each action in the graph become unexplored in the
same step. The start time of the action always precedes the finish point. Thus, v; is a
start time point (since the start time point is also prior to the finish time point in the
topological order).

2. Suppose by contradiction that the agent did not finish identifying all of the temporal
parameters in its individual plan for «, but all the vertices in the graph were explored.
Thus, the graph consists of at most one action § for which the agent did not identify
its time parameters. But, according to the algorithm, for each basic level action 3, the
vertices which represent action [become explored when the temporal parameters of
(are identified. For each complex level action 3, when the vertices which represent
this action become explored, new unexplored vertices are added to the graph (i.e., the
vertices which represent the subactions of 3). Thus, we obtain a contradiction to the
assumption that all the vertices in the graph are explored.O

11We use the term “final” to refer to the values of the parameters that will not be changed during the
planning process (unless the agent backtracks).

50

Corollary 1 The algorithm terminates when all the leaves in the implicit recipe tree of Gr,
are basic level actions.

Proof: Otherwise, if the leaf of the recipe tree was a complex level action, then, according
to the algorithm, the graph includes some unexplored vertex and the algorithm has
not terminated.

In the following lemma we prove that in each stage of the algorithm the leaves in the
implicit recipe tree constitute performing o under the associated time constraints a.

Lemma 2 Suppose that the agent plans for some action a. Then, during the development
of the graph Gr,, performing all the actions (possibly complez) in the leaves of the implicit
recipe tree, Tree,, constitutes performing a under constraints 8, (possibly in parallel).

Proof: The proof is by induction of the number of the vertices in the implicit recipe tree.
Initially, when the recipe-tree consists of one vertex (i.e., only action «), the proposition
certainly holds. Suppose that the recipe tree consists of n vertices. As an inductive
hypothesis we assume that all the actions in the leaves of the recipe tree with m
vertices, where m < n constitute performing o under constraints 6,. Let T'ree, be
some incomplete recipe tree of a with m vertices. According to the algorithm the agent
expands the recipe tree by selecting some leaf which represents a complex level action
B. Suppose that the agent selected the recipe Rg in order to expand the recipe tree
for a which consists of b subactions. According to the inductive hypothesis, all of the
actions in the leaves of the recipe tree with the m vertices constitute performing o
under constraints 6,. However, according to the algorithm, when the agent selects the
recipe for 4 and adds it to the constraints graph, it also checks that all the constraints
of (# constitute performing o under constraints 6,. If these constraints constitute
performing «, it continues with its plan for a and the subactions of § become the
leaves of the recipe tree of a. Thus, all the actions in the leaves of the tree which
consists of n = m + b vertices constitute performing a under constraints 6,. O

51

B The REMOVE Procedure

REMOVE(f3, descend;set)
status[sg] < UE; status[fs] < UE;
remove sg and fg from IE and IU sets;

ot

2
3 for each node v € descendse do;

4 remove s, and f., from Vj;

5 if (Sapians 57)s (Sapian> fr) € Ea remove it from E,;
6 remove all the edges (sy,a) € F, from E,;

7 remove s, and f, from IE and IU sets;

8 UPDATE_IV_SETS(sg);

Figure 24: The procedure for removing recipes from Gr,.

52

