
Journal of Artificial Intelligence Research 50 (2014) 1-15 Submitted 6/14; published 1/14

Game-Theoretic Security Patrolling with Dynamic Execution

Uncertainty and a Case Study on a Real Transit System

Francesco M. Delle Fave dellefav@usc.edu

Albert Xin Jiang jiangx@usc.edu

Zhengyu Yin zhengyuy@usc.edu

Chao Zhang zhan661@usc.edu

Milind Tambe tambe@usc.edu

University of Southern California,
Los Angeles, CA 90089 USA

Sarit Kraus sarit@cs.biu.ac.il

Bar Ilan University,
Ramat Gan 52900, Israel

John P. Sullivan jpsulliv@lasd.org

Los Angeles Country Sheriff’s Department

Los Angeles, CA 90059

Abstract

Attacker-Defender Stackelberg security games (SSGs) have emerged as an important
research area in multi-agent systems. However, existing SSGs models yield fixed, static,
schedules which fail in dynamic domains where defenders face execution uncertainty, i.e., in
domains where defenders may face unanticipated disruptions of their schedules. A concrete
example is an application involving checking fares on trains, where a defender’s schedule is
frequently interrupted by fare evaders, making static schedules useless.

To address this shortcoming, this paper provides four main contributions. First, we
present a novel general Bayesian Stackelberg game model for security resource allocation
in dynamic uncertain domains. In this new model, execution uncertainty is handled by
using a Markov decision process (MDP) for generating defender policies. Second, we study
the problem of computing a Stackelberg equilibrium for this game and exploit problem
structure to reduce it to a polynomial-sized optimization problem. Shifting to evaluation,
our third contribution shows, in simulation, that our MDP-based policies overcome the
failures of previous SSG algorithms. In so doing, we can now build a complete system, that
enables handling of schedule interruptions and, consequently, to conduct some of the first
controlled experiments on SSGs in the field. Hence, as our final contribution, we present
results from a real-world experiment on Metro trains in Los Angeles validating our MDP-
based model, and most importantly, concretely measuring the benefits of SSGs for security
resource allocation.

1. Introduction

In recent years, research in algorithmic game theory has started to show a significant interest
in security resource optimization problems. This research has led to decision aids for real-
world security agencies which need to deploy patrols and checkpoints to protect targets
from terrorists and criminals (Tambe, 2011). Stackelberg security games (SSGs) have been
advocated as a powerful tool to model these problems (Gatti, 2008; Conitzer, 2012; Basilico,

c©2014 AI Access Foundation. All rights reserved.

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Gatti, & Amigoni, 2009a; Vorobeychik & Singh, 2012; Vanek, Jakob, Lisy, Bosansky, &
Pechoucek, 2011; Pita, Jain, Western, Portway, Tambe, Ordonez, Kraus, & Paruchuri, 2008;
Tambe, 2011). An SSG is a two-player game between a defender (the security agency) and
an adversary (a terrorist or a criminal). The defender commits to a mixed strategy— a
randomized resource allocation specified by a probability distribution over deterministic
schedules— which takes into the account the adversary’s best response to his observation of
the mixed strategy1. Several decision-support systems based on SSGs have been successfully
deployed in real world domains for assisting the security of ports, airports, ferries and
transit systems. Examples include ARMOR and GUARDS for airport security (Pita et al.,
2008; Pita, Tambe, Kiekintveld, Cullen, & Steigerwald, 2011), IRIS for allocating security
personnel to international flights of US Carriers (Tsai, Rathi, Kiekintveld, Ordóñez, &
Tambe, 2009), PROTECT for randomized patrols for security of ports and passenger ferries
in ports such as New York, Boston and Los Angeles (Shieh, An, Yang, Tambe, Baldwin,
DiRenzo, Maule, & Meyer, 2012; Fang, Jiang, & Tambe, 2013) and TRUSTS for patrolling
Metro trains in Los Angeles (Yin, Jiang, Johnson, Tambe, Kiekintveld, Leyton-Brown,
Sandholm, & Sullivan, 2012).

Some of the domains discussed above involve patrolling a transportation system such
as a train-line, a ferry or a flight system. In such settings, schedules are typically time-
critical because they depend on the time table of the vehicles (trains, ferries or flights).
However, interruptions are frequent while patrolling key transportation systems because
the officer might have to respond to an emergency, provide assistance to a passenger or
need to arrest someone. For example, when patrolling trains, whenever an officer is delayed
midway, it might become impossible for the officer to complete his patrol schedule. Hence,
fixed schedules that cannot be updated after an interruption will be hard to follow after an
officer is delayed. Unfortunately, previous work has often provided static or fixed patrolling
schedules that face problems in the presence of unanticipated disruptions.

In general, such execution uncertainty is endemic in transportation domains and it will
affect the defender units’ ability to carry out their planned schedules in later time steps. One
motivating example, which will be used throughout this work, is the TRUSTS system for
scheduling fare inspections in the Los Angeles metro rail system (LA Metro). TRUSTS (Yin
et al., 2012), currently being evaluated by the Los Angeles sheriff’s department (LASD),
provides a game-theoretic solution to scheduling randomized patrols for fare inspections on
trains and at stations. As we will see later in this paper, in real world trials carried out
by the LASD, a significant fraction of the executions of the pre-generated schedules got
interrupted for a variety of reasons such as writing citations, felony arrests, and handling
emergencies. Such interruptions caused the officers to miss the train that they were supposed
to take as part of their patrol schedule. On such occasions, the solution of TRUSTS did
not provide instructions on what to do after the interruption making the schedules useless
to the officers.

Previous work has addressed some aspects of execution uncertainty. In particular, Yin,
Jain, Tambe, and Ordonez (2011), Yin and Tambe (2012) present two different approaches,
one based on robust optimization and another on a Bayesian method, whereby the defender
optimizes her mixed strategy taking into account that some (small) fraction of it will be

1. By convention in security games literature, the defender is referred to as “she” and the adversary as
“he”.

2

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

incorrectly executed. Unfortunately, as discussed above, in the domains of interest in this
work, including TRUSTS, a significant fraction of the schedules are interrupted. Most
importantly, in such cases, this previous work does not suggest any alternatives whenever
the defenders on patrol are interrupted—thus it fails to optimally use the patrol time. This
clearly indicates that a key challenge still needs to be addressed in SSGs: a new framework
is needed, that can generate patrol schedules that are robust against execution uncertainty
and that can provide contingency plans whenever disruptions occur.

To provide such a framework, this paper presents four main contributions. The first
contribution consists of a general Bayesian Stackelberg game model for security patrolling
with execution uncertainty. In this model, execution uncertainty is handled via a Markov
decision process (MDP). The second contribution is a detailed study of the problem of
computing a Stackelberg equilibrium (SSE) for this game. Computing such SSE in a timely
fashion presents significant computational challenges because the defender’s strategy space,
already exponential in most real-world applications (Jain, Kardes, Kiekintveld, Tambe, &
Ordonez, 2010; Conitzer, 2012), only grows in complexity given that it must now address all
of the contingencies during execution. To address this shortcoming, we show that when the
game’s utility functions have a specific separable structure, the defender’s strategy space
can be compactly represented. By using this structure, we can then reduce the problem to
a polynomial-sized optimization problem, which can be solved by existing approaches for
solving Bayesian Stackelberg games without execution uncertainty, e.g., DOBSS (Paruchuri,
Pearce, Marecki, Tambe, Ordonez, & Kraus., 2008b). However, the randomized patrol
schedules that we obtain, are now well-defined MDP-policies, i.e., plans, which take into
account contingencies for unexpected events. As we will show in the remainder of this work,
such policies can always be generated with a polynomially-sized support. In addition, these
policies can be loaded into a smart-phone application carried by patrol units during a shift.

The next two contributions focus on the application of the former approach to generate
patrol schedules for fare inspection on the LA Metro. In more detail, the third contribution
shows in simulation that, by modeling execution uncertainty as an MDP, we are able to
generate policies that overcome the failures of existing SSG algorithms which do not take
such uncertainty into account. In addition, results of numerical experiments show that
execution uncertainty has a significant impact on the defender’s expected utility.

A key question raised for deployed applications of SSGs is the evaluation of their per-
formance in the field. Whereas many different evaluation metrics have been offered, it
is difficult to evaluate SSGs approaches and the resource allocation that they generate in
actual domains of airport or port security (Tambe, 2011). Fortunately, the MDP policies
from our new game model, once loaded onto smartphones—an application we discuss later
in this paper—enables us to test the use of SSGs in the field against alternatives. This is
a fundamentally new test in the real world to validate not only the new game model, but
more generally, algorithmic game theory in the field. Therefore, the fourth contribution
is a real-world experiment that aims to evaluate the comprehensive game-theoretic system
in the field. Specifically, we ran a 21-day experiment, where we compared schedules gen-
erated using our approach against competing schedules comprised of a random scheduler
augmented with officers providing real-time knowledge of the current situation. The results
provided evidence in support of our MDP-based model—the contingency plans provided by
the MDP were actually used with significant frequency in the real world. More importantly,

3

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

these results showed that game-theoretic schedules led to statistically significant improve-
ments over the competing schedules, despite the fact that the latter were improved with
real-time knowledge. These results constitute the first example of head-to-head comparison
of SSGs with competing approaches in the field. In fact, they constitute some of the first
data obtained about deploying algorithmic game theory in the real-world.

In summary, this paper makes the following contributions:

• We present a novel Bayesian Stackelberg game model that accounts for execution
uncertainty in security patrolling using an MDP.

• We study the problem of computing a Stackelberg equilibrium (SSE) for this game.
Specifically, we derive conditions under which the game can be represented in a com-
pact form, which can be solved in polynomial time. The resulting strategies are,
however, MDP-policies, i.e., plans, which take into account contingencies for unex-
pected events.

• We present an extensive empirical evaluation whereby we analyze the impact of execu-
tion uncertainty on the new game model and on the expected utility for the defender.

• We present a real-world experiment where we compared schedules generated using our
approach against competing schedules comprised of a random scheduler. The results
showed that game-theoretic schedules outperformed the competing schedules in terms
of the number of fare evaders captured. In so doing, they provide evidence about the
benefits of deploying algorithmic game theory in the real-world.

The remainder of this paper is organized as follows: Section 2 presents related work
on SSGs and how they handle uncertainty. Section 3 discusses the motivating problem of
patrolling the LA Metro system and presents the formal model of the problem as a Bayesian
Stackelberg game. Section 4 discusses the solution method. Section 5 discusses the way we
apply the model defined in Section 4 to the LA Metro problem. Section 6 discusses our
evaluation consisting of both simulations and real world experiments and, finally Section 7
concludes and discusses future work.

2. Related Work

Stackelberg security games (SSGs) have gathered significant attention in literature (Basilico
et al., 2009a; Dickerson, Simari, Subrahmanian, & Kraus, 2010; Letchford, MacDermed,
Conitzer, Parr, & Isbell, 2012; Letchford & Conitzer, 2013; Letchford & Vorobeychik, 2013;
Korzhyk, Conitzer, & Parr, 2011a, 2011b). Indeed, as stated earlier, SSGs models and
algorithms have been used to build decision aids including ARMOR (Pita et al., 2008), IRIS
(Tsai et al., 2009), GUARDS (Pita et al., 2011) and PROTECT (Shieh et al., 2012). Most
importantly, two systems, namely TRUSTS (Yin et al., 2012) and RaPtoR (Varakantham,
Lau, & Yuan, 2013), have been used to generate schedules for patrolling public transit
systems such as the LA Metro and the Singapore Metro system. Unfortunately, all these
deployed applications did not take execution uncertainty into account. As a consequence,
they are not useful in settings of interest in this paper, such as ones involving patrolling a
transportation system where disruptions may occur frequently.

4

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

Nonetheless, tackling uncertainty has become one of the principal challenges in SSGs
research. In particular, previous work has focused on different types of uncertainties: un-
certainty in adversary response due to bounded rationality (Yang, Kiekintveld, Ordonez,
Tambe, & John, 2011; Nguyen, Yang, Azaria, Kraus, & Tambe, 2013), uncertainty in adver-
sary surveillance (An, Tambe, Ordonez, Shieh, & Kiekintveld, 2011), uncertainty in adver-
sary capability and uncertainty in defender execution of strategies (Yin et al., 2011; Yin &
Tambe, 2012)2. With respect to bounded rationality, previous approaches have focused on
different models of bounded rationality, such as logit quantal response and subjective utility
quantal response (Yang et al., 2011; Nguyen et al., 2013). However, both these frameworks
do not address execution uncertainty and, as a consequence, do not address the challenge
studied in this work. With respect to adversary surveillance, previous approaches have fo-
cused on modeling the fact that in many domains the adversary can only partially observe
the defender’s mixed strategy (An, Kempe, Kiekintveld, Shieh, Singh, & Tambe, 2012).
Similarly, with respect to uncertainty in the adversary’s surveillance capability and in the
defender’s execution of strategy, previous approaches have focused on modeling uncertainty
using a Bayesian game (Yin & Tambe, 2012) and on using robust strategy computation,
including robust optimization, to provide safe quality guarantees for the obtained defender’s
strategy (Yin et al., 2011). Unfortunately, as discussed in Section 1, these approaches do
not suggest any alternative whenever the defenders on patrol are interrupted. Thus they do
not address the challenge in our setting, because they would generate schedules that would
become useless anytime a defender is interrupted.

From a game theoretic perspective then, the game model in this paper can be considered
as an extensive-form Stackelberg games with chance nodes (Letchford & Conitzer, 2010),
or as a special case of a stochastic Stackelberg game where the follower can only choose
one action in the initial state and stick to that action in all future states (Letchford et al.,
2012). The general cases of both games were shown to be NP-hard. Vorobeychik and
Singh provided mixed integer linear programs for finding optimal and approximate Markov
stationary strategy in general-sum stochastic Stackelberg games (Vorobeychik & Singh,
2012). However, their approach does not handle multiple adversary types and their MILP
formulation lacks the scalability to a large number of states such as the LA Metro problems.
Another related line of research is on equilibrium refinement for dynamic games, such as
trembling hand perfect equilibrium (Aoyagi, 1996), which considers the possibility that a
strategy can be imperfectly executed. However such research is mainly interested in the
limit as uncertainty goes to zero, while in our real world settings the probability of imperfect
execution really is non-zero.

Other types of SSGs include multi-robot adversarial patrolling games (MAPG). A
MAPG is a special restricted type of SSG which considers the problem of multi-robot
patrol around a closed area with the existence of an adversary attempting to penetrate
into the area (Agmon, Kraus, & Kaminka, 2008a; Agmon, Kaminka, & Kraus, 2011). The
penetration requires time and the defender should identify the attacker during her attempt.
Most literature about uncertainty in MAPGs studied uncertainty related to the type and

2. Execution uncertainty has also been studied in the context of finding Nash-equilibrium in standard
multi-player simultaneous move games (Bowling & Veloso, 2004; Archibald & Shoham, 2011). Despite
addressing a similar topic, however, this literature is out of the scope of our work, which is centered on
modeling execution uncertainty in SSGs.

5

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

the knowledge of the attacker (Agmon, Sadov, Kaminka, & Kraus, 2008b; Basilico, Gatti,
Rossi, Ceppi, & Amigoni, 2009b; Basilico, Gatti, & Villa, 2010). Furthermore, it is assumed
that if an adversary is detected the robots continue to patrol around the area looking for
additional attackers without the need to modify their strategy. Thus, execution uncertainty,
as discussed in this work, is not addressed.

One exception, which is closer to our work, is the work by Sless, Agmon, and Kraus
(2014) that requires the robots to physically inspect penetration attempts for a given time
period. This, as in our work, can have far reaching consequences on the performance of
the patrol algorithm. Specifically, it creates vulnerability points along the patrol path that
can be taken advantage of by a knowledgeable adversary. In particular, Sless et al. (2014)
investigate the problem of coordinated attacks, in which the adversary initiates two attacks
in order to maximize its chances of successful penetration, assuming a robot from the team
will be sent to examine a penetration attempt. They suggest an algorithm for computing the
robots’ strategy for handling such coordinated attacks, and show that despite its exponential
time complexity, practical run time of the algorithm can be significantly reduced without
harming the optimality of the strategy. Unfortunately, whereas this work assumes that the
contribution of multiple patrol units covering the same edge is additive, thus enabling to
formulate the problem as a linear programming problem, in Sless et al. settings this does
not hold because multiple robot covering the same segment contribute the same as a single
robot.

Finally, since a significant portion of this work deals with deploying game-theoretic
schedules in the field, it is relevant to discuss existing literature that has addressed a similar
challenge. As will be discussed in Section 6, we will deploy game-theoretic schedules to deter
fare evasion in the LA metro system. In so doing, our work is similar to a number of studies
on fare-evasion prevention conducted in the systems of London and Alberta (Clarke, 1993;
Weidner, 1996; Clarke, Contre, & Petrossian, 2010). These studies focused on understanding
the impact of introducing automatic gates, turn-styles and ticket prices, on the fare evasion
rate. In our work, we are interested in a different aspect: understanding how game-theoretic
scheduling will affect the performance of the security resources responsible for patrolling a
transit system every day.

Given this focus on validating game-theoretic scheduling in the real world, our work
shares many ideas with literature on game theory in the field. This line of research has
focused on showing equilibrium concepts in the human and animal activities (Ostling, Wang,
Tao-yi, Chou, & Camerer, 2011; Brown, Camerer, & Lovallo, 2012). Our work shares their
enthusiasm of taking game theory to the field, but fundamentally focuses on algorithmic
deployments and the impact of such algorithms.

3. Problem Statement

This section discusses, first, the Los Angeles Metro domain, the key domain which is used
as a motivation for our work. Second, it presents the Stackelberg game model which we
define to formalize the problem.

6

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

3.1 Motivating Example: LA Metro System

While our model is quite general for modeling time-sensitive patrols in security domains
with execution uncertainty, the study in this paper is substantially motivated by TRUSTS,
an application for scheduling fare inspections in the Los Angeles Metro Rail system (Yin
et al., 2012). The LA Metro Rail system, similar to other proof-of-payment transit systems
worldwide, is a barrier-free transit system where passengers are legally required to pur-
chase tickets before boarding, but are not physically blocked by gates or turnstiles. Instead,
security personnel are dynamically deployed throughout the transit system, randomly in-
specting passenger tickets. With approximately 300,000 daily riders, the revenue loss due
to fare evasion can be significant—this cost has been estimated at $5.6 million (Booz Allen
Hamilton, 2007). The Los Angeles Sheriffs Department (LASD) deploys uniformed patrols
onboard trains and at stations for fare-checking (and for other purposes such as crime sup-
pression), in order to discourage fare evasion. With limited resources to devote to patrols,
it is impossible to cover all locations at all times.

TRUSTS, currently being evaluated at LASD, provides a game-theoretic solution to
scheduling randomized patrols for fare evasion deterrence. For a given day, TRUSTS gener-
ates one patrol schedule for each fare inspection team according to a pre-computed proba-
bility distribution over a large set of possible patrol candidates. A patrol schedule generated
is a sequence of fare-check operations, alternating between in-station and on-train opera-
tions. Each operation indicates specifically where and when a patrol unit should check fares.
Unfortunately, the security personnel may deviate from the given schedule for a variety of
reasons, such as writing citations, felony arrests, handling emergencies, etc. Indeed, in 5 real
world trials carried out by the LASD, 4 times the pre-generated schedules got interrupted.
Often the entire schedule got abandoned after the interruption if the operations specified
afterwards became irrelevant. For example, an officer following a pre-generated schedule
had to write a citation to a rider not carrying a valid ticket, preventing her from carrying
out the rest of the schedule.

3.2 Formal Model

Figure 1: Example of a schedule.

As the first contribution of this work, we present a formal game-theoretic model for
patrolling with dynamic execution uncertainty. A patrolling game with execution uncertainty
is a two-player Bayesian Stackelberg game, between a leader (the defender) and a follower
(the adversary). The leader has γ patrol units, and commits to a randomized daily patrol
schedule for each unit. A patrol schedule consists of a list of commands to be carried out
in sequence. Each command is of the form: at time τ , the unit should be at location l,

7

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

and should execute patrol task a. The patrol action a of the current command, if executed
successfully, will take the unit to the location and time of the next command. A graphical
representation of a schedule is shown in Figure 1. Each unit faces uncertainty in the
execution of each command: delays, or being called to deal with emergencies (possibly at
another location). As a result the unit may end up at a location and a time that is different
from the intended outcome of the action, and thus the rest of the naive patrol schedule
cannot be executed.

We use Markov Decision Processes (MDPs) as a compact representation to model each
individual defender unit’s patrol actions. We emphasize that these MDPs are not the whole
game: they only model the defender’s patrol actions with the environment when executing
patrols; we will later describe the interaction between the defender and the adversary.
Formally, for each defender unit i ∈ {1, . . . , γ} we define an MDP (Si, Ai, Ti, Ri), where

• Si is a finite set of states. Each state si ∈ Si is a tuple (l, τ) of the current location of
the unit and the current discretized time. We denote by l(si) and τ(si) the location and
time of si, respectively.

• Ai is a finite set of actions. Let Ai(si) ⊆ Ai be the set of actions available at state si.

• For each si ∈ Si and each action ai ∈ Ai(s), the default next state n(si, ai) ∈ Si is the
intended next state when executing action ai at si. We call a transition (si, ai, s

′
i) a default

transition if s′i = n(si, ai) and a non-default transition otherwise.

• Ti(si, ai, s
′
i) is the probability of next state being s′i if the current state is si and the

action taken is ai.

• Ri(si, ai, s
′
i) is the immediate reward for the defender from the transition (si, ai, s

′
i). For

example, being available for emergencies (such as helping a lost child) is an important
function of the police, and we can take this into account in our optimization formulation
by using Ri to give positive rewards for such events.

We assume that the MDP is acyclic: Ti(si, ai, s
′
i) is positive only when τ(s′i) > τ(si),

i.e., all transitions go forward in time. S+
i ⊆ Si is the subset of states where a patrol

could start. A patrol could end at any state. For convenience, we add a dummy source
state s+i ∈ Si that has actions with deterministic transitions going into each of the states
in S+

i , and analogously a dummy sink state s−i ∈ Si. Thus each patrol of defender i

starts at s+i and ends at s−i . A patrol execution of i is specified by its complete trajectory
ti = (s+i , a

+
i , s

1
i , a

1
i , s

2
i , . . . , s

−
i), which records the sequence of states visited and actions

performed. A joint complete trajectory, denoted by t = (t1, . . . , tγ), is a tuple of complete
trajectories of all units. Let X be the finite space of joint complete trajectories.

The immediate rewards Ri are not all the utility received by the defender. The defender
also receives rewards from interactions with the adversary. The adversary can be of a set
Λ of possible types and has a finite set of actions A. The types are drawn from a known
distribution, with pλ the probability of type λ ∈ Λ. The defender does not know the
instantiated type of the adversary, while the adversary does and can condition his decision
on his type.

In this general game model, the utilities resulting from defender-adversary interaction
could depend arbitrarily on the complete trajectories of the defender units. Formally, for a
joint complete trajectory t, the realized adversary type λ ∈ Λ, and an action of the adversary
α ∈ A, the defender receives utility ud(t, λ, α), while the adversary receives ua(t, λ, α).

8

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

We are interested in finding the Strong Stackelberg Equilibrium (SSE) of this game, in
which the defender commits to a randomized policy which we define next, and the adversary
plays a best response to this randomized policy. It is sufficient to consider only pure
strategies for the adversary (Conitzer & Sandholm, 2006). Finding one SSE is equivalent
to the following optimization problem:

max
π

∑

λ∈Λ

pλEt∼π[u
d(t, λ, αλ) +

∑

i

Ri(ti)] (1)

s.t. αλ ∈ argmax
αλ

Et∼π[u
a(t, λ, αλ)], ∀λ ∈ Λ (2)

where Ri(ti) is the total immediate reward from the trajectory ti, and Et∼π[·] denotes the
expectation over joint complete trajectories induced by defender’s randomized policy π.

Whereas MDPs always have Markovian and deterministic optimal policies, in our game
the defender’s optimal strategy may be non-Markovian because the utilities depend on
trajectories, and may be randomized because of interactions with the adversary. We consider
two cases: coupled execution and decoupled execution. In coupled execution, patrol units
can coordinate with each other; that is, the behavior of unit i at si could depend on the
earlier joint trajectory of all units. Formally, let Ti be the set of unit i’s partial trajectories
(s+i , a

+
i , s

1
i , a

1
i , . . . , s

′
i). A coupled randomized policy is a function π :

∏
i Ti ×

∏
iAi → R

that specifies a probability distribution over joint actions of units for each joint partial
trajectory. Let ϕ(t;π) ∈ R be the probability that joint complete trajectory t ∈ X is
instantiated under policy π. In decoupled execution, patrol units do not communicate with
each other. Formally, a decoupled randomized policy π = (π1, . . . , πγ) where for each unit
i, πi : Ti × Ai → R specifies a probability distribution over i’s actions given each partial
trajectory of i. Thus a decoupled randomized policy (π1, . . . , πγ) can be thought of as a
coupled randomized policy π′ where π′(t, (a1, . . . , aγ)) =

∏
i πi(ti, ai).

Coupled execution potentially yields higher expected utility than decoupled execution.
Suppose the defender wants to protect an important target with at least one unit, and unit
1 is assigned that task. Then if she knows unit 1 is dealing with an emergency and unable
to reach that target, she can reroute unit 2 to cover the target. However, coordinating
among units presents significant logistical and (as we will see in this paper) computational
burden.

4. Approach

The defender’s optimal strategy may be coupled and non-Markovian, i.e., the policy at s

could depend on the entire earlier trajectories of all units rather than the current state
s. This makes solving the game computationally difficult—the dimension of the space of
mixed strategies is exponential in the number of states.

Nevertheless, in many domains, the utilities have additional structure. There has been
extensive research on efficient computation of SSE for massive games with structured utility
functions (Tambe, 2011), including for the LA Metro domain (Yin et al., 2012), but these
works cannot deal with the type of execution uncertainty studied in this paper. In Sec-
tion 4.1 we show that under the assumption that the utilities have separable structure, it is
possible to efficiently compute an SSE of patrolling games with execution uncertainty. In

9

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Section 4.2 we discuss generating patrol schedules from solutions described in Section 4.1.
In Section 4.3 we present a procedure to extract an optimal mixed strategy but with a
polynomial-sized support. In Section 4.4 we consider a more general case with partially
separable utilities.

4.1 Efficient Computation via Compact Representation of Strategies

Consider a coupled strategy π. Denote by xi(si, ai, s
′
i) the marginal probability of defender

unit i reaching state si, executing action ai, and ending up at next state s′i. Formally,

xi(si, ai, s
′
i) =

∑

t∈X

ϕ(t;π)θ(ti, si, ai, s
′
i), (3)

where the value of the membership function θ(ti, si, ai, s
′
i) is equal to 1 if trajectory ti

contains transition (si, ai, s
′
i) and is equal to 0 otherwise. As defined in Section 3.2, each

state is a tuple (l, τ) of the current location of the unit and the current discretized time.
Hence, each marginal probability xi(si, ai, s

′
i) takes into account not only the location, but

also the time when a specific patrol action is taken. As we will see in the remainder of
this section, both time and location affect the expected utility of both players. Hence, this
design choice improves the accuracy of the model compared to the real world problem. Let
x ∈ RM be the vector of these marginal probabilities, where M =

∑
i |Si|

2|Ai|. Similarly,
let wi(si, ai) be the marginal probability of unit i reaching si and taking action ai. Let
w ∈ R

∑
i
|Si||Ai| be the vector of these marginal probabilities.

Our goal is to compactly represent the SSE problem in terms of w and x, which have
dimensions polynomial in the sizes of the MDPs. We first show that w and x satisfy the
linear constraints:

xi(si, ai, s
′
i) = wi(si, ai)Ti(si, ai, s

′
i), ∀si, ai, s

′
i (4)

∑

s′
i
,a′

i

xi(s
′
i, a

′
i, si) =

∑

ai

wi(si, ai), ∀si (5)

∑

ai

wi(s
+
i , ai) =

∑

s′
i
,a′

i

xi(s
′
i, a

′
i, s

−
i) = 1, (6)

wi(si, ai) ≥ 0, ∀si, ai (7)

Lemma 1. For all coupled randomized policy π, the resulting marginal probabilities wi(si, ai)
and xi(si, ai, s

′
i) satisfy constraints (4), (5), (6), (7).

Proof. Constraint (4) holds by the definition of transition probabilities of MDPs. Constraint
(5) holds because both lhs and rhs equal the marginal probability of reaching state s.
Constraint (6) holds because by construction, the marginal probability of reaching s+i is 1,
and so is the marginal probability of reaching s−i . Constraint (7) holds because wi(si, ai) is
a probability.

Similar formulations for marginal probabilities of MDPs are known (e.g., Filar & Vrieze,
1996). However, unlike in MDPs, in general our utility functions can depend on the de-
fender’s complete trajectory and the adversary’s type and action, and as a result w and x

10

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

are not sufficient to determine the expected utilities of the game. Thus, in order to make
use of this compact representation, we need to make further restrictions to the structure
of the utility functions. It turns out that we can formulate expected utilities in terms of
w and x if the game’s utilities are separable, which intuitively means that given the adver-
sary’s strategy, the utilities of both players are sums of contributions from individual units’
individual transitions:

Definition 1. A patrolling game with execution uncertainty as defined in Section 3.2 has
separable utilities if there exist utilities Ud

λ(si, ai, s
′
i, α) and Ua

λ(si, ai, s
′
i, α) for each unit

i, transition (si, ai, s
′
i), λ ∈ Λ, α ∈ A, such that for all t ∈ X , λ ∈ Λ, α ∈ A, the defender’s

and the adversary’s utilities can be expressed as

ud(t, λ, α) =
∑

i

∑

si,ai,s
′

i

θ(ti, si, ai, s
′
i)U

d
λ(si, ai, s

′
i, α)

and
ua(t, λ, α) =

∑

i

∑

si,ai,s
′

i

θ(ti, si, ai, s
′
i)U

a
λ(si, ai, s

′
i, α),

respectively.

Let Ud
λ , U

a
λ ∈ RM×|A| be the corresponding matrices. Then Ud

λ , U
a
λ completely specifies

the utility functions ud and ua.
Recall that θ(ti, si, ai, s

′
i) is equal to 1 if trajectory ti contains transition (si, ai, s

′
i) and is

equal to 0 otherwise. So the above definition is saying that in a separable game, each player’s
utility when the trajectory is t can be decomposed to contributions from each transition
of each unit’s trajectory ti. This is a natural extension of the additive reward model of
MDPs to the multi-player setting. Separable games can represent common attacker-defender
patrolling scenarios, as illustrated in the following example.

L1, τ0 Stay

L2, τ0

L1, τ1

To L2

L2, τ1Stay

To L1

Stay L1, τ2

To L2

L2, τ2Stay

To L1

L1

L2

τ0 τ1 τ2

1.0

0.1

0.9

1.0

0.9

0.1

1.0

0.1

0.9

1.0

0.9

0.1

Figure 2: Example game with separable utilities.

Example 1. Consider a simple example game with one defender unit, whose MDP is
illustrated in Figure 2. There are six states, shown as circles in the figure, over two lo-
cations L1, L2 and three time points τ0, τ1, τ2. From states at τ0 and τ1, the unit has

11

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

two actions: to stay at the current location, which always succeeds, and to try to go to
the other location, which with probability 0.9 succeeds and with probability 0.1 fails (in
which case it stays at the current location). There are 12 transitions in total, which is
fewer than the number of complete trajectories (18). There is a single type of adver-
sary who chooses one location between L1 and L2 and one time point between τ1 and τ2
to attack (τ0 cannot be chosen). If the defender is at that location at that time, the at-
tack fails and both players get zero utility. Otherwise, the attack succeeds, and the ad-
versary gets utility 1 while the defender gets −1. In other words, the attack succeeds if
and only if it avoids the defender unit’s trajectory. This game has separable utilities: for
any transition (si, ai, s

′
i) in the MDP, let Ua

λ(si, ai, s
′
i, α) be 0 if α coincides with s′i and

1 otherwise. Then each player’s utility given a trajectory t can be expressed as a sum
of contributions from transitions, exactly as in Definition 1. For example, the utility ex-
pression for the adversary given trajectory ((L1, τ0), “To L2”, (L1, τ1), “To L2”, (L2, τ2)) is
Ua
λ((L1, τ0), “To L2”, (L1, τ1), α)+Ua

λ((L1, τ1), “To L2”, (L2, τ2), α), which gives the correct
utility value for the adversary: 0 if α equals (L1, τ1) or (L2, τ2) and 1 otherwise.

It is straightforward to show the following.

Lemma 2. Consider a game with separable utilities. Suppose x is the vector of marginal
probabilities induced by the defender’s randomized policy π. Let yλ ∈ R

|A| be a vector
describing the mixed strategy of the adversary of type λ, with yλ(α) denoting the probability
of choosing action α. Then the defender’s and the adversary’s expected utilities from their
interactions are

∑
λ pλx

TUd
λyλ and

∑
λ pλx

TUa
λyλ, respectively.

In other words, given the adversary’s strategy, the expected utilities of both players
are linear in the marginal probabilities xi(si, ai, s

′
i). Lemma 2 also applies when (as in

an SSE) the adversary is playing a pure strategy, in which case yλ is a 0-1 integer vector
with yλ(α) = 1 if α is the action chosen. We can thus use this compact representation of
defender strategies to rewrite the formulation for SSE (1) as a polynomial-sized optimization
problem.

max
w,x,y

∑

λ∈Λ

pλx
TUd

λyλ +

γ∑

i=1

∑

si,ai,s
′

i

xi(si, ai, s
′
i)Ri(si, ai, s

′
i) (8)

s.t. constraints (4), (5), (6), (7)
∑

α

yλ(α) = 1, ∀λ ∈ Λ (9)

yλ(α) ∈ {0, 1}, ∀λ ∈ Λ, α ∈ A (10)

yλ ∈ argmax
y′

λ

xTUa
λy

′
λ (11)

As we will show in Section 4.2, given a solution w,x to (8), we can calculate a decoupled
policy that matches the marginals w,x. Compared to (1), the optimization problem (8) has
exponentially fewer dimensions; in particular the numbers of variables and constraints are
polynomial in the sizes of the MDPs. Furthermore, existing methods for solving Bayesian
Stackelberg games, such as (Paruchuri, Pearce, Marecki, Tambe, Ordonez, & Kraus, 2008a)

12

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

mixed-integer linear program formulation or (Yin & Tambe, 2012) branch-and-bound ap-
proach, can be adapted to solve (8). For example, (Paruchuri et al., 2008a) formulated
the problem as a mixed-integer quadratic program, then transformed it to an equivalent
mixed-integer linear program, which can be solved using standard optimization solvers like
CPLEX. While (Paruchuri et al., 2008a) assumed that the defender’s strategy space is the
standard simplex, we can replace the simplex constraints with the flow constraints (4),
(5), (6), (7), and apply the same techniques as in (Paruchuri et al., 2008a) to derive a
mixed-integer linear program.

For the special case of Ud
λ +Ua

λ = 0 for all λ, i.e., when the interaction between defender
and adversary is zero-sum, the SSE problem can be formulated as the following linear
program (LP):

max
w,x,u

∑

λ∈Λ

pλuλ +
∑

i

∑

si,ai,s
′

i

xi(si, ai, s
′
i)Ri(si, ai, s

′
i) (12)

s.t. constraints (4), (5), (6), (7)

uλ ≤ xTUd
λeα, ∀λ ∈ Λ, α ∈ A, (13)

where eα is the basis vector corresponding to adversary action α. This LP is similar to the
maximin LP for a zero-sum game with the utilities given by Ud

λ and Ua
λ , except that an ad-

ditional term
∑

i

∑
si,ai,s

′

i

xi(si, ai, s
′
i)Ri(si, ai, s

′
i) representing defender’s expected utilities

from immediate rewards is added to the objective. One potential issue arises: because of
the extra defender utilities from immediate rewards, the entire game is no longer zero-sum.
Is it still valid to use the above maximin LP formulation? It turns out that the LP is indeed
valid, as the immediate rewards do not depend on the adversary’s strategy.

Proposition 1. If the game has separable utilities and Ud
λ + Ua

λ = 0 for all λ, then a
solution of the LP (12) is an SSE.

Proof. We can transform this game to an equivalent zero-sum Bayesian game whose LP
formulation is equivalent to (12). Specifically, given the non-zero-sum Bayesian game Γ
specified above, consider the Bayesian game Γ′ with the following “meta” type distribution
for the second player: for all λ ∈ Λ of Γ there is a corresponding type λ′ ∈ Λ′ in Γ′, with
probability pλ′ = 0.5pλ, with the familiar utility functions; and there is a special type φ ∈ Λ′

with probability pφ = 0.5, whose action does not affect either player’s utility. Specifically
the utilities under the special type φ are ud(t, φ, α) =

∑
i

∑
si,ai,s

′

i

θ(ti, si, ai, s
′
i)Ri(si, ai, s

′
i)

and ua(t, φ, α) = −
∑

i

∑
si,ai,s

′

i

θ(ti, si, ai, s
′
i)Ri(si, ai, s

′
i). The resulting game Γ′ is zero-

sum, with the defender’s utility exactly half the objective of (12). Since for zero-sum games
maximin strategies and SSE coincide, a solution of the LP (12) is an optimal SSE marginal
vector for the defender of Γ′. On the other hand, if we compare the induced normal forms of
Γ and Γ′, the only difference is that for the adversary the utility −0.5

∑
e∈E∗ Uexe is added,

which does not depend on the adversary’s strategy. Therefore Γ and Γ′ have the same set
of SSE, which implies that a solution of the LP is an SSE of Γ.

4.2 Generating Patrol Schedules

The solution of (8) does not yet provide a complete specification of what to do. We ulti-
mately want an explicit procedure for generating the patrol schedules. We define a Markov

13

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

strategy π to be a decoupled strategy (π1, . . . , πγ), πi : Si ×Ai → R, where the distribution
over next actions depends only on the current state. Proposition 2 below shows that given
w,x, there is a simple procedure to calculate a Markov strategy that matches the marginal
probabilities. This implies that if w,x is the optimal solution of (8), then the corresponding
Markov strategy π achieves the same expected utility. We have thus shown that for games
with separable utilities it is sufficient to consider Markov strategies.

Proposition 2. Given w,x satisfying constraints (4) to (7), construct a Markov strategy π

as follows: for each si ∈ Si, for each ai ∈ Ai(si), πi(si, ai) =
wi(si,ai)∑
a′
i

wi(si,a′i)
. If

∑
a′
i

wi(si, a
′
i) =

0 we set πi(si, ·) to be an arbitrary distribution. Suppose the defender plays π, then for
all unit i and transition (si, ai, s

′
i), the probability that (si, ai, s

′
i) is reached by i equals

xi(si, ai, s
′
i).

Proof. Such a Markov strategy π induces a Markov chain over the states Si for each unit
i. We claim that the resulting marginal probability vector of this Markov chain matches x.
We can show this by induction from the starting state s+i to successor states. The marginal
probability Pr(s+i , ai) of reaching state s+i and taking action ai is equal to πi(s

+
i , ai), since

s+1 is always reached. But πi(s
+
i , ai) =

wi(s
+

i
,ai)

∑
a′
i

wi(s
+

i
,a′

i
)
= wi(s

+
i , ai) by constraint (6), So the

marginals are matched at s+i . For the inductive step, the marginal probability Pr(si, ai) of
reaching si and taking action ai is equal to Pr(si)πi(si, ai), where Pr(si) is the probability
of reaching si. By the induction hypothesis, Pr(si) can be computed from the marginals
x,w on the previous states, as Pr(si, ai) =

∑
s′
i
,a′

i

xi(s
′
i, a

′
i, si). Then

Pr(si, ai) = πi(si, ai)
∑

s′
i
,a′

i

xi(s
′
i, a

′
i, si) =

wi(si, ai)∑
a′
i

wi(si, a′i)

∑

s′
i
,a′

i

xi(s
′
i, a

′
i, si) = wi(si, ai)

by constraint (5). Thus the marginals are matched at all states.

In practice, directly implementing a Markov strategy π requires each unit i to draw an
action according to the probability distribution πi(si, ·) at each state si. This is possible
when each unit can consult a random-number generator, or can communicate with a central
command. However, in certain domains such requirement on computation or communication
at each time step places additional logistical burden on the patrol unit. To avoid unnecessary
computation or communication at every time step, it is desirable to let each unit execute a
deterministic schedule (i.e., a pure strategy). To guarantee the optimal expected utility, we
want the deterministic schedule to be drawn from a distribution that has the same marginals
as the optimal solution of (8). We say a procedure that generates patrols is correct if it
has this property. With no execution uncertainty, a pure strategy can be specified by the
complete trajectory for each unit. However, this no longer works in the case with execution
uncertainty, as interruptions will lead to states outside the trajectory.

We thus begin by defining a Markov pure strategy, which specifies a deterministic choice
at each state.

Definition 2. A Markov pure strategy q is a tuple (q1, . . . , qγ) where for each unit i,
qi : Si → Ai.

14

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

We note that the set of Markov pure strategies is a subset of all pure strategies, which
can generally condition their choices on earlier histories in addition to the current states.
Nevertheless, we will show that Markov pure strategies are useful as part of an efficient
procedure for sampling from the solution of (8).

Given a Markov strategy π, we sample a Markov pure strategy q as follows:

Procedure 1. Given π, for each unit i and state si ∈ Si, sample an action ai according to
πi, and set qi(si) to be ai. Output the Markov pure strategy q.

This procedure is correct since each state in i’s MDP is visited at most once and thus
qi exactly simulates a walk from s+i on the Markov chain induced by πi.

To directly implement a Markov pure strategy, the unit needs to either remember the
entire mapping q or to receive the action from a central command at each time step. An
alternative scheme that requires a small amount of storage and a minimal amount of com-
munication is the following: the central command sends the unit a trajectory assuming
perfect execution, and only after a non-default transition happened does the unit commu-
nicates with the central command to get a new trajectory starting from the current state.
Formally, given si ∈ Si and qi, we define the optimistic trajectory from si induced by qi to
be (si, qi(si), n(si, qi(si)), . . . s

−), i.e, the trajectory assuming it always reaches its default
next state. Given a Markov pure strategy q, the following procedure exactly simulates q:

Procedure 2. For each unit i: (i) central command gives unit i the optimistic trajectory
from s+ induced by qi; (ii) unit i follows the trajectory until the terminal state s− is reached
or some unexpected event happens and takes i to state s′i; (iii) in the latter case, central
command sends unit i the new optimistic trajectory from s′i induced by qi and repeat from
step (ii).

4.3 Extracting a Mixed Strategy with Small Support

So far the procedures for generating patrol schedules we described are different implemen-
tations of the Markov strategy π from Proposition 2. This corresponds to a mixed strategy
over the set of Markov pure strategies: each Markov pure strategy q is played with proba-
bility equal to the probability that it is sampled by the sampling procedure. The support
of this mixed strategy, i.e., the set of pure strategies with non-zero probability, is in general
an exponential-sized set.

In practice, it is sometimes desirable to have a mixed strategy with polynomial-sized
support. For example, the security agency may need to carry out training exercises for each
of the pure strategies in the support (e.g., Fang et al., 2013). In such cases, we would like a
polynomial-support mixed strategy that achieves the same expected utility as the optimal
solution of (8). The following proposition shows that there always exists a polynomial-
support mixed strategy that matches the given marginals w,x, and therefore achieves the
optimal expected utility when w,x are the solution of (8).

Proposition 3. Given w,x satisfying constraints (4) to (7), there exists a mixed strategy
with polynomial-sized support that matches the marginals.

Proof. Since (w,x) is in the polytope defined by constraints (4) to (7), and extreme points
of the polytope correspond to pure strategies, Caratheodory’s Theorem3 implies that (w,x)

3. See Chapter 3 from (Gruber, 2007)

15

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

can be written as a convex combination of at most dim(w)+dim(x)+1 = O(
∑

i |Si|
2×|Ai|)

pure strategies.

However, the above proof is not constructive. Grotschel, Lovasz, and Schrijver (1981)
provided a polynomial-time procedure that given a point inside a polytope, decomposes it
into a convex combination of a polynomial number of the extreme points of the polytope;
however their method requires the application of ellipsoid method, which tends to be slow in
practice. In this section, we provide an efficient procedure for generating a mixed strategy
with polynomial-sized support that matches the marginals w,x.

Procedure 3. Given (w,x), an optimal solution of (8), we initialize the mixed strategy to
have an empty support set.

1. Compute the Markov strategy π as πi(si, ai) =
wi(si,ai)∑
a′
i

wi(si,a′i)
. If

∑
a′
i

wi(si, a
′
i) = 0 we

set πi(si, ·) to be an arbitrary distribution.

2. Select a Markov pure strategy q that is played with positive probability in π. One
possible way to construct q is as follows: at each state si, set qi(si) to be an action
ai that is played with positive probability at si in π.

3. Compute the marginals wq,xq corresponding to pure strategy q. This can be done
from s+i to successor states.

4. Let γq be the maximum γ such that w − γwq ≥ 0 and x− γxq ≥ 0.

5. Set w := w − γqw
q, x := x − γqx

q. Add pure strategy q to the support, played with
probability γq.

6. If w = 0, Stop. Otherwise, go to Step 1.

Proposition 4. Procedure 3 outputs in polynomial time a mixed strategy with polynomial-
sized support, matching the marginals.

Proof. Since wq,xq are valid marginal vectors satisfying constraints (4) to (7), the updated
marginals (w,x) after Step 5 still satisfies the flow conservation constraints (4), (5), and
the nonnegativity constraint (7), while the total flow (corresponding to (6)) is reduced by
γq. This implies that the steps of the procedure are well-defined; furthermore once the
procedure stops, the output γ’s sum to 1, and the corresponding mixed strategy matches
the marginals wq,xq.

It remains to show that the procedure stops after a polynomial number of iterations.
To see this, note that by construction, each execution of Step 5 will reduce at least one
component of (w,x) to zero. This is because otherwise we could increase γq, contradicting
Step 4. Therefore the procedure stops after at most dim(w) + dim(x) = O(

∑
i |Si|

2 × |Ai|)
iterations; and since each iteration adds one pure strategy to the support, the resulting
mixed strategy has a polynomial-sized support.

16

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

4.4 Coupled Execution: Cartesian Product MDP

Without the assumption of separable utilities, it is no longer sufficient to consider decoupled
Markov strategies of individual units’ MDPs. We create a new MDP that captures the joint
execution of patrols by all units. For simplicity of exposition we look at the case with two
defender units. Then a state in the new MDP corresponds to the tuple (location of unit 1,
location of unit 2, time). An action in the new MDP corresponds to a tuple (action of unit
1, action of unit 2). Formally, if unit 1 has an action a1 at state s1 = (l1, τ) that takes her to
s′1 = (l′1, τ

′) with probability T1(s1, a1, s
′
1), and unit 2 has an action a2 at state s2 = (l2, τ)

that takes her to s′2 = (l′2, τ
′) with probability T2(s2, a2, s

′
2), we create in the new MDP

an action a× = (a1, a2) from state s× = (l1, l2, τ) that transitions to s′× = (l′1, l
′
2, τ

′) with
probability T×(s×, a×, s

′
×) = T1(s1, a1, s

′
1)T2(s2, a2, s

′
2). The immediate rewards R× of the

MDP are defined analogously. We call the resulting MDP (S×, A×, T×, R×) the Cartesian
Product MDP.

An issue arises when at state s× the individual units have transitions of different time
durations. For example, unit 1 rides a train that takes 2 time steps to reach the next station
while unit 2 stays at a station for 1 time step. During these intermediate time steps only
unit 2 has a “free choice”. How do we model this on the Cartesian Product MDP? One
approach is to create new states for the intermediate time steps. For example, suppose at
location LA at time 1 a non-default transition takes unit 1 to location LA at time 3. We
modify unit 1’s MDP so that this transition ends at a new state (L1

A, 2) ∈ S1, where L1
A

is a “special” location specifying that the unit will become alive again at location LA in
one more time step. There is only one action from (L1

A, 2), with only one possible next
state (LA, 3). Once we have modified the individual units’ MDPs so that all transitions
take exactly one time step, we can create the Cartesian Product MDP as described in the
previous paragraph.

Like the units’ MDPs, the Cartesian Product MDP is also acyclic. Therefore we can
analogously define marginal probabilities w×(s×, a×) and x×(s×, a×, s

′
×) on the Cartesian

Product MDP. Let w× ∈ R
|S×||A×| and x× ∈ R

|S×|2|A×| be the corresponding vectors.
Utilities generally cannot be expressed in terms of w× and x×. We consider a special case
in which utilities are partially separable:

Definition 3. A patrolling game with execution uncertainty has partially separable util-
ities if there exist Ud

λ(s×, a×, s
′
×, α) and Ua

λ(s×, a×, s
′
×, α) for each transition (s×, a×, s

′
×),

λ ∈ Λ, α ∈ A, such that for all t ∈ X , λ ∈ Λ, α ∈ A, the defender’s and the adversary’s
utilities can be expressed as ud(t, λ, α) =

∑
s×,a×,s′

×

θ×(t, s×, a×, s
′
×)U

d
λ(s×, a×, s

′
×, α) and

ua(t, λ, α) =
∑

s×,a×,s′
×

θ×(t, s×, a×, s
′
×)U

a
λ(s×, a×, s

′
×, α), respectively.

Partially separable utilities is a weaker condition than separable utilities, as now the
expected utilities may not be sums of contributions from individual units. When utilities
are partially separable, we can express expected utilities in terms of w× and x× and find
an SSE by solving an optimization problem analogous to (8). From the optimal w∗

×, we can

get a Markov strategy π∗
×(s×, a×) =

w∗

×
(s×,a×)

∑
a′
×

w∗

×
(s,a′

×
)
, which is provably the optimal coupled

strategy.
This approach cannot scale up to a large number of defender units, as the size of S×

and A× grow exponentially in the number of units. In particular the dimension of the

17

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Markov policy π× is already exponential in the number of units. To overcome this we
will need a more compact representation of defender strategies. One approach is to use
decoupled strategies. The resulting defender strategy model resembles a transition in-
dependent DEC-MDP (Becker, Zilberstein, Lesser, & Goldman, 2004). However, due to
strategic interaction against adversaries, existing methods for DEC-MDP—which compute
pure strategies—cannot be directly applied. Efficient computation in these settings remains
an open problem.

5. Case Study on the LA Metro System

This section discusses how we apply the model presented in Section 3.2 and the approach
presented in Section 4 to the problem of patrolling the LA Metro system for fare evasion. In
particular, Section 5.1 discusses how the game model is adapted to the LA metro patrolling
problem and Section 5.2 discusses how we use this framework to build a scheduling system
whereby schedules are generated by a central planner and are visualized by a smartphone
application running on android phones.

5.1 Application to LA Metro Domain

We now explain how our proposed techniques can be used in the LA Metro domain. This
involves defining a number of parameters specific to the LA Metro domain which will be
initialized for our real-world experiment in Section 6. In addition, as we will see, although
the utilities in this domain are not separable, we are able to provide an upper bound to the
defender utilities by separable utilities, allowing efficient computation.

Similar to the work by Yin et al. (2012), a state here comprises the current station and
time of a unit, as well as necessary history information such as starting time4. At any state,
a unit may stay at her current station to conduct an in-station operation for some time or
she can ride a train to conduct an on-train operation when her current time coincides with
the train schedule. Due to execution uncertainty, a unit may end up at a state other than
the intended outcome of the action. For ease of analysis, we assume throughout the rest of
this paper a single type of unexpected event which delays a patrol unit for some time beyond
the intended execution time. Specifically, we assume for any fare check operation taken,
there is a probability η that the operation will be delayed, i.e., staying at the same station
(for in-station operations) or on the same train (for on-train operations) involuntarily for
some time. Furthermore, we assume that units will be involved with events unrelated to
fare enforcement and thus will not check fares during any delayed period of an operation.
Intuitively, a higher chance of delay leads to less time spent on fare inspection. As we will
see in Section 6, initializing this probability for conducting real-world experiments required
adopting a robust approach based on cross-validation (Kohavi, 1995; Jaulmes, Pineau, &
Precup, 2007) to address the uncertainty related to the duration of a delay.

The adversary faced here are the riders in the system. Specifically, we model the most
common type of riders which use the metro line every day to go to their work and come
back home. Each of them takes a fixed route: it starts at a specific station A (at a specific
time) and ends at a new station B (at a new time). Since there exists multiple stations and

4. Interested readers are encouraged to read the work by Yin et al. (2012) for more details

18

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

time units, there also exist multiple routes to considered. To address this issue, we define
multiple riders each representing a specific route. A rider observes the likelihood of being
checked and makes a binary decision between buying and not buying the ticket. If the rider
of type λ buys the ticket, he pays a fixed ticket price ρλ. Otherwise, he rides the train for
free but risks the chance of being caught and paying a fine of ̺λ > ρλ. The LASD’s objective
is set to maximize the overall revenue of the whole system including ticket sales and fine
collected, essentially forming a zero-sum game. This revenue depends on the number of
resources available to the LASD, i.e., the ones that can be deployed for each patrol5. Given
a number of available officers then, the costs associated with their deployment (e.g., number
of officers and working hours) can be incorporated into the objective function by defining
negative rewards in Equation 8.

Since the fare check operation performed is determined by the actual transition rather
than the action taken, we define the effectiveness of a transition (s, a, s′) against a rider type
λ, fλ(s, a, s

′), as the percentage of riders of type λ checked by transition (s, a, s′). Following
the same argument by Yin et al. (2012), we assume the probability that a joint complete
trajectory t detects evader λ as the sum of fλ over all transitions in t = (t1, . . . , tγ) capped
at one:

Pr(t, λ) = min{

γ∑

i=1

∑

si,ai,s
′

i

fλ(si, ai, s
′
i)θ(ti, si, ai, s

′
i), 1}. (14)

For type λ and joint trajectory t, the LASD receives ρλ if the rider buys the ticket and
̺λ ·Pr(t, λ) otherwise. The utilities in this domain are indeed not separable — even though
multiple units (or even a single unit) may detect a fare evader multiple times, the evader
can only be fined once. As a result, neither players’ utilities can be computed directly using
marginal probabilities x and w. Instead, we provide an upper bound to the defender utility
by overestimating the detection probability as the following:

P̂r(t, λ) =

γ∑

i=1

∑

si,ai,s
′

i

fλ(si, ai, s
′
i)θ(ti, si, ai, s

′
i) ≥ Pr(t, λ). (15)

Then the defender utility if the rider does not buy the ticket is upper-bounded by ̺λ·P̂r(t, λ),
which is separable. Given a marginal vector x, the detection probability is then upper-
bounded by

P̂r(x, λ) =

γ∑

i=1

∑

si,ai,s
′

i

fλ(si, ai, si)xi(si, ai, s
′
i). (16)

5. The number of resources required to maximize the revenue for the LASD is equal to the number of number
of edges of the MDP defined in Section 4. Unfortunately, in the real world the available resources are
much less than this number. Therefore, the idea is to maximize the revenue for the LASD given the
resources available.

19

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Equation (16) leads to the following upper bound LP for the LA Metro problem:

max
x,w,u

∑

λ∈Λ

pλuλ +

γ∑

i=1

∑

si,ai,s
′

i

Ri(si, ai, s
′
i) (17)

s.t. constraints (4), (5), (6), (7)

uλ ≤ min{ρλ, ̺λ · P̂r(x, λ)}, for all λ ∈ Λ (18)

We prove the claims above by the following two propositions.

Proposition 5. P̂r(x, λ) is an upper bound of the true detection probability of any coupled
strategy with marginals x.

Proof. Consider a coupled strategy π. Recall that ϕ(t;π) ∈ R is the probability that
joint trajectory t ∈ X is instantiated. For rider type λ, the true detection probability is
Pr(π, λ) =

∑
t∈X ϕ(t;π)Pr(t, λ). Applying Equations (14) and (3) we have,

Pr(π, λ) ≤
∑

t∈X

ϕ(t;π)

γ∑

i=1

∑

si,ai,s
′

i

fλ(si, ai, s
′
i)θ(ti, si, ai, s

′
i)

=

γ∑

i=1

∑

si,ai,s
′

i

fλ(si, ai, s
′
i)
∑

t∈X

ϕ(t;π)θ(ti, si, ai, s
′
i)

=

γ∑

i=1

∑

si,ai,s
′

i

fλ(si, ai, s
′
i)xi(si, ai, s

′
i) = P̂r(x, λ).

Proposition 6. LP (17) provides an upper bound of the optimal coupled strategy.

Sketch. Let x∗ and w∗ be the marginal coverage and u∗λ be the value of the patroller
against rider type λ in the optimal coupled strategy π∗. It suffices to show that (x∗, w∗,
u∗) is a feasible point of the LP. From Lemma 1, we already know x∗ and w∗ must satisfy
constraints (4) to (7). Furthermore, we have u∗λ ≤ ρλ since the rider pays at most the ticket

price. Finally, u∗λ ≤ ̺λ · P̂r(x, λ) since P̂r(x, λ) is an overestimate of the true detection
probability.

Intuitively, LP (17) relaxes the utility functions by allowing an evader to be fined mul-
tiple times during a single trip. The relaxed utilities are separable and thus the relaxed
problem can be efficiently solved. Since the solution returned x∗ and w∗ satisfy constraints
(4) to (7), we can construct a Markov strategy from w∗ as described in Section 4.2. The
Markov strategy provides an approximate solution to the original problem, whose actual
value can be evaluated using Monte Carlo simulation. This strategy is also sampled to
produce a patrol schedule which is then uploaded on the smartphone application which is
discussed next.

20

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

(a) Schedule View (b) Reporting View (c) Summary View

Figure 3: The smartphone’ user interface

5.2 The Smartphone Application

The smartphone app is a software agent carried by each patrol officer that visualizes the
patrol schedules generates using the approach discussed in the previous section. Shown in
Figure 3, the app provides three principal features: (i) a patrol schedule for the current
shift; (ii) a system for reporting passenger violations and (iii) a shift statistics summary
report. At the beginning of the shift, a patrol schedule is loaded into the app either by
hand or using a database. The app then displays a schedule of the current and upcoming
patrol actions in the schedule view, shown in Figure 3(a). Implementing recovery from
real-world unexpected events that interrupt the officer’s schedule, the schedule view also
allows the officer to manually set their current location, triggering the app to select a new
patrol schedule based on the officer’s current location and time. To do so, a number of
patrol schedules are sampled from the Markov strategy (see Section 4.2) and are uploaded
in the app before deployment. In the remainder of this work, we will refer to this action as
requesting an “update”. The app also allows patrol officers to record passenger violations,
such as fare evasion, for the current patrol action using Reporting View, shown in Figure
3(b). Officers can also view and edit the passenger violations reported for past actions
in Summary View, shown in Figure 3(c). Upon shift completion, the officer can also use
Summary View to submit the app-generated shift statistics summary report, including all
unexpected events and violations reported throughout the shift, to a database.

This app presents two key advantages for security agencies. First, it allows for the
collection of patrol data, which could then be used to analyze the behavior of adversaries
such as fare evaders and criminals. Second, this app-collected data could also benefit transit
system security departments that manually record violations data or conduct their own
analysis on patrol strategy performance.

21

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

6. Evaluation

This section describes our experiments. In Section 6.1, we describe the datasets and how
we instantiated some of the model parameters for our experiments. Section 6.2, discusses
our simulations in which we studied the key properties of the approach discussed in Section
5.1. Finally, Section 6.3 discusses the real-world experiment where we ran a head-to-head
comparison between our approach and a uniform random approach, the automated approach
that most security agencies use when not using a game-theoretic approach (Tambe, 2011).

6.1 Data Sets

The experiments presented in this work, either in simulation or in the real-world, are based
on four data sets, each based on a different Los Angeles Metro Rail line: Red (including
Purple), Blue, Gold, and Green. In these data sets, the train schedules were obtained
from http://www.metro.net and the ridership distributions for each line were estimated
from hourly boarding and alighting counts provided by the LASD. We allowed any on-
train operation, i.e., train checks could be between two or more stations and defined in-
station operations, i.e., station-checks, to be fixed intervals between 10 and 20 minutes. As
recommended by the LASD, this duration is the one that security officers typically adopt
to conduct fare inspections at a train station. The effectiveness of each fare check operation
was adjusted based on the volume of riders during the period with an assumption that
a unit would check three riders per minute. The ticket fare was set to $1.5 (the actual
current value), while the fine was set to $100 (fare evaders in Los Angeles can be fined $200,
however, they also may be issed warnings). A rider can always pay the ticket price for $1.5
and will only evade the ticket when the expected fine is lower. The immediate rewards Ri

are all set to zero. Table 1 summarizes the detailed statistics for the four Metro lines.

Line Stops Trains Daily Riders Types

Red 16 433 149991.5 26033
Blue 22 287 76906.2 46630
Gold 19 280 30940.0 41910
Green 14 217 38442.6 19559

Table 1: Statistics of Los Angeles Metro lines.

6.2 Simulations

The simulations are aimed to analyze the performance of the Markov strategies calculated
solving the LP defined in Section 5.1. More specifically, we aim to analyze the key features
of our approach by systematically manipulating those parameters that are more likely to
vary significantly in the real world and, as consequence, affect the revenue for the defender
and the rate of fare evaders captured. These parameters include the delay length, the train
lines, the levels of execution uncertainty and the number of available resources. We also
tested the runtime of our LP algorithm to verify whether it was capable of generating an

22

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

Figure 4: the Markov Strategy (Equation (17)) vs. the true LP (Equation (8)).

output in a timely manner. Most result are presented for the Red line only. Results for the
Blue, the Gold and the Green line are presented in the Appendix A.

In all such simulations, we found that the Markov strategy was close to optimal with
revenue always above 99% of the LP upper bound. Figure 4 shows such a result, assuming
6 resources patrolling the Red line for 3 hours and varying uncertainty probability (from 0%
to 25%). Similar results were found for the Blue, Green and Gold lines and are reported in
Figure 14 in the Appendix A. This result indicated that the relaxed detection probability
given in Equation (16) provided a good estimation of the true probability, implying that
riders were unlikely to be checked more than once by joint execution trajectories produced
by the Markov strategy in all of our data sets. For this reason, in the remainder of this
section we will report values of the Markov strategy without mentioning the LP upper
bound.

In our experiments, we compared, under execution uncertainty, the performance of our
Markov strategy (obtained by solving LP (17)) against two types of benchmarks: game-
theoretic, deterministic, policies assuming no execution uncertainty and Markov policies
that take execution uncertainty into account, but that assign actions based on a uniform
random probability. The pre-generated schedules are calculated using TRUSTS (Yin et al.,
2012), the original system developed for the patrolling train lines, based on a deterministic
model assuming no execution uncertainty. However, since actions to take after deviations
from the original plan are not well-defined in TRUSTS schedules, we augmented these pre-
generated schedules with two naive contingency plans indicating the actions to follow after
a unit deviates from the original plan. The first plan, “Abort”, is to simply abandon the
entire schedule and return to the base. The second plan, “Arbitrary”, is to pick an action
randomly from all available actions at any decision point after the deviation. The uniform
random Markov strategy (Markov UR) then assigns, given a state s ∈ Si of the MDP defined
in Section 3.2, a uniform probability to all the actions taken in s leading to another state
s′ ∈ Si. In essence, this strategy is similar to the “Arbitrary” policy but it assumes that
resources always pick a random action and not only after they are deviated. It was chosen

23

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

because this is the approach that security agencies adopt when not using a game-theoretic
approach for randomization6.

Each of these strategies was generated using CPLEX 12.2 with the barrier method on
standard 2.8GHz machines with 4GB memory. Then, to generate significant datapoints,
each strategy was evaluated using Monte Carlo simulations with 100000 samples. In such
simulations, the riders were assumed to choose a best response based on the frequency of
being checked over these samples. The discussion of our results follows.

(a) Varying uncertainty

(b) Varying delay

Figure 5: Defender’s revenue per rider on the Red line: Markov vs. TRUSTS’ pre-generated
strategies and Markov UR

6. See (Tambe, 2011) for more detail.

24

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

6.2.1 Expected Revenue against Varying Delay Probability and Time

To run this experiment, we fixed the number of units to 6 and the patrol length to 3 hours
and varied the delay probability and the delay time. The results presented below are based
on simulations on the Red line. Figure 15 in the Appendix A shows the results for the Blue,
Green and Gold lines.

First, we fixed the delay time to 10 minutes and varied the delay probability η from 0%
to 25%. As we can see in Figure 5(a), “Abort”, “Arbitrary” and “Markov-UR” performed
poorly in the presence of execution uncertainty. With increasing values of η, the revenue
of “Abort” and “Arbitrary” decayed much faster than the Markov strategy. In fact, by
increasing the delay probability, the number of interruptions is also increased. In such
situations, both the “Abort” and the “Arbitrary” strategies will perform sub-optimal actions
(dropping the schedule or selecting a random action) which will yield a poor performance.
For example, when η was increased from 0% to 25%, the revenue of “Abort” and “Arbitrary”
decreased 75.4% and 37.0% respectively while that of the Markov strategy only decreased
3.6%. In contrast, the performance of“Markov-UR” remained constantly around the same
value of, approximately 0.4. This is expected, since the strategy constantly performs random
actions, therefore its performance will be independent from the delay probability.

An important observation here is that the revenue of “Abort” decayed extremely fast
with increasing η — even with a 5% probability of delay, the revenue of “Abort” was only
73.5% of that of the Markov strategy. With a conservative estimate of 6% potential fare
evaders (Booz Allen Hamilton, 2007) and 300, 000 daily riders in the LA Metro Rail system,
the 26.5% difference implies a daily revenue loss of $6, 500 or $2.4 million annually.

Second, we fixed η to 10% and varied the delay time from 5 to 25 minutes. The results, in
Figure 5(b), present similar trends to the ones in Figure 5(a). The three strategies “Abort”,
“Arbitrary” and “Markov-UR” performed worse than the Markov strategy. With increasing
delay time, the revenue of “Arbitrary”, decayed in a faster rate than the Markov strategy.
Similar to what discussed earlier, after a delay, the strategy would start to generate sub-
optimal actions which would result in a low expected revenue. In contrast, both the revenue
of “Abort” and of “Markov-UR” remained the approximately the same. The time of the
delay does not matter for the “Abort” strategy if a resource abandon the schedule after the
first unexpected event. Similarly, the time of the delay does not matter for “Markov-UR”
if a resource only performs random actions. When the delay time was increased from 5 to
25 minutes, the revenue of “Abort” and “Markov UR” remained the same, 0.4 and 0.75
respectively, while that of “Arbitrary” and the Markov strategy decreased 14.4% and 3.6%
respectively.

6.2.2 Fare Evasion Rate against Varying Delay Probability and Time

The settings for this experiment were the same as the ones for the experiment discussed
above. Here, we present the results for the Red line only. The results for the Blue, the
Green and the Gold line, present similar trends and are shown in Figure 16 in the Appendix
A. As discussed in Section 6.1, we considered a rider to prefer fare evasion if and only if
his expected penalty from fare evasion is lower than $1.5, the ticket price. The results are
shown in Figure 6, which shows the fare evasion rate of the four policies with increasing η.
As we can see, “Abort”, “Arbitrary” and “Markov UR” showed extremely poor performance

25

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Figure 6: Markov vs. deterministic strategies: evasion rate

in evasion deterrence with even a tiny probability of execution error. Similar to the first
experiment, increasing the number of interruptions led the two deterministic strategies to
produce sub-optimal actions yielding a fewer number of fare evaders captured. In particular,
when the delay probability η was increased from 0% to 5%, the evasion rate of the Markov
strategy barely increased while that of “Abort” and “Arbitrary” increased from 11.2% both
to 74.3% and 43.9% respectively. In contrast, the “Markov UR” strategy remained stable
around a fare evasion rate of 80%. This result confirms the trend for the “Markov UR”
strategy depicted in Figure 5(a). The delay probability does not affect the performance of
the strategy because it consists of computing random actions.

0 0.05 0.1 0.15 0.2 0.25
1.3

1.35

1.4

1.45

1.5

Probability of unexpected event

R
ev

en
ue

 p
er

 r
id

er

Blue Gold Green Red

(a) Revenue per rider of Markov strategy

0 0.05 0.1 0.15 0.2 0.25
0%

5%

10%

15%

20%

Probability of unexpected event

F
ar

e
ev

as
io

n
ra

te

Blue Gold Green Red

(b) Evasion rate of Markov strategy

Figure 7: Markov strategy over different lines.

26

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

6.2.3 Robustness of the Approach Against increasing Delay Probability

To run this experiment, we fixed the number of units to 6 and the patrol length to 3 hours,
but varied the delay probability η from 0% to 25%. Figure 7(a) and Figure 7(b) show the
expected revenue per rider and the evasion rate of the four lines respectively7. As we can
see, the revenue decreased and the evasion rate increased with increasing η. However, the
Markov strategy was able to effectively allocate resources to counter the effect of increasing
η in terms of both revenue maximization and evasion deterrence. For example, the ratio of
the revenue of η = 25% to that of η = 0% was 97.2%, 99.1%, 99.9%, 95.3% in the Blue,
Gold, Green and Red line respectively. Similarly, when η was increased from 0% to 25%,
the evasion rate of the Blue, Gold, Green and Red line was increased by 4.6, 1.9, 0.1, 5.2
percentage points respectively. Thus, the Markov strategy performance degraded gracefully
as uncertainty increased for each of the four lines.

0 0.05 0.1 0.15 0.2 0.25
0.7

0.9

1.1

1.3

1.5

Probability of unexpected event

R
ev

en
ue

 p
er

 r
id

er

Low Medium High

Figure 8: Revenue decay with varying coverage levels

6.2.4 Revenue per Rider while Increasing Delay Probability

In this experiment, we considered 3, 6 and 9 patrol units, representing three levels of fare
enforcement: low, medium and high, respectively, and evaluated the revenue per rider with
increasing η. The results for the red line are depicted in Figure 8. Results for the blue,
the green and the gold line present similar trends and are depicted in Figure 17 in the
Appendix A. As shown in Figure 8, the rate of revenue decay with respect to η decreased
as we increased the level of fare enforcement from low to high. Intuitively, with more
resources, the defender could better afford the time spent on handling unexpected events
without sacrificing the overall revenue. For example, when η was increased from 0% to 25%,
the revenue drop in the low, medium and high enforcement setting was 13.2%, 4.7%, and
0.4% respectively.

7. The revenue of the Red line was significantly lower than the other lines because fare check effectiveness
fλ defined in Section 5.1 was set inversely proportional to the ridership volume.

27

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

2 3 4 5 6
0.6

0.8

1

1.2

1.4

Number of patrol units

R
ev

en
ue

 p
er

 r
id

er

η = 0%
η = 10%
η = 20%

Figure 9: Revenue per rider with increasing coverage

6.2.5 Revenue per Rider while Increasing the Number of Resources

In this experiment, we fixed the patrol length to 3 hours, we then considered three delay
probabilities η = 0%, 10%, and 20%, each representing an increasing level of uncertainty.
To measure the impact of the number of units, we increased the number of units from 2 to
6. The results for the Red line are shown in Figure 9, Figure 18 in the Appendix A shows
the results for the Blue, Green and Gold lines. Both figures show the revenue per rider
for the defender for increasing number of units. As depicted in the figure, as we increased
such number, the revenue increased towards the maximal achievable value of $1.5 (ticket
price). As the number resources increases, the algorithm produces Markov strategies which
distribute the resources so as to check more rider types. For example, as shown in the
figure, when η = 10%, the revenue per rider was $0.65, $1.12, and $1.37 for 2, 4, and to 6
patrol units respectively. In addition, the figure shows that as the uncertainty increases, the
revenue per rider slightly decays. For example, considering 4 units, the revenue per rider is
1.09, 1.13 and 1.18 for η = 0%, 10% and 20% respectively.

6.2.6 Runtime of the LP Algorithm

To confirm this hypothesis, we ran an experiment considering the worst-case runtime (over
10 runs) of the LP with increasing η for the four metro lines. The number of units was
fixed to 3 and the patrol length per unit was fixed to 3 hours. To verify whether the delay
probability had any impact on the runtime, we ran simulations varying η from 0% to 25%.
The results are depicted in Figure 10. As we can see, the algorithm could solve all of the
problems within an hour. For example, when η = 10%, the runtime for the Blue, Gold,
Green, and Red line was 14.0, 24.3, 2.4, and 4.3 minutes respectively.

In addition, these results present a number of additional features that can be analyzed.
The runtime varied among the four Metro lines, related to their number of states and
types. In other words, the number of stations and daily trains (i.e. the density of the train
schedule) affected the runtime of the algorithm. For example, since the Green line has
significantly fewer types and states, solving the LP was easier than the other three lines.

28

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

0 0.05 0.1 0.15 0.2 0.25
0
6

12
18
24
30
36
42
48
54
60

Probability of unexpected event

R
un

tim
e(

in
 m

in
ut

es
)

Blue
Gold
Green
Red

Figure 10: Worst-case LP runtime

A surprising result is the fact that we found no correlation between the runtime and
delay probability η. Our results showed that, for all of the four lines, stochastic models with
η > 0% took less time to solve than deterministic models (η = 0%). More precisely, with
increasing η beyond 0%, the runtime of all of the four lines fluctuated and showed an up-
wards trend, yet the correlation between runtime and delay probability was not statistically
significant.

6.3 Real-World Experiment

The results of the simulations presented above showed that deterministic approaches that
do not take execution uncertainty into account perform poorly. Given the large number of
interruptions, the officers were rarely able to complete a schedule provided by deterministic
strategies. As discussed in Section 1, these results motivated this work and led to our new
solution concept based on an MDP. In addition, considering the limited time that we were
given by the LASD to run our experiment, we decided to use only the “Markov UR” strategy
as a benchmark in the real world experiment. Real-world failure was not acceptable for the
LASD. Therefore, they recommended not testing deterministic schedules any further. In
addition, despite performing poorly in simulation, not only is “Markov UR” the strategy
used by most security agencies to automatically allocate their resources, but schedules can
be updated whenever an interruption occurs.

The real world experiment took place over 21 days during the months of July and
August 2013. The organization of the experiment (e.g., train the security officers, design
and organize the experiment in collaboration with the LASD) required approximately two
weeks. This experiment had two key purposes. The first was to validate the MDP model
in the real world. The second was to run a head-to-head comparison between our game-
theoretic approach and the Markov-UR approach. This section discusses the setup of the
experiment and the results that we obtained.

29

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Figure 11: The map of the blue line of the LA Metro

6.3.1 Experiment Setup

The fare evasion experiment took place on the Blue line of the LA Metro system (see Figure
11 for the map of the metro line). Other lines could not be tested, because the LASD only
allowed us to use our strategies on the Blue line during our real-world test. This line
consists of 22 different stations and is one of the biggest lines in the LA Metro system. It
was selected by the LASD, which helped to organize the experiment (e.g., assign security
officers and patrol times).

Figure 12: Two security officers performing fare checks on a train.

Each day, a team of two security officers (see Figure 12), was randomly selected by the
LASD, to patrol the line for a duration of at most 120 minutes. Patrols were run during
both the morning and the afternoon. Some days the tests ended early due to the officers
being reassigned. One of the two officers acted as the leader of the team: he was given

30

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

the smartphone, he had to read the schedule to the other officers, collect the data and
eventually update it whenever a delay occurred. An update could be made either during
a station-check as described in Section 6.1) or during a train-check. In the latter case, the
officers were required to leave the train at the next station to request an update. This was
required because, as discussed in Section 5.1, the Markov strategy was defined over each
state of the MDP (i.e., station, time). Thus any new strategy has to be sampled from a
specific state. Every week the team was provided with one of two types of schedules:

Game-theoretic schedules (GT): This type of schedule was generated according to the
LP in Equation (17) presented in Section 5.1.

Markov UR schedules (UR): This type of schedule was generated by modeling the
problem as an MDP, as discussed in Section 3.2. However, the corresponding Markov
strategy πsi,ai , for each state si and action ai was calculated assuming a uniform
probability distribution.

The officers were not told which schedule they were using as not to bias their perfor-
mance. Before the experiment, we anticipated that the officers might view some of the
schedules as leading to low performance in terms of catching very few fare evaders. In such
situation, the officers, in order to avoid poor performance, might end up voluntarily devi-
ating from their given schedules to reach a better location because they were unsatisfied
with the current one. In anticipation of such voluntary deviations, we augmented both the
game-theoretic and UR schedules with the ability to perform updates. More specifically, we
allowed the officers to request VOLUNTARY or INVOLUNTARY updates. VOLUNTARY
updates consisted of the officers updating the current schedule because in their opinion, the
current specified action was not fruitful as a venue to check fares. Officers were allowed
to choose a new location that they considered more fruitful for catching fare evaders and
request a new schedule from there. INVOLUNTARY updates consisted of the officers re-
questing a new schedule because they were delayed (e.g., from issuing citations or arresting
a suspect) and were unable to perform the next action on their schedule. This type of
update could be requested anytime an officer was delayed. As we will see below the officers
used VOLUNTARY updates almost every day with the UR schedules, but never in the GT
schedules.

Finally, it is important to notice that given the duration of our experiment, the game-
theoretic schedules are essentially testing a maximin strategy. As discussed in Section
5.1, the LP computes a Stackelberg strategy, a strategy based on the assumption that
the riders will conduct surveillance and observe the defender’s mixed strategy. However,
considering only 21 days of patrol whereby the officers could only patrol less than few
hours per day, either in the morning or the afternoon, we cannot assume that the riders
had sufficient time to conduct accurate surveillance, observe the mixed strategy and best
respond to it. Nonetheless, the LP in Section 5.1 solves a zero-sum game for which a
Stackelberg equilibrium and the maximin strategy are known to be equivalent (Yin et al.,
2012). Thus, since the maximin strategy provides a guaranteed level of defender utility
without making any assumption on the adversary’s surveillance of the defender’s mixed
strategy, these experiments compare the benefit of using a maximin strategy against other
(non-game-theoretic) approaches for generating patrol schedules.

31

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

6.3.2 Estimating the Uncertainty Parameter

Given the unpredictability of the real-world, two key parameters for instantiating the
MDP—the length of a delay and, most importantly, the probability that such a delay
could happen— could not be defined before-hand, as was done in Section 6.1 with the re-
maining problem parameters. In such a setting, adopting a continuous-time MDP could be
a possible alternative. However, continuous time MDP algorithms, which involve techniques
such as forward search (Marecki & Tambe, 2008; Mausam, Benazera, Brafman, Meuleau,
& Hansen, 2005), would appear difficult to implement and would add significant computa-
tional complexity. Another alternative, the one adopted in this work, is to adopt a cross
validation approach, a well-known technique used in machine learning (Jaulmes et al., 2007)
and statistics (Kohavi, 1995). The idea is to select a policy robust against uncertainty, i.e.,
a policy which guarantees the highest expected revenue in the worst case setting, when
uncertainty will minimize the defender’s expected utility. To achieve this, we discretized
the delays and defined an MDP model which assumed multiple delays, each with a specific
probability. