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Abstract—Classic support based approaches efficiently ad-
dress frequent sequence mining. However, support based niig

has been shown to suffer from a bias towards short sequences.

In this paper, we propose a method to resolve this bias when
mining the most frequent sequences. In order to resolve the
length bias we definenorm-frequency, based on the statistical z-
score of support, and use it to replace support based frequey.
Our approach mines the subsequences that are frequent relae
to other subsequences of the same length. Unfortunately, iva
use of norm-frequency hinders mining scalability. Using norm-
frequency breaks the anti-monotonic property of support, an
important part in being able to prune large sets of candidate
sequences. We describe a bound that enables pruning to pra\a
scalability. Experimental results on textual and computeruser
input data establish that we manage to overcome the short
sequence bias successfully, and to illustrate the produci of
meaningful sequences with our mining algorithm.
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Karypis [11] propose eliminating the length bias by exfiragt

all patterns with a support that decreases as a function of
the pattern length. This solution is based on the assumption
that a short pattern must have a very high support to be
interesting, and a long pattern may be interesting even with
a lower support. Although this is a fair assumption in many
scenarios, it is challenging to find a measure that can be used
for frequent pattern mining without making an assumption on
the relationship between frequency and length. Searching f
closed or maximal patterns [12]-[14] is another way to ap-
proach this bias. However, mining closed or maximal pastern
may not be the best approach to solve the short sequence bias.
Using closed and maximal sequences ignores shorter partial
sequences that may be of interest. Other approaches include
comparing the frequency of a sequence to its subsequences
[15], and testing for self sufficient sequences [16]. We psap

an algorithm that mines sequences of all lengths without a
bias towards long or short sequences. Horman and Kaminka
[8] proposed using a normalized support measure for solving
the bias. However, their solution is not scalable. Furtteeam
they cannot handle subsequences that are not continuous or

The frequent sequence mining problem was first introducetiave multiple attributes. We allow holes in the sequence,
by Agrawal and Srikant [1] and by Mannila et al. [2]. There for example: if the original sequence is ABCD, Horman and

are many possible applications for frequent sequentia pet,

Kaminka can find the subsequences AB, ABC, ABCD, BC etc,

such as DNA sequence mining [3], text mining [4] anomalybut cannot mine ACD or ABD, whereas our proposed method

detection [5] classification [6], and Web mining [7].

Frequent sequential pattern generation is traditionaliehl

can.

In this paper, we present an algorithm f&Esolving

on selecting those patterns that appear in a large enougingth bias inFrequent sequence mining (REEF). REEF is
fraction of input-sequences from the database. This measur 5, algorithm for mining frequent sequences that normalizes

known assupport In support based mining a threshold termede support of each candidate sequence with a length adjuste

minsupis set. All sequences withsupporthigher tharminsup
are considered frequent.

z-score. The use of the z-score in REEF eliminates statistic
biases towards finding shorter patterns, and contributes to

towards short patterns [8]: Short patterns are inherentdyem

challenges the scalability of the approach: z-score nazaral

frequent than long patterns. This bias creates a problention lacks the anti-monotonic property used in support Base
since short patterns are not necessarily the most integesti Measures, and thus supposedly forces explicit enumeration
patterns. Often, short patterns are simply random occoeen ©Of every sequence in the database. This renders useless any
of frequent items. The common solution of lowering the SUpport based pruning of candidate sequences, the basis for
minsupresults in obtaining longer patterns, but generates &calable sequence mining algorithms, such as SPADE [17].
large number of useless short sequences as well [9]. Using

confidence measures lowers the number of output sequences In order o provide a means for pruning candidate se-
but still results in short sequences quences, we introduce a bound on the z-score of future

sequence expansions. The z-score bound enables prunimy in t
Thus, removing the short sequence bias is a key issue imining process to provide scalability while ensuring clasu
finding meaningful patterns. One possible way to find valeabl Details on how the bound is calculated will be described late
patterns is to add weights to important items in the data. Yurin the paper. We use this bound with an enhanced SPADE-
[10] provides an algorithm for frequent sequence mining@si like algorithm to efficiently search for sequences with high
weights. The drawback of this technique is that for many data-score values, without enumerating all sequences. A pusvi
sets there is no knowledge of what weights to apply. Seno angreliminary study [18] indicates that this bound assists th
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speedup substantially. We use three text corpora and cemput  This notation allows the description of multivariate se-
user input to demonstrate how REEF overcomes the biaguence problems. The data is sequential in that it is congpose
towards short sequences. We also show that the percentagkordered events. The ordering is kept within the subsecggen
of real words among the sequences mined by REEF is highers well. The multivariate property is achieved by eventadei
than those mined with SPADE. composed of several items. The notation enables discus$ion

