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Abstract

This paper proposes a novel technique for allocating information
gathering actions in settings where agents need to choose among sev-
eral alternatives, each of which provides a stochastic outcome to the
agent. Samples of these outcomes are available to agents prior to
making decisions and obtaining further samples is associated with a
cost. The paper formalizes the task of choosing the optimal sequence
of information gathering actions in such settings and establishes it to
be NP-Hard. It suggests a novel estimation technique for the opti-
mal number of samples to obtain for each of the alternatives. The
approach takes into account the trade-offs associated with using prior
samples to choose the best alternative and paying to obtain additional
samples. This technique is evaluated empirically in several different
settings using real data. Results show that our approach was able
to significantly outperform alternative algorithms from the literature
for allocating information gathering actions in similar types of set-
tings. These results demonstrate the efficacy of our approach as an
efficient, tractable technique for deciding how to acquire information
when agents make decisions under uncertain conditions.
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1 Introduction

In many settings characterized by uncertainty agents can engage in infor-
mation gathering actions before making decisions. For example, consider
an e-commerce application in which a buyer needs to choose between sev-
eral suppliers of a product or service (in absence of a built-in reputation
system). The buyer does not know the quality of each of the suppliers in ad-
vance, but can spend time and resources to collect information about them.
This information provides a “noisy signal” about the quality of the suppli-
ers. An example of another setting— which comprises part of our empirical
methodology— involves choosing one of several heuristic algorithms for solv-
ing an optimization problem. Each algorithm yields a solution that varies in
computation time when applied to the problem. The agent needs to decide
in advance which algorithm to choose in order to minimize the amount of
expected computation time.

The focus of this paper is on settings where an agent needs to choose an
alternative among a set of candidates with unknown outcomes. The agent can
obtain samples of information about the different alternative candidates at a
cost, prior to choosing one of them. A key facet of the settings we consider is
that the agent needs to decide in advance about the amount of information
to acquire about each alternative and cannot change this decision once it
has chosen one of the candidates. This constraint occurs in many real-world
scenarios, such as choosing the number of credit ratings to purchase about a
customer before approving a requested loan, or the amount of time to spend
obtaining information from referees about a potential job candidate. To
succeed in such settings, it is necessary to reason about the trade-off between
paying to acquire additional information about the alternative candidates
and choosing the candidate that is deemed optimal based on the current
available information.

The paper formalizes the task of information gathering under uncertainty
as a stochastic optimization problem termed Optimal Allocation of Relevant
Information (OARI) with the following characteristics: An agent must choose
in advance how much information to obtain about each of a set of possible
candidates prior to choosing one of them. Each of these candidates is asso-
ciated with a reward sampled from a distribution that is not known to the
agent. The agent is given a number of prior samples about each candidate
that are drawn from its respective distribution. Obtaining additional infor-
mation about each candidate provides an additional sample of its reward but
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is associated with a cost. The goal of the agent is to find the allocation of in-
formation gathering actions among the different alternatives that maximizes
the agent’s total reward while taking into account the cost of obtaining the
additional information and the expected reward that is associated with the
chosen alternative.

The paper establishes OARI to be an NP-Hard problem and presents
a novel estimation technique for solving it called EURIKA (Estimating the
Utility of Restricted Information among Alternatives). EURIKA estimates
the agent’s utility function by approximating the probability that it will
prefer each of the candidates to all other candidates given the acquired in-
formation. It derives the optimal number of information gathering actions
in polynomial time. EUREKA assumes the existence of a probability distri-
bution over the possible alternatives, but makes no other assumptions about
the domain.

The applicability of EURIKA was shown empirically by using it to make
decisions on real-world data. Specifically, we evaluated EURIKA on a variety
of settings that varied the type of task to optimize, the data obtained from
the information gathering actions, and agents’ utility functions. One of the
settings required the agent to choose between various heuristic algorithms for
solving 3-SAT problems while optimizing the number of problems solved and
the amount of computation time. The candidate algorithms included existing
3-SAT approaches from the literature as well as the best-performing entries
submitted by researchers to a SAT solver competition. Another setting in-
volved choosing the best lecturer in order to maximize students’ enrollment
in a course, given that students’ evaluations about lecturers can be obtained
at a cost. The data for this domain was taken from real course enrollment
data and evaluations submitted by college students.

In all of these domains, the performance of an agent using EURIKA was
compared to alternative solutions from the literature as well as a baseline
approach that never purchased any additional information. The results show
that the agent using EURIKA was able to outperform both of these ap-
proaches in all of the domains. In particular, it was able to find the best
alternative more often than the alternative approaches, and more efficiently,
in that it acquired less or equal amounts of information to find the best
alternative.

This paper revises and extends earlier work [Reches et al., 2007] and
makes the following contributions. First, it formally defines the problem of
optimal allocation of information gathering actions (OARI) and establishes
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it to be an NP-Hard problem. Second, it presents a novel heuristic for solving
the OARI problem analytically by computing the estimated benefit for differ-
ent information gathering actions while taking into account their associated
costs. Third, it proves the efficacy of the technique empirically by applying
it to several domains that include real-world data.

2 Related work

The OARI problem is related to several approaches for repeated decision-
making under imperfect information. Azoulay-Schwartz and Kraus [2002]
suggested a theoretical approach for optimizing the amount of information
that is required in order to decide between two alternatives. A naive appli-
cation of this model for multiple alternatives requires to examine all possible
alternative pairs, which is infeasible for large settings, such as the ones con-
sidered in this paper. Our work extends their model to choosing the best
out of multiple (more than two) alternatives using a tractable, analytical
approach, and evaluates the model using real data. Talman et al. [2005] pre-
sented a model which decides the amount of information the agent should
obtain based on a set of prior samples of each alternative. This technique
used a fixed number of samples to distribute among the various alternatives
in a way that is proportional to the quality of the prior samples. Our empir-
ical work shows that EURIKA significantly outperforms the FNE model in
all domains we considered.

In the Max K-Armed Bandit problem, an agent allocates trials to slot
machines, each yielding a payoff from a fixed (but unknown) distribution [Ci-
cirello and Smith, 2005, Streeter and Smith, 2006]. The objective is to allo-
cate trials among the K arms to maximize the expected best single sample
reward.1 This problem is analogous to the OARI problem in that each trial
provides an information sample about one of the alternatives. However, we do
not assume that the number of trials is determined in advance, but optimize
this number given the uncertainty over the different alternatives. Second,
in contrast to the K-Armed Bandit problem, we allow the agent to have
prior knowledge about each alternative. As we show in the empirical section,
this knowledge may lead the agent to decide not to allocate additional trials
because they are not expected to change its choice.

1This problem is distinct from the traditional K-Armed Bandit problem [Berry and
Fristedt, 1985] in which the agent maximizes the cumulative, not maximal, payoffs.
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Our work relates to the value of information problem which has received
much attention in the Artificial Intelligence literature [Radovilsky and Shi-
mony, 2008, Chick et al., 2010, Heckerman et al., 1993]. Within this body of
work, there are several approaches that are relevant to our study. Guestrin
and Krause [2009] and Krause and Guestrin [2005, 2007] suggest several mod-
els for selecting which variables to sample in a Bayesian network to minimize
uncertainty in the network. Bilgic and Getoor [2007] use graphical models
to minimize the cost of the acquisition of information for the purpose of mak-
ing predictions about variables of interest to the agent. Heckerman et al.
[1993] provide an approximation algorithm for computing the next piece of
evidence to choose to observe given the results of all possible samples of the
variables. They provide an approximate algorithm that is limited to specific
classes of dependencies between variables, and the agent makes a binary de-
cision whether to sample each variable. In contrast, this paper is concerned
with cases in which alternatives are independent of each other and an agent
can decide how may information samples to purchase about each alternative,
rather than once. Such settings characterize many real world information
gathering problems, as we demonstrate in the Empirical Methodology sec-
tion.

Our work differs from sequential models that choose which information
source to query after each decision based on the information that was ob-
served so far. Notable examples of these works include Grass and Zilberstein
[2000], who proposed a decision theoretic approach for planing and execut-
ing information-gathering actions over time, and Madani et al. [2004], who
presented a model in which a learner has to identify which of a given set
of possible classifiers has the highest expected accuracy. In contrast to our
work, both of these works assume that obtaining the value of the various
alternatives is not associated with a cost. Thus they don’t consider the
trade-off that arises when deciding to acquire new information or to make a
choice based on the available information. Tseng and Gmytrasiewicz [2002]
developed an information-gathering system that suggests to a user how to
best retrieve information related to the user’s decisions. Madigan and Al-
mond [1996] propose a myopic model of value of information that samples
variables iteratively. All of these techniques do not reason about the effect
of choosing one information source over another on an agent’s utility. In our
setting, the agent chooses the amount of information to acquire in advance,
and cannot choose a different candidate once it has made its decisions. Our
work is further distinct in that we evaluate our approach empirically, showing

5



that it generalizes to several domains.
Lastly, Conitzer and Sandholm [1998] formalized several “meta-reasoning”

problems in which agents collect information prior to making decisions. One
of these problems involves an agent that optimizes which set of anytime algo-
rithms to use for different problem instances. The OARI problem is distinct
from this problem in that the allocation of information is measured in integer
numbers (i.e., units of information) rather than real values (i.e., time). We
show that the OARI problem is at least as hard as this problem. In addition,
we provide a tractable solution algorithm for solving the OARI problem in
practice and demonstrate the efficacy of the algorithm on real data.

3 An Optimal Allocation of Information Prob-

lem

We define the problem of optimally allocating information gathering actions
as follows: A risk neutral agent has to choose an alternative from a set of
K independent alternatives denoted A = {a1, . . . , aK}. The reward for each
alternative ai, denoted Ri, is normally distributed Ri ∼ N(µi, σ

2
i ), with an

unknown mean µi and variance σ2
i . The mean of the reward µi is normally

distributed µi ∼ N(ζ, τ) for each i ∈ {1, . . . , K}, with known mean ζ and
standard deviation τ . A sample ri is a set of ni ≥ 0 draws of the reward Ri.
The average of each sample ri is denoted ri.

We assume that an agent has collected prior information about the al-
ternatives consisting of samples D = {(r1, n1), . . . , (rk, nk)}. The agent can
decide to obtain an additional sample r′i consisting of n′i draws of the re-
ward associated with alternative ai. The additional samples are denoted
D′ = {(r′1, n′1), . . . , (r′k, n′k)}.

Obtaining this information is associated with a cost and the number of
possible samples that the agent can obtain is bounded by an integer M > 0,
such that

∑K
i=1 n

′
i ≤M . The goal of the agent is to find the optimal allocation

of samples for maximizing its reward given its chosen alternative and the
information cost. Table 1 presents the notations we use for the description
of the model.

The benefit to the agent is the difference between its utility from acquiring
additional samples D′, and solely using its prior information D.2 We denote

2This benefit depends on the agent’s utility function which can be defined separately

6



Parameter Description

A = {a1, ..., aK} Set A is a set of the K alternatives.

ni The number of prior units of information
about alternative ai.

Ri Unknown reward of alternative ai
ri The mean reward of ni prior

information units about alternative ai.

n′i The number of units of information
acquired about alternative ai.

r′i The mean reward of n′i information units about ai
µi The mean of the reward of alternative ai
σi The standard deviation of the reward of alternative ai
ζ The mean of the random variable µi
τ The variance of the random variable µi

Cost(ai) The cost of one unit of information
about alternative ai.

D = {(r1, n1), . . . , (rk, nK)} Prior information about alternatives in A.

D′ = {(r′1, n′1), . . . , (r′k, n
′
K)} Additional information that is acquired about alternatives in A.

Table 1: Summary of notation used in the paper

the benefit as a function B(A,D, n′1, . . . , n
′
K , ζ, τ, σ1, . . . , σK), that inputs a

set of alternatives A, the distribution parameters ζ, τ, σi for 1 ≤ i ≤ K, the
prior information D about each alternative and the allocation n′1, . . . , n

′
K of

the additional information units about each alternative ai ∈ A. The function
returns the benefit from this allocation. For the remainder of this paper, we
will use an abbreviated notation, B(n′1, . . . , n

′
K).

The function Cost : A → R denotes the cost of obtaining one unit of
information about alternative ai ∈ A. The total profit to the agent is the
difference between the benefit from obtaining the additional information and
its cost. This profit is a function T (A,D, n′1, . . . , n

′
K , ζ, τ, σ1, . . . , σK , Cost)

which receives a set of alternatives A, the prior information D about each
alternative, the distribution parameters ζ, τ, σi for 1 ≤ i ≤ K, the Cost
function and an allocation n′1, . . . , n

′
K of the additional information units

about each alternative ai ∈ A. It computes the total profit to the agent
from obtaining (n′1, . . . , n

′
K) additional information units, while taking the

costs into consideration. For the remainder of this paper we will use the

for each domain, as we show in Section 4.
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abbreviated notation T (n′1, . . . , n
′
K) to denote this function.

T (n′1, . . . , n
′
K) = B(n′1, . . . , n

′
K)−

K∑
i=1

n′i · Cost(ai) (1)

We can now formally define the Optimal Allocation of Request Informa-
tion (OARI) problem as follows:

Definition 1. (Optimal Allocation of Request Information (OARI)) Given
a set of alternatives A, prior information D, the parameters ζ, τ, σi for each
alternative 1 ≤ i ≤ K, the bound on the number of information units M , and
the Cost function. The OARI problem requires to find a vector (n∗1, . . . , n

∗
K) ∈

NK ,
∑K

i=1 n
∗
i ≤M that maximizes the total profit T (n′1, . . . , n

′
K) of the agent.

This problem can be formulated as a decision problem as follows: Given
a set of alternatives A, prior information D, the parameters ζ, τ, σi for
each alternative 1 ≤ i ≤ K, a bound on the number of information units
M , and a threshold L as follows: Answer “yes” if there exists a vector
(n∗1, . . . , n

∗
K),
∑K

i=1 n
∗
K ≤M such that T (n∗1, . . . , n

∗
K) ≥ L.

Theorem 1. OARI is an NP-hard problem.

The proof of this theorem, via a reduction from the Knapsack prob-
lem [Garey and Johnson, 1979], is given in the Appendix.

3.1 The EURIKA Model

This section presents a model for solving the OARI problem, termed EU-
RIKA (Estimating Utility of Restricted Information among K Alternatives).
The model reasons about the trade off between exploration and exploita-
tion when choosing among multiple alternatives. It outputs the allocation of
information gathering actions among the different alternatives, taking into
account the prior sample of the rewards, the additional information that is
obtained, and the cost of obtaining this information.

The agent chooses its default alternative based solely on its prior in-
formation. Acquiring additional information about any of the alternatives
worthwhile to the agent only if it leads the agent to change its choice. Sup-
pose the agent has already collected n′i units of information about ai and
that the mean reward associated with this sample, denoted r′i, is known (we
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will drop this assumption later). Now, how should the agent make a decision
about whether it prefers alternative ai to aj? If the agent only considers
the available information, its decision solely depends on the probability that
the weighted mean reward of the information obtained about ai is greater
than that of the information obtained about aj. In addition, the agent may
also consider prior information about the distribution of these rewards. The
following defines the probability that the agent will prefer alternative ai over
any alternative aj after obtaining n′j information units about aj.

Definition 2. The term PCi(n
′
j | n′i, r′i) is the probability that the agent

will prefer alternative ai to alternative aj as a result of n′i and n′j additional
information units about ai and aj, given the sample r′i.

3

Next, we will define the probability that ai is the best alternative, that
is, the agent chooses alternative ai over all other alternatives as a result of
obtaining additional information units the other alternatives.

Definition 3. The term PBi(n
′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K | n′i, r′i) is the prob-

ability that the agent will prefer alternative ai to all other alternatives as a
result of obtaining (n′1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K) additional information units.

4

The following proposition states that the probability PBi(n
′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K |

n′i, r
′
i) can be computed as the product of the probabilities that the agent

prefers ai to each other alternative aj given the sample r′i.

Proposition 1.

PBi(n
′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K | n′i, r′i) =

∏
j 6=i

PCi(n
′
j | n′i, r′i) (2)

The proof is immediate, as the probability that the agent prefers ai to
any alternative aj is independent of ai when the sample mean ai is known.
Now, because the true mean sample reward r′i is unknown, we sum over each

3Note that this probability also depends on the parameters ni, nj , µi, µj , and that the

notation PCi(n
′
j | n′i, r′i) is thus an abbreviation with reduced parameters of the term

PCi(ni, nj , n
′
i, n
′
j , ri, rj , µi, µj , r′i)

4The notation PBi(n
′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K | n′i, r′i) is an abbreviation with reduced

parameters of the term PBi(D,n
′
1, . . . , n

′
K , σ1, . . . , σK , µ1, . . . , µK)

9



of its possible values, and obtain the term PBi(n
′
1, . . . , n

′
K), which is the

probability that the alternative ai is preferred to all other alternatives.

PBi(n
′
1, . . . , n

′
K) =

∫
r′i

∏
j 6=i

PBi(n
′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K | n′i, r′i) · P (r′i) dr

′
i

(3)
Here, the term P (r′i) is the probability that the mean reward from obtaining
n′i units of information of alternative ai is ri.

3.2 Computing the Expected Benefit of Acquiring In-
formation

In this section we show how to compute the benefit B(n′1, . . . , n
′
K) from

obtaining the sample (n′1, . . . , n
′
K). Without loss of generality, suppose alter-

native a1 is currently the best alternative given the prior information D. We
distinguish between the following two cases:

1. The agent does not obtain additional information. The expected reward
in this case is the mean reward µ1 of the current best alternative a1.

2. The agent decides to obtain (n′1, . . . , n
′
K) additional information units

about alternatives a1, . . . , ak. In this case there are two possibilities:

• The agent decides not to change its initial decision a1 based on
the (n′1, . . . , n

′
K) additional information. The expected reward in

this case is PB1(n
′
1, . . . , n

′
K) · µ1.

• The agent prefers some alternative ai, i 6= 1 to a1 based on the
(n′1, . . . , n

′
K) additional information. The expected reward in this

case is
∑K

i=2 PBi(n
′
1, . . . , n

′
K) · µi.

We can now compute the benefit from obtaining (n′1, . . . , n
′
K) additional sam-

ples as the difference between the expected reward from obtaining and not ob-
taining this information. This benefit is denoted B(n′1, . . . , n

′
K | µ1, . . . , µK)

and computed as

B(n′1, . . . , n
′
K | µ1, . . . , µK) = PB1(n

′
1, . . . , n

′
K)·µ1+

K∑
i=2

PBi(n
′
1, . . . , n

′
K)·µi−µ1

(4)
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Because we have that

PB1(n
′
1, . . . , n

′
K) = 1−

k∑
i=2

PBi(n
′
1, . . . , n

′
K) (5)

we can write the expected profit as

B(n′1, . . . , n
′
K | µ1, . . . , µK) =

K∑
i=2

PBi(n
′
1, . . . , n

′
K) · (µi − µ1) (6)

The above equation depends on the reward means {µ1, . . . , µK}, which are
unknown. Therefore we need to integrate over their possible values. We use
the posterior distribution P (µi | D,D′) to combine the prior information D,
the acquired samples D′, and parameters ζ, τ, σ1, . . . , σK . The posterior dis-
tribution over µi can be computed in closed form. Because µi is a conjugate
prior to the normal distribution, its posterior is a normal distribution with

mean
σ2
i ζ+niτ

2ri
σ2
i+niτ

2 and variance
σ2
i τ

2

σ2
i+niτ

2 . Considering all possible values of µi,

we attain the following proposition.

Proposition 2.

B(n′1, . . . , n
′
K) =

∫
µ1

. . .

∫
µK

K∑
i=2

PBi(n
′
1, . . . , n

′
K) · (µi − µ1)·

K∏
i=1

Pr(µi | D,D′)dµ1 . . . dµK

(7)

The agent’s expected benefit gained from obtaining (n′1, . . . , n
′
K) addi-

tional units of information, while considering the various costs involved in
obtaining

∑K
i=1 n

′
i units of information is described in Equation 1, which we

restate here for convenience.

T (n′1, . . . , n
′
K) = B(n′1, . . . , n

′
K)−

K∑
i=1

n′i · Cost(ai)

The solution to the OARI problem is a vector (n∗1, . . . , n
∗
K) that maximizes

the above function, such that
∑K

1 n
∗
i < M . This computation is exponential

in the number of possible alternatives to consider.5 An alternative approach

5A brute-force implementation of this computation on the domains we consider in our
empirical methodology took three days of computation on a commodity desktop.
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is to maximize the function analytically, using several approximation which
we describe in the next section.

We assume that the agent bases its decision solely on its observations.
These include the prior information and the acquired samples about the
various alternatives. This means that for any two alternatives ai and aj and
samples r′i and r′j, the agent prefers ai over aj if the following holds:

niri + n′ir
′
i

ni + n′i
>
njrj + n′jr

′
j

nj + n′j
(8)

The following proposition states that the probability that the agent changes
its alternative can be computed using the normal distribution.

Proposition 3. Given ni, nj, ri, rj, n
′
i, n
′
j, σi, σj and r′i the value of PCi(n

′
i, n
′
j, r
′
i),

is as follows:
PC(n′i, n

′
j, r
′
i) = Pr(Z < Zα(n′i, n

′
j, r
′
i)) (9)

Here, Z is a random variable, with a standard normal distribution, Pr(Z <
Zα(n′i, n

′
j, r
′
i)) is the probability that the random variable Z will have a value

less than Zα(n′i, n
′
j, r
′
i), and

Zα(n′i, n
′
j, r
′
i) =

√
nj((nj + n′j)(niri + n′i, r

′
i)− (ni + n′i)(njri − µj, n′j))

n′j(ni + n′i)σj

The proof is in the Appendix. Thus we can write

PCi(n
′
j | n′i, r′i) =

1√
2π

∫ Zα(n′i,n
′
j ,r
′
i)

−∞
e
−t2
2 dt (10)

3.3 Approximations

In order to compute PCi(n
′
j | n′i, r′i) as a function of the parameters n′i, n

′
j we

use the following approximation. The following proposition uses a summation
of polynomials to compute the integration in Equation 10.

Proposition 4. The function

P approx(x) =

 0.5− 1√
2π

∑n
k=0

x2k+1(−1)k
2k(2k+1)k!

|x| < d

0 x ≥ d
1 x ≤ −d
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is an approximation of the function F (x) = 1√
2π

∫∞
x
e
−t2
2 dt. Here, d is a

positive integer that binds the error Rn = |F (x) − P approx(x)| as follows.

If |x| < d, then Rn ≤ dn+1

(n+1)!
. Otherwise, Rn ≤ 0.5− 1√

2π

∫ |d|
0
e
−t2
2 dt.

The proof is in the Appendix. According to Proposition 4, we can use
P approx to approximate the density of a standard normal probability func-
tion F (x) within the bounds of |d| as a piecewise integrable function. The
size of the approximation error depends on d and n. By Equation 10 we
get that 1 − F (Zα(n′i, n

′
j)) = PCi(n

′
j | n′i, r′i). We use Proposition 4, where

x = Zα(n′i, n
′
j, r
′
i), to approximate PCi(n

′
j | n′i, r′i).

We now place PCi(n
′
j | n′i, r′i) in Equation 2 to compute PBi(n

′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K |

n′i, r
′
i) (the probability that ai is the best alternative); place PBi(n

′
1, . . . , n

′
i−1, n

′
i+1, . . . , n

′
K |

n′i, r
′
i) in Equation 7 to compute B (the expected profit), and place B in

Equation 1 to compute T (the expected benefit). Finally, we can find the
vector (n∗1, . . . , n

∗
K) that maximizes T numerically using the Simplex algo-

rithm [Nelder and Mead, 1965].

4 Experimental Design and Analysis

In this section, we provide an extensive evaluation of the EURIKA model in
settings that include synthetic as well as ecologically realistic data. These
settings differ in the way the samples determine how agents incur utilities
or costs. Therefore we adapted separate B and T functions for each of the
settings.

Two of the domains involve choosing algorithms for solving 3-SAT for-
mulas. The candidate algorithms consisted of heuristic approaches from the
SAT literature as well as algorithms submitted by researchers to a competi-
tion for solving SAT formulas. A third domain involves choosing lecturers for
courses from among different student evaluations. We describe each of the
domains, and show how to adapt the OARI model to the domain. We then
show how we use the EURIKA model to find the optimal number of samples
to obtain for each alternative. We compare the performance of the EURIKA
model to several candidate models. Although the OARI formalism assumes
that populations are normally distributed, our empirical results show that
our approach can also be applied towards populations that may not adhere
to this assumption.

13



4.1 The SAT Simulation domain

In the SAT Simulation domain, an agent is given a set of 3-SAT formulas
to satisfy. Each alternative ai represents a heuristic algorithm for solving
3-SAT formulas. Changing the assignment of an attribute in a formula,
referred to as a “flip” operation, costs one unit of computation time. Each
candidate algorithm ai solves a 3-SAT formula using an expected number of
µi flip operations. In this domain, we use µi to refer to costs rather than
rewards as originally formalized. A sample of n′i applications of ai generates
n′i · µi expected flips and solves n′i 3-SAT formulas. There are two possible
configurations in this domain: In the first, the agent must minimize the
amount of computation time to solve a given set of formulas. In the second,
the agent must maximize the number of formulas it solves for a fixed amount
of computation time.

4.1.1 Minimal Time (MT) Configuration

In this configuration, the objective is to solve N formulas using the least
amount of computation time. Suppose that, without loss of generality, algo-
rithm a1 is the best alternative given the prior information D. If the agent
chooses this algorithm, the expected number of flip operations for solving
N formulas is N · µ1. Now, obtaining (n′1, . . . , n

′
K) information units of the

various algorithms solves
∑K

i=1 n
′
i 3-SAT formulas at an expected cost of∑K

i=1 n
′
i · µi flip operations. Suppose the agent decides to obtain additional

information. In this case there are two possibilities:

• The agent will choose to continue to use algorithm a1 to solve the
remaining (N −

∑K
i=1 n

′
i) flip operations. In this case the expected

number of flip operations is

PB1(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µ1

• The agent will choose alternative aj, j 6= 1 to solve the remaining

(N −
∑K

i=1 n
′
i) flip operations. In this case the expected number of

flip operations is

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj
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The expected number of flip operations for obtaining (n′1, . . . , n
′
K) informa-

tion units, denoted EF (n′1, . . . , n
′
K) sums over these two cases

EF (n′1, . . . , n
′
K) =

K∑
j=1

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj (11)

The expected benefit for obtaining (n′1, . . . , n
′
K) information units is the dif-

ference between the expected number of flips before and after obtaining the
additional information.

B(n′1, . . . , n
′
K) = (N · µ1)− EF (n′1, . . . , n

′
K) (12)

The cost function in this domain assigns one unit of computation time to
each flip operation. Therefore the expected profit for obtaining (n′1, . . . , n

′
K)

information units, defined in Equation 1, is computed as

T (n′1, . . . , n
′
K) = B(n′1, . . . , n

′
K)−

K∑
i=1

n′i · µi

= (N · µ1)− EF (n′1, . . . , n
′
K)−

K∑
i=1

n′i · µi

= (N · µ1)−
K∑
j=1

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj −
K∑
i=1

n′i · µi

= (N · µ1)− (PB1(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µ1+

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj)−
K∑
i=1

n′i · µi

(13)
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Since PB1(n
′
1, . . . , n

′
K) = 1−

∑K
j=2 PBj(n

′
1, . . . , n

′
K) the above equation can

be written as

T (n′1, . . . , n
′
K) = (N · µ1)−

(
(1−

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µ1+

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj
)
−

K∑
i=1

n′i · µi

= −
K∑
i=1

n′i · (µi − µ1) + (N −
K∑
i=1

n′i)

·
K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (µ1 − µj)

(14)

The OARI problem in this configuration is to find the optimal allocation
of heuristic algorithms (n∗1, . . . , n

∗
K) that maximize Equation 14.

4.1.2 Maximal Number of Formulas (MF) Configuration

In this configuration, the objective is to solve as many formulas as possible
using T flips. We formulate the EURIKA problem for this setting as follows.
Suppose that, without loss of generality, algorithm a1 is the best alternative
given the prior information D. If the agent chooses this algorithm without
obtaining additional samples, the expected number of formulas it would solve
is T

µ1
. As before, obtaining (n′1, . . . , n

′
K) information units of the various

algorithms solves
∑K

i=1 n
′
i 3-SAT formulas and performs

∑K
i=1 n

′
i ·µi expected

flip operations. At this point there are T −
∑K

i=1 n
′
iµi flips remaining. If the

agent decides to obtain this information then there are two possibilities:

• The agent will choose to continue to use algorithm a1 with a probabil-
ity of PB1(n

′
1, . . . , n

′
K). In this case the expected number of formulas

solved, is

PB1(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µ1

• The agent will choose alternative aj, j 6= 1 to use for the remaining

T −
∑K

i=1 n
′
iµi flip operations. In this case the expected number of
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formulas solved is

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µj

The expected number of flip operations for obtaining (n′1, . . . , n
′
K) informa-

tion units, denoted EN(n′1, . . . , n
′
K) is the sum of these two cases:

EN(n′1, . . . , n
′
K) =

K∑
j=1

PBj(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µj
(15)

The expected benefit to the agent from obtaining (n′1, . . . , n
′
K) information

units is the difference between the expected number of formulas solved after
and before obtaining the additional information.

B(n′1, . . . , n
′
K) = EN(n′1, . . . , n

′
K)− T

µ1

(16)

The expected profit to this cost configuration, given in Equation 1 is com-
puted as

T (n′1, . . . , n
′
K) = B(n′1, . . . , n

′
K) +

K∑
i=1

n′i

= EN(n′1, . . . , n
′
K)− T

µ1

+
K∑
i=1

n′i

=
K∑
j=1

PBj(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µj
− T

µ1

+
K∑
i=1

n′i

= PB1(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µ1

+

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µj
− T

µ1

+
K∑
i=1

n′i

(17)

17



Since PB1(n
′
1, . . . , n

′
K) = 1 −

∑K
j=2 PBj(n

′
1, . . . , n

′
K) the above equation

equals to

T (n′1, . . . , n
′
K) = (1−

K∑
j=2

PBj(n
′
1, . . . , n

′
K)) · T −

∑K
i=1 n

′
iµi

µ1

+

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · T −

∑K
i=1 n

′
iµi

µj
− T

µ1

+
K∑
i=1

n′i

=
K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (T −

K∑
i=1

n′iµi) · (
1

µj
− 1

µ1

) +
K∑
i=1

n′i · (1−
µi
µ1

)

(18)

The OARI problem in this configuration is to find the optimal allocation of
heuristic algorithms (n∗1, . . . , n

∗
K) that maximizes Equation 18.

4.2 The SAT Competition domain

This domain uses real automatic 3-SAT solvers submitted to the Ninth In-
ternational Conference on Theory and Applications of Satisfiability Testing
Conference.6 Performance in the competition was based on a score that takes
into account two factors:

• the number of instances solved within a given run-time limit.

• the total time needed to solve all instances.

We detail how to tailor the OARI problem for this domain. We set N to
equal the total number of formulas in the competition. As before, ai is a
possible solution algorithm, and n′i is the number of 3-SAT equations that
are solved using algorithm ai. The mean score in the competition associated
with algorithm ai is represented as µi. Thus, obtaining (n′1, . . . , n

′
K) samples

of the various algorithms solves
∑K

i=1 n
′
i 3-SAT formulas and provides an

expected score of
∑K

i=1 µi · n′i points. There are two possibilities.

• The agent will choose to continue to use algorithm a1 to solve the
remaining (N −

∑K
i=1 n

′
i) formulas. In this case the expected score is

PB1(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i)µ1

6http://fmv.jku.at/sat-race-2006/results.html
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• The agent will choose alternative aj, j 6= 1 to use for the remaining

(N −
∑K

i=1 n
′
i) formulas. In this case the expected score is

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i)µj

The expected score for obtaining (n′1, . . . , n
′
K) information units, denoted

ES(n′1, . . . , n
′
K) sums over these two cases

ES(n′1, . . . , n
′
K) =

K∑
j=1

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj (19)

The expected benefit for obtaining the sample (n′1, . . . , n
′
K) is the difference

in score from obtaining and not obtaining the additional information.

B(n′1, . . . , n
′
K) = ES(n′1, . . . , n

′
K)− (N · µ1) (20)

The expected profit to this cost configuration, given in Equation 1, is com-
puted as

T (n′1, . . . , n
′
K) = B(n′1, . . . , n

′
K) +

K∑
j=1

n′i · µi

=
K∑
j=1

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj − (N · µ1) +
K∑
j=1

n′i · µi

= PB1(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µ1+

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj − (N · µ1) +
K∑
j=1

n′i · µi

= (1−
K∑
j=2

PBj(n
′
1, . . . , n

′
K)) · (N −

K∑
i=1

n′i) · µ1+

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · µj − (N · µ1) +
K∑
j=1

n′i · µi

=
K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (N −

K∑
i=1

n′i) · (µj − µ1)−
K∑
i=1

n′i · (µ1 − µi)

(21)
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4.3 The Professor Evaluation domain

In this domain, the objective is to choose the lecturer with the highest en-
rollment potential of K possible lecturers. Each alternative ai represents a
sample from a database of student satisfaction scores. This domain includes
real data from a survey filled out by students at the Jerusalem College of
Technology. The enrollment potential for courses depends on the satisfac-
tion rating associated with the lecturer. The agent can query the database,
for a cost, about professors’ satisfaction ratings. The agent’s objective is to
choose the lecturer with the highest enrollment potential while taking into
account the cost of obtaining information about students’ ratings.

We formulate the OARI problem for this setting. Every lecturer ai is
associated with a mean satisfaction score that is represented by µi. The profit
to the college is µi ·v, where v is a positive constant, representing the fact that
popular lecturers are more likely to draw higher course enrollments, leading
to higher profits. Suppose that, without loss of generality, the agent chooses
lecturer a1 based on the prior information D. In this case, the expected
benefit is µ1 · v. Suppose that the agent has obtained (n′1, . . . , n

′
K) samples

of the various lecturers. As before, there are two possibilities.

• The agent will continue to choose lecturer a1. In this case the expected
benefit is PB1(n

′
1, . . . , n

′
K) · µ1 · v.

• The agent will choose a different lecturer aj, j 6= i with probability
PBj(n

′
1, . . . , n

′
K). In this case the expected benefit is

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · µj · v

The expected reward of the sample (n′1, . . . , n
′
K) is the sum of these two

cases:

(PB1(n
′
1, . . . , n

′
K) · µ1 · v) + (

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · µj · v) (22)

Because

PB1(n
′
1, . . . , n

′
K) · µ1 · v = (1−

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · µj) · v
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the expected benefit to the agent from obtaining the sample (n′1, . . . , n
′
K) can

be written as

B(n′1, . . . , n
′
K) =(1−

K∑
j=2

PBj(n
′
1, . . . , n

′
K)) · µ1 · v

+
K∑
j=2

PBj(n
′
1, . . . , n

′
K) · µj · v − µ1 · v

=
K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (µi − µ1) · v

(23)

The cost function in this domain assigns c units to obtaining each satisfaction
rating. Incorporating this cost we obtain the following:

T (n′1, . . . , n
′
K) =B(n′1, . . . , n

′
K)−

K∑
i=1

n′i · c =

K∑
j=2

PBj(n
′
1, . . . , n

′
K) · (µi − µ1) · v −

K∑
i=1

n′i · c
(24)

5 Empirical Methodology

To evaluate the performance of EURIKA, we conducted a number of exper-
iments, using each of the domains described in the previous section. We
compared the EURIKA approach to the FNE model [Talman et al., 2005],
as well as a baseline that solely uses the agent’s prior information to choose
the best alternative. Our hypothesis was that using the EURIKA technique
would increase the agent’s overall gain as compared to the other methods.
For each of the domains, the evaluation was performed over a number of
rounds. Each round proceeded as follows:

• EURIKA was used to solve the OARI problem in each of the domains,
and the optimal information gathering actions (n∗1, . . . n

∗
K) were ob-

tained.

• The alternative that is associated with the highest sample mean based
on the obtained and prior information was chosen to solve the relevant
problem instances in the domain.
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Each round included four alternative solutions and a set of five instances
of prior information about each alternative. We varied the total number of
rounds between 15-40 for each domain, such that all alternatives would be
considered. The parameters ζ and τ 2 were assigned the average and the
standard deviation of all of the rewards in each domain. The parameter
σi was assigned the value of the standard deviation of the prior data ob-
tained for each domain. In practice, when computing PBi(n

′
1, . . . , n

′
K), we

assumed that the differences between sample means of different alternatives
are independent.

For the SAT simulation domain, we used the same algorithms and set-
tings used by Talman et al. [2005] to facilitate comparison. These included
a Greedy-SAT algorithm and variant GSAT algorithm with Random Walk
probabilities of 40%, 60% and 80%. For the MF cost configuration, the num-
ber N of formulas to solve was set to 300. For the MT cost configurations, the
number of flip operations was set to 200,000 or 500,000 for each run. We ex-
ecuted all algorithms on the same 300 3-SAT formulas used by Talman et al.
[2005]. Each formula consisted of 100 different variables and 430 clauses.
Each of the formulas was guaranteed to have a valid truth assignment. The
prior data D for a given round consisted of the results of applying each of
the four candidate algorithms on five different 3-SAT formulas. Based on
the average and standard deviation of the number of flip operations on all
problems for all algorithms, we set ζ = 55200 and τ = 22140.

In the SAT Competition domain we used the 16 finalists of the SAT-
Race 2006 competition. All algorithms were evaluated on the same 100 SAT
formulas that were used in the finals. We followed the declared rules of the
competition, in that solving each SAT problem earned the solver 1 point and
additional “speed”’ points. The execution time was limited to 15 minutes
per formula, otherwise the solver received 0 points for that instance. The
number of speed points ps for each successful solver s was computed by
ps = Pmax · (1− ts

T
) where ts is the execution time solver s requires in order

to solve the SAT instance, T is the execution time threshold, and Pmax is
the maximal speed score a solver can receive for solving one SAT formula.
Based on the average and standard deviation of the scores achieved by the
different algorithms, we set ζ = 0.585 and τ = 0.181. Other parameters
were set to correspond to those in the actual tournament: Pmax was set
at 1, N was set at 100, and T at 15 minutes. The candidate algorithms
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comprised the top-scoring entries in the competition.7 The 3-SAT formulas in
the competition were taken from several benchmarks applications in industry,
such as bounded model checking, and pipelined machines, as well as a set of
formulas used in past competitions.

In the Professor Evaluation domain we used a student survey which was
held at the Jerusalem College of Technology. Students were asked to rate
lecturers’ performance on their courses, using a scale between 1 to 10. The
16 lecturers that received students’ ratings were divided into four groups of
four lecturers. Each round consisted of four lecturers and a prior sample
of the ratings of five students about each of the lecturers. We evaluated
EURIKA over all lecturers for different values of v (250, 500, 750, 1000).
We set the cost of obtaining each student rating for a particular lecturer at
c = 5 dollars. Using our database we set ζ = 8.06 and τ = 2.14, which are
respectively the average and the standard deviation of the grades that were
given to 128 different lecturers.

The FNE model solely uses the prior information to decide on the number
of samples to obtain. Alternatives with higher prior means are sampled more
often than those with lower prior means. Again, we used the same procedure
used by Talman et al. [2005], in which the best alternative was sampled 6
times, the second-best was sampled 4 times, the third-best was sampled 3
times, and the worst alternative was sampled twice.

Figure 1 presents the average number of flip operations per formula for
the MF (left) and MT scenario (right) for the SAT simulation domain. The
average number of flip operations per formula using the EURIKA model was
5825, while the average number according to the prior-best alternative model
was 9273 (T-test p < 0.002). Using EURIKA allowed to save up to 47% flip
operations per formula compared to the case in which additional informa-
tion is not obtained. The EURIKA approach also used significant less flip
operations per formula than the FNE model (5825 operations versus 6390 op-
erations, T-test PV= 0.054). The average number of samples recommended
by EURIKA was 16.35, which was similar to the 15 samples used by the
FNE, but EURIKA allocated these samples over different algorithms.

Figure 1 also presents the average number of formulas solved in the MF
scenario for the T = 500K and T = 200K settings. For the T = 200K

7Specifically, we chose the following entries: Minisat 2.0, Eureka 2006, Rsat and Ca-
dence MiniSat v1.14, QCompSAT, TINISAT, Eureka 2006 and Cadence MiniSat v1.14,
Rsat, QPicoSAT, zChaff 2006, and HyperSAT
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Figure 1: (left) Average # of formulas solved in the MF scenario (higher is
better); (right) Average # of flips per formula (divided by 10) in the MT
scenario (lower is better)

Model GSAT Random Random Random
60% 80% 40%

Prior-best 7.5% 22.5% 50.0% 20.0%
FNE model 0.7% 25.1% 67.2% 7.0%
EURIKA 0.0% 19.3% 76.0% 4.7%

Table 2: 3-SAT frequency (in percentages) of choosing each heuristic algo-
rithm in the MT scenario according to the different approaches

setting, the EURIKA completed 34 formulas on average, versus 32 formulas
solved by the FNE model, and 20 formulas solved by the prior-best alterna-
tive model. Although the difference between EURIKA and the FNE model
was small, it was statistically significant. The difference in performance in-
creased substantially for the T = 500K setting. Here, EURIKA completed
86 formulas on average, versus 70 formulas using the FNE model, and 71 for-
mulas using the prior-best alternative model (T-test p < 0.001). The average
number of samples recommended by EURIKA for this scenario was 8.15, al-
most a half of the 15 samples used by the FNE. This shows that EURIKA
was able to outperform the FNE model while acquiring less information that
did the FNE model.

Table 2 summarizes the extent to which each heuristic algorithm was
chosen (in percentages) by the various models for the MT cost configuration

24



Experiment 1 Experiment 2 Experiment 3
Prior-best 79.54 66.08 64.36

FNE model 80.77 69.1 70.54
EURIKA 81.42 73.5 75.9

Table 3: Average performance for each approach in the SAT competition
domain

in the SAT simulation domain. A post-hoc analysis of this domain revealed
that Random 80% was the best heuristic algorithm for solving the 3-SAT
formulas in the simulation, followed by the Random 40%, Random 80%, and
GSAT algorithms. As shown by the table, all algorithms chose the best
heuristic more often than they chose other heuristics. However, EURIKA
was able to choose the best heuristic 27.2% more often than the prior-best
alternative model, and 8.8% more often than the FNE model (Chi-square
test, PV < 0.001). In contrast to the other approaches, EURIKA did not
use GSAT at all, which the worst heuristic algorithm. Table 3 compares the
performance of the various approaches in the SAT-competition domain.

As shown in the Figure, the EURIKA model significantly outperformed
all the other approaches. The average number of points using EURIKA (77
points) was significantly higher than the average number of points for the
prior-best alternative (70 points) and the FNE model (73.5 points).

Figure 2 compares the performance of the various models in the Professor
Evaluation domain. We used several different values for v, and in all of these
EURIKA significantly outperformed the prior-best method and the FNE
model (T-test p < 0.001). On average, the EURIKA model achieved 54,638
points while the prior-best model achieved 52,136 points and the FNE model
achieved 53,090 points, (T-test, PV < 0.001).

Table 4 concludes this section with two examples of the way EURIKA
informed the information gathering actions in the 3-SAT simulation domain.
Each example is drawn from one of the evaluation rounds, in which Algo-
rithm 1,2,3, and 4 correspond to different candidate algorithms. In the first
example, Algorithm 4 had the lowest average cost when considering the prior
information, but with high standard deviation. Therefore EURIKA recom-
mended additional samples. The new information included 35 samples of
Algorithm 1, zero samples of Algorithms 2 and 3, and four samples of Al-
gorithm 4. In this example, the prior cost of using Algorithm 2 and its
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Figure 2: Average Performance (in hundreds of dollars) in the Professor
Evaluation domain.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Average cost 25751.40 22708.80 26332.60 14201.60

Standard Deviation (σi) 42,039.39 30,161.97 13,926.25 21,474.92
Additional samples 35 0 0 4

Average cost 6,747.40 1,143.20 9,273.60 8,503.20
Standard Deviation (σi) 10,034.72 273.99 13,879.72 9,530.35

Additional samples 0 0 0 0

Table 4: Examples of Performance the 3-SAT Simulation Domain

standard deviation is considerably lower than using the other algorithms.
In this clear-cut situation, EURIKA did not recommended to obtain any
additional information about the various alternatives.

6 Conclusion and Future Work

This paper formalized the problem of obtaining information gathering ac-
tions about stochastic processes with unknown outcomes that affect agents’
utilities. Agents can obtain information at a cost about the different alter-
native processes. The paper established this problem to be NP-Hard, and
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provided a tractable, analytical solution to the problem by approximating
the expected benefit from obtaining information about each alternative, while
taking into account the associated costs. The solution to the problem is based
on estimating the agent’s expected benefit from gaining additional units of
information about the alternative processes using statistical measures. The
robustness of our technique is demonstrated empirically by deploying it in
settings that varied the type of task to optimize, the nature of information
gathering actions, and the measure of performance. These settings included
“ecologically realistic” data that was obtained from the real world. Although
our theoretical model assumes that populations are normally distributed, our
empirical results show that in practice, our approach can also be applied to-
wards populations that may not adhere to this assumption. In future work
we will augment the domain for situations in which agents’ rewards are biased
as well as situations in which distributions over rewards are unknown. We
will also consider situations which include other decision-makers, requiring
agents to consider the effect of their information gathering actions on each
other’s utilities.
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7 Appendix

Proof of Thoerem 1.

Proof. We present a reduction from the Knapsack problem [Garey and John-
son, 1979]. An instance of the Knapsack problem is given by a constraint
C > 0, a target value V > 0 and a set of n items {1, . . . , n} when each item i
has a positive integer value vi and a positive integer weight wi. The aim is to
answer “yes” if a vector (u1, . . . , un) ∈ Nn exists such that

∑n
i=1 ui · vi ≥ V

under the condition that
∑n

i=1 ui · wi ≤ C. We create an instance of OARI
as follows.

• For each item i we create an alternative ai. The number of alternatives
K equals to the number of items n.

• For each variable ui we create a variable n′i.

• We set M = C.

• We set L = V .
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• We define the function Cost as follows:

Cost(ai) =

{
0 if

∑n
j=1 n

′
j · wj ≤ C

vi otherwise

Suppose we already know that the expected profit from obtaining n′i
units of information about alternative ai is equal to n′i · vi. As a result
B(n′1, . . . , n

′
n) =

∑n
j=1 n

′
j ·vj. Since T (n′1, . . . , n

′
n) = B(n′1, . . . , n

′
n)−

∑n
i=1 n

′
i ·

Cost(ai) we obtain:

T (n′1, . . . , n
′
n) =

{ ∑n
i=1 n

′
i · vi if

∑n
i=1 n

′
i · wi ≤ C

0 otherwise

We now prove that a vector v ∈ Nn solves the OARI if and only if it
solves the Knapsack problem.

(⇒) Suppose there is a solution for the OARI instance, that is a vector
(n′1, . . . , n

′
n) ∈ Nn such that

∑n
i n
′
i ≤ C and T (n′1, . . . , n

′
n) ≥ V . Since V > 0,

we have the following:

• T (n′1, . . . , n
′
n) 6= 0 and thus

∑n
i=1 n

′
i · wi ≤ C

• T (n′1, . . . , n
′
n) =

∑n
i=1 n

′
i · vi.

As a result,
∑n

i=1 n
′
i · vi ≥ V and thus the vector (n′1, . . . , n

′
n) is a solution to

the KNAPSACK instance.
(⇐) Suppose there is a solution to the KNAPSACK instance, that is, a

vector (u1, . . . , un) ∈ Nn, such that
∑n

i=1 ui · wi ≤ C and
∑n

i=1 ui · vi ≥ V .
Since

∑n
i=1 ui·wi ≤ C, T (u1, . . . , un) =

∑n
i=1 ui·vi then T (u1, . . . , un) ≥ V . In

addition, since wi is a positive integer for 1 ≤ i ≤ n,
∑n

i=1 ui ≤
∑n

i=1 ui ·wi ≤
C, and thus (u1, . . . , un) solves the OARI problem. Therefore the OARI
problem is NP-Hard.8

Proof of Proposition 3.

Proof. After obtaining the r′i, r
′
j additional information about alternatives

ai, aj the agent will choose alternative ai if :
niri+n

′
ir
′
i

ni+n′i
>

njrj+n
′
jr
′
j

nj+n′j
iff r′j <

8Given information gathering actions (n′1, . . . , n
′
K), if the expected benefit

T (n′1, . . . , n
′
K) can be calculated in polynomial time, then the OARI problem is NP-

complete.
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(nj+n
′
j)(niri+n

′
ir
′
i)

n′j(ni+n
′
i)

− njrj
n′j

Since r′j ∼ N(µj, σ
2), r′j ∼ N(µj,

σ2

n
) and thus Pr(r′j <

(nj+n
′
j)(niri+n

′
ir
′
i)

n′j(ni+n
′
i)

− njrj
n′j

) is equal to the probability Pr(Z < Zα(n′i, n
′
j, r
′
i))

where Zα(n′i, n
′
j, r
′
i) =

√
nj((nj+n

′
j)(niri+n

′
ir
′
i)−(ni+n′i)(njri−µjn′j))

n′j(ni+n
′
i)σj

Proof of Proposition 4.

Proof. Using the Maclaurin series expansion of the function ex Thomas and
Finney [1996] we obtain:

ex ≈
∞∑
k=0

xk

k!
(25)

Therefore:

e
−x2
2 ≈

∞∑
k=0

(−1)kx2k

2kk!
. (26)

Since 1√
2π

∫∞
0
e
−t2
2 dt = 0.5, we attain:

1√
2π

∫ ∞
x

e
−t2
2 dt = 0.5− 1√

2π

∫ x

0

e
−t2
2 dt =

0.5− 1√
2π

∫ x

0

Σ∞k=0

(−1)kt2k

k!2k
dt+Rn

= 0.5− 1

2π
Σn
k=0

(−1)kx2k+1

2k(2k + 1)k!
+Rn

According to Lagrange Reminder theorem (see Thomas and Finney [1996])
we find that when |x| < d:

|Rn| < |
xn+1

(n+ 1)!
| < dn+1

(n+ 1)!
(27)

As a result Rn −→ 0 ,when n −→∞, and thus P approx(x) = 1√
2π

∫∞
x
e
−t2
2 dt

when n −→∞.
In addition, since F (x) is the integration over a density function, F (x) −→ 1
when x −→ −∞, and F (x) −→ 0 when x −→ ∞. Thus, the error when

|x| ≥ d holds Rn ≤ 0.5− 1√
2π

∫ |d|
0
e
−t2
2 dt
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