. . mining sequences with gaps both in events and in items, as
The structure of the paper is as follows: Section Il pro- g seq gap

. ; i long as the ordering is conserved. The mined sequences are
vides background and notation and introduces Norm'Fraqueﬁorgetimes called 9 q
o . ; patterns.
Sequence Mining Problem. In Section Il the algorithm use
for the Norm-Frequent Sequence Mining is described in betai  In traditional support baged mining, a user specified min-
Experimental evaluation is provided in Section 1V, and fipal imum support calledninsupis used to define frequency. A

Section V concludes our paper. frequentsequence is defined as a sequence with a support
higher thanminsup formally defined as follows:
[I.  NORM-FREQUENT SEQUENCEMINING Definition 1 (Frequent):Given a databasP, a sequence
Norm-FrequenSequence Mining solves the short sequencé"m.d a minimum supporinsup s is frequentif supp(s, D) >

bias present in traditionaFrequent Sequence Mining. We ""/"*SUP:

begin by introducing the notation and the traditioRedquent  The problem of frequent sequence mining is described as
Sequence Mining problem in Section II-A. We then definesearching for all thérequentsequences in a given database.
the Norm-FrequeniSequence Mining problem in Section 1I-B. The formal definition is:

We explain why the scalability is hindered by the naive imple

mentation of normalized support and how this is resolved inOI tDt()afinitiDon 2 c(jFrequ(_an_t Sequence Mni1r_1ing)3ivf(_end I tha
Section II-C. Section II-C addresses scalability by introidg faa aste , and a minimum: supportminsup findail the
a bound that enables pruning in the candidate generatioﬁequen sequences.

process. Finally in Section Il we bring all parts together t In many support based algorithms such as SPADE [17],

compose the REEF algorithm. the mining is performed by generating candidate se-
guences and evaluating whether they are frequent. In or-
A. Notation and Frequent Sequence Mining der to obtain a scalable algorithm a pruning is used

. o ) in the generation process. The pruning is based on the
We useth_e_followmg notation in discussing Norm Frequentanti-monotonic property of support. This property en-
Sequence Mining. sures that support does not grow when expanding a se-

event Let I = {I,, I, ..., I,,} be the set of alitems An  dUence, e.gsupp({AB} — {C}) > supp({AB} — {CD}).

event(also called antemse} is a non-empty unordered set This promises that candidate sequences thanatefrequent
of items denoted asc — {i,....in} Wherei; € I is an will never generatefrequent sequences, and therefore can
- s ey in J

item. Without loss of generality we assume they are sorted® PrunedFrequentsequence mining seems to be a solved
lexicographically. For example; = {4BC} is an event with Problem with a scalable algorithm. However, it suffers from
items A B and ¢ a bias towards mining short subsequences. We provide an

algorithm that enables mining subsequences of all lengths.
sequence A sequences an ordered list obvents with a
temporal ordering. The sequense=e; — ez — ... = ¢4 IS B. Norm-Frequent Sequence Mining using Z-Score

composed of; events. If event; occurs before evert;, we . . .
P i ! e In this section, we define the problem WNbrm-Frequent

denote it as; < ¢;. e; ande; do not have to be consecutive S Mini Wi the statistical ¢ |
events and no twaventscan occur at the same time. For >€duence Mining. We use the stalistical z-score for normal-

example, in the sequence{ssBC} — {AE} we may say that |zat|on.. The z-score for a sequence of lengtis defined as
{ABC} < {AE} since{ABC} occurs beforg AE}. follows:

Definition 3 (Z-score):Given a databasP and a sequence
s. Letl = len(s) be the length of the sequenselLet n; and
be the average support and standard deviation of support
sequences of lengthin D. The z-scoreof s denoted((s)

sequence size and length The size of a sequence is the
number of events in a sequence;e({ABC} — {ABD}) = 2.
Thelengthof a sequence is the number of items in a sequencgl
including repeating items. A sequence with lengtis called or

C— __ supp(s)—p
anl-sequencelength({ABC} — {ABD}) = 6. is given by((s) = ===
subsequence and contain A sequence s; is a We use the z-score because it normalizes the support
K3

subsequenceof the sequences;, denoted s; < s;, if measure relative to the sequence length. Traditional mjnin
g (AR N . . :
Ver, €1 € i, em, en € 5; Such thatey, C e,, and e C e, where support is used to define frequency, mines sequences

and if e, < ¢; thene,, < e,. We say thats; containss; if that appear often relative @l other sequences. This results
si < s;. E.Q., {AB) _>"{LDF}7; (ABC) {BF}f_> (DEF}. ! in short sequences since short sequences always appear more
- often than long ones. Using the z-score normalization of
database The databaséd used for sequence mining is support for mining finds sequences that are frequent relativ
composed of a collection of sequences. to othersequences of the same lengtiThis provides an even

support The supportof a sequence in database is the chance for sequences of all lengths to be found frequent.

proportion of sequences iD that contains. This is denoted Based on the definition of z-score for a sequence we define
supp(s, D). a sequence as beinjorm-Frequentif the z-score of the
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seq l:  {AB} — {A} C. Scaling Up

seq 2. {AB} — {B}

seq 3. {BC} — {A} As we explained in Section II-B, pruning methods such
zgg g; }‘ég% - E‘g}j as those described in SPADE [17] cannot be used ndtm-

seq 6 {AC} — (B} frequentmining. We propose an innovative solution that solves
seq7: {AB} — {A} the scalability problem caused by the inability to prune.

seq 8 {AC} — {C}

seq9:  {BC} —{C} Our solution is to calculate a bound on the z-score of

seq 10: {AC} — {A}

sequences that can be expanded from a given sequence.
This bound on the z-score of future expansions of candidate
sequences is used for pruning. We define the bound and then
explain how it is used. Z-score was defined in definition 3.
The bound on z-score is defined in definition 6.

sequence is among the top z-score values for sequences in pefinition 6 (Z-score-Bound)Given a databas® and a
the database. The formal definition follows: sequence. Let u; andoy be the average support and standard

Definition 4 (Norm-Frequent)Given a databas®, a se- deviation of support for seq/uences of JIBeng’t/hn_ D._The Z-
quences of lengthl and an integek. Let Z be the set of thé score-boundbf s, for lengthi denoted¢™ (s, I') is given by
CB (57 l/) — supp(s) —py .

highest z-score values for sequences insls norm-frequent o
if {(s) € Z. In other words, we perform top-K mining of the
most norm-frequent sequences.

Figure 1: Example database

We know that support is anti-monotonic, therefore as the
sequence length grows support can only get smaller. Given a
We introduce the problem oNorm-FrequentSequence candidate sequenceof lengthl with a support ofsupp(s) we
Mining. This new problem is defined as searching for allknow that for all sequences generated frons with length
the norm-frequentsequences in a given database. The formal’ > [ the maximal support isupp(s). We can calculate the
definition follows and will be addressed in this paper. bound on z-score(?(s,1’), for all possible extensions of a
. o candidate sequence. Notice that for all sequentdbat are
Definition 5 (Norm-Frequent Sequence Miningjiven a  extensions of, ¢(s') < ¢Z(s, ). The ability to calculate this
database) and integet, find all thenorm-frequensequences. phound on possible candidate extensions is the basis for the

In Figure. 1, we provide a small example. The sequencegrumng'

{AB}, {A} — {A} and{B} — {4}, of length2, all have a In order to mingrequentor norm-frequensequences, can-
support of 0.4 and are the most frequent patterns using sUpPQyigate sequences are generated and evaluated. In tradiiten

to define frequency. Notice that there are several sequencggentsequence mining there is only one evaluation performed
with this support, and no single sequence stands out. Gemsidgy each sequence. If the sequence is found tdrdamguentit

the sequencg AB} — {A} of length 3. This sequence only s poth saved in the list ofrequentsequences and expanded
has a support of 0.3. Ho_wever, all other sequences of lengtp generate future candidates, if it is nioéquentit can be

3 have a support no higher than 0.1. Although there argneqd (not saved and not used for generating candidates).
several sequences of lengthwith a higher support than pqrnorm-frequenmining we perform two evaluations for each
{AB} — {A}, this sequence is clearly interesting when com-gequence. The first is to decide whether the proposed seguenc
pared to other sequences of the same length. This exampl norm-frequent The second is to determine if it should be
provides motivation for why support may not be a sufficienteynanded to generate more candidate sequences for evaluati
measure to use. The norm-frequency measure we defined {§,gre are two tasks since z-score is not anti-monotonic and a
aimed at finding this type of sequence. sequence that is natorm-frequentmay be used to generate

Unfortunately, the z-score normalization test hindersnorm-frequensequences. This second task is where the bound

the anti-monotonic property: wecannot determine that is used for pruning. The bound on _future expansions of the
C{ABY = {C}) > C({ABY — {CDY). sequences is calculated for all possn_ale lengths. If thendou
Therefore, pruning becomes difficult; we cannot be sure tha®" the z-score for all _pOSS|bIe Ien_gths is lower than the tap n
the z-score of a candidate sequence with lenigthill not ~ SCOres then no possible expansion can evendren-frequent
improve in extensions of length-1 or in general+n for some ~ @nd the sequence can be safely pruned from the generation
positive n. Therefore, we cannot prune based on z-score anffocess. If for one or more lengths the bounq is high enough
ensure finding alhorm-frequensequences. This is a problem © be norm-frequentwe must generate candidates from the

since without pruning our search space becomes unscalables€duence and evaluate .them in order to determine if they are
norm-frequentor not. This process guarantees thatradkm-

Another problem with performingNorm-FrequentSe-  frequentsequences will be generated.
guence Mining is that the values faoy ando; must be obtained ) )
for sequences of all lengths prior to the mining process. USing the bound enables pruning of sequences that are

This imposes multiple passes over the database and hindef¥aranteed not to generateorm-frequentcandidates. The
scalability. pruning enabled by using the bound resolves the first sdalabi

ity issue of sequence pruning in the generation process. The
These important scalability issues are addressed anddsolveecond scalability problem of calculatipg ando; is resolved
in Section II-C resulting in a scalable frequent sequencengi by calculating the values fau; ando; on a small sample of
algorithm that overcomes the short sequence bias. the data in a preprocessing stage described below.
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I1l. REEF ALGORITHM 1: for all x is a prefix in Sdo

In this section, we combine all the components we have 2 T
described in the previous sections and describe the impleme i 5)}? z;I {ilt(e?nrgﬁy zesgléeoncc}zs
tation of REEF. The REEF algorithm is composed of several 5 for all itemslA‘ € S, with j > do
phases. The input to REEF is a database of sequences and| .. R— A-\/A-J (join,A- with A))
an integerk’ determining how many Z-scores will be used 7 forall re i do !
to find norm-frequentsequences. The output of REEF is a 8: if C(r) > C(a segs in Fg) then
set of norm-frequentsequences. Initially a sampling phase 9 Fr = FpJr\s /lreplaces with r
is performed to obtain input for the later phases. Next we 10: for all I/ = [ 11 to input sequence length
perform the candidate generation phase. First norm-figgque do
1-sequences and 2-sequences are generated. Once 2-&squenc| ;. if ¢B(r,l') > ((a segs in Fr) then
have been generated, an iterative process of generating can | . if A»jappears beforel: then
didate sequences is performed. The generated sequences are ;.. T,l: T,UJr ’
evaluated, and if found to beorm-frequentare placed in the u clse
output list of norm-frequentsequences. These sequences are | ;. T, =T;Ur
also examined in the pruning process of REEF in order to 16: enumerate—lfjrequént-Seq—Z—scG@(
determine if they should be expanded or not. 17 T, =10

Sampling Phase -The sampling phase is performed as Figure 2: Enumerate-Frequent-Seq-Z-scsje(

a preprocessing of the data in order to gather statistics of Where S is th t of input ining f
the average and standard deviation of support for sequences’’ €€ 'i € seto 'HXU sre;gf?er}ces we arg mining for
of all possible lengths. This stage uses SPADE [17] with glequent subsequences, A setrmrm-frequensubsequences

minsupof 0 to enumerate all possible sequences in the sample'& retuned.F'r is a list of sequences with the top’ z-scores

data and calculate their support. For each length the stppor

average and standard deviation are calculated. Thesesvalue

are distorted and corrected values are calculated using the

technique described in [18]. These corrected values peovidwhile ensuring that norm-frequent candidates are not lost.
the average suppoyt; and standard deviation of suppert  Section 1I-C we introduced the bound on z-score that is used
that are used in z-score calculation and the bound calounlati for pruning.

Candidate Generation Phase The candidate generation The pruning in REEF calculates” (s, !’) for all possible
phase is based on SPADE along with important modificationdengths!’ > [ of sequences than could be generated from
As in SPADE we first find all 1-sequence and 2-sequence cars. The key to this process that there is no need to actually
didates. The next stage of the candidate generation phase igenerate the extensiorsthat can be generated from It is
volves enumerating candidates and evaluating their frecue enough to know theupp(s), M ando; for all I’ > [. If for
L . .any lengthl’ > [ we find that¢®(s,1’) € Z (in the list of 'k’

We make two modifications to SPADE. The first is moving z-scores) we keep this sequer(me gor candidate generation, i

; X . | s :
from setting aminsupto setting the's’ value. '’ determines not then we prune it. Using the bound for pruning reduces the
the number of z-score values that norm-frequent sequencg

; Rarch space while ensuring closure or in other words ergsuri
may have. Note that there may be several sequences with g .0 ent sequences are found. The pruning is performed
same z-score value. The reason for this madification is th

- . L s part of the enumeration described in algorithm Figure. 2.
z-score values are meaningful for comparison within thee_;am his pruning is the key to providing scalablenorm-frequent
database but vary between databases. Therefore, seténg \gorithm
'k’ value is of more significance than setting a min-z-score '
threshold.

The second and major change we make is swapping
frequencyevaluation withnorm-frequencyvaluation. In other
words, for each sequeneaeplace the test of isupp(s,D) >
minsup With the test of is((s) € Z where Z is the set
of the 'k’ highest z-score values for sequenceslin This
replacement of the frequency test with the norm-frequeesty t
is the essence of REEF and our main contribution.

IV. EVALUATION

In this section, we present an evaluation of REEF on a
corpora of literature of various types. Section IV-A willcsh
that norm-frequentmining overcomes the short sequence bias
present infrequentmining algorithms. In Section IV-B we
will provide evidence that the sequences mined with REEF
are more meaningful than sequences mined with SPADE.

the pruning is presented in Figure. 2 and replaces the eum e words as sequences with letters as single item events.

ation made in SPADE. The joining d¢fsequences to generate f e removed ha” forma;[ting "’I‘r.‘d p_unctluation from textf(sapart
L : .~ from space characters) resulting in a long sequence ofdette

+1 - . . « . . .

I+1-sequences; \/ 4, found in line 6) is performed as in Mining this sequential data for frequent sequences praluce

SPADE [17] sequences of letters that may or may not be real words. The
Pruning Phase using Bound -Obviously REEF cannot reason we chose to mine text in this fashion is to show
enumerate all possible sequences for norm-frequency a&valuhow interesting the frequent sequences are in comparison to
tion. Furthermore as we discussed in Section II-B the zescornorm-frequent sequences by testing how many real words are
measure is not anti-monotonic and cannot be used for prunindiscovered. In other words, we use real words from the text as

The improved version of sequence enumeration includin%E/ TEXT is a corpus of literature of various types. We treat
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ground truth against which to evaluate the algorithms. e us % WREer

three sets of textual data, one is from Lewis Carroll’s "&l& SSPADE
Adventures in Wonderland” [19], another is Shakespeat’s ”
Midsummer Night's Dream” [20] and the third is a Linux
installation guide [21]. Evaluation is performed on segtaen
of the corpus. Each test is performed on five segments.

@
o

% sequences
N S
o o o
N

User Pattern Detection (UPD), is a data set composed of
real world data used for evaluation. UPD logs keyboard and mined sequence length
mouse activity of users on a computer as sequences, for a
detailed description see [18]. Sequences mined from the UPD
data can be used to model specific users and applied to securit . mReer
systems as in [22], [23] and [18]. The experiments are run on .
11 user sessions.

(a) Lewis Carroll

The input is composed of long sequences. In order to
use REEF these sequences are cut into smaller sequences
using a sliding window thus creating manageable sequences
for mining. The size of the sliding window is terméaput
sequence lengtim our results. We use a setting minsup=1% mined sequence length”
and 'k'=50 throughout all experiments and a sample rate of
10% for the preprocessing sampling component. Furtheilsleta
on implementation, running times etc. can be found in [24]. 80

% sequences
N B (=2}
o o o o
N

(b) Shakespeare

EREEF
I SPADE

@
o

% sequences
N S
o o o
N

A. Resolving Length Bias in Frequent Sequence Mining

In this section, we establish how REEF successfully over-

comes the short sequence bias that is present in the frequent
sequence mining techniques. We perforrfredquentsequence
mining with SPADE anchorm-frequensequence mining with
REEF. We compared the lengths of the mined sequences for
both algorithms. The results are displayed in Figure. 3uR®es
are shown for all three TEXT data sets and for the UPD set.
The x-axis shows the lengths of the mined sequences. The % BlREEF
y-axis displays the percentage of sequences found with the SSPADE
corresponding length. For each possible length we couhted t
percentage of mined sequences with this length.

3 4 5 6
mined sequence length
(c) Linux-Guide

The text results on all three text corpora show how SPADE
mines mainly short sequences, while REEF manages to mine
a broader range of sequence lengths as displayed in Figure.

% sequences
N Py D
o o o o
N

3(a),(b),(c). REEF results are much closer to known retfatio mined sequence length
between word length to frequency [25] than the SPADE output. (d) UPD

In the next section we count how many of these sequences are

real words to illustrate superiority of REEF. Figure 3: Removal of length bias.

For the UPD data REEF again overcomes the short se-
guence bias and provides output sequences of all lengths in a
more normal distribution than with SPADE. This can be seen
in in Figure. 3(d). We must point out that in contrast to theWe hope to find more real words when mining text than
TEXT corpora, there is no known ground truth as to what thenonsense words. Our evaluation is performed on three sets
length of frequent sequences should be in this domain, andf text as described above. Results appear in Figure. 4. We
what their distributions are. Thus, there is no way to confirmcompare results ofrequentsequence mining using SPADE
whether we have found the correct distribution of the freque with norm-frequentsequence mining using REEF. The x-axis
sequences. However, we do show that we are not restricted &hows different input sequence lengths (window sizes). For
mining short sequences alone. each input sequence length we calculated the percentage of
real words that were found in the mined sequences. This
is displayed on the y-axis. For example the top 15 mined
sequences in Shakespeare using REfFhe,or,e and,her,n
The text domain was chosen specifically in order to illus-th,though,he,s and,her,thee,this,thou,you,love,arill using
trate the quality of the output sequences. We wanted a doma®PADE: {rth,mh,lr,sf,tin,op,w,fa,ct,ome,ra,yi,em,teg,tUsing
where the meaning of interesting sequences was clear. TEXREEF yields many more meaningful words than using SPADE.
is obviously a good domain for this purpose since words are
clearly more interesting than arbitrary sequences of riette For all text sets REEF clearly outdoes SPADE by far. REEF

B. Mining Meaningful Sequences with REEF
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80 80
EREEF IMREEF [3]
Il SPADE Il SPADE
60 60
B B
E 2
= 40 = 40 [4]
e 1
X X
20 20
(5]
0 ] 4 6 0 . 4 6 8
input sequence length input sequence length
(a) Lewis Carroll (b) Shakespeare [6]
80
EREEF
Il SPADE
60
k= [7]
E
= 40
e
s (8]
20
L 4 6 8 9]

input sequence length
(c) Linux Guide

Figure 4: Percentage of real words found among sequence?io]

manages to find substantially more words than SPADE for all*!]
input lengths. The short input-sequence sizes of 2 does not
produce high percentages of real words for REEF or SPADE.
Using longer input sequence lengths exhibits the strenfith o
REEF in comparison to SPADE. For input lengths of 4,6 and §12]
REEF manages to find a much higher percentage of words than
SPADE. Clearly for text REEF performs much better mining
than SPADE and the sequences mined are more meaningfu[.13]

V. CONCLUSION AND FUTURE WORK [14]

We developed an algorithm for frequent sequence mining
named REEF that overcomes the short sequence bias pres?lrg)ﬁ
in many mining algorithms. We did this by definingorm-
frequencyand using it to replace support based frequency usegg,
in algorithms such as SPADE. In order to ensure scalability
of REEF we introduced a bound for pruning in the mining

process. [17]

Our experimental results show without doubt that theyg
bias is indeed eliminated. REEF succeeds in finding frequent
sequences of various lengths and is not limited to findingtsho
sequences. We illustrated that REEF produces a more variang]
distribution of output pattern lengths. We also clearlyvsbd  [20]
on textual data how REEF mines more real words than SPADH21)
This seems to indicate that when mining sequences are not
textual, we can expect to mine meaningful sequences as welk2]
In the future we hope to improve the bound used for mining.
Thus providing an algorithm that is more efficient while Istil
producing the high quality sequences we found in REEF.
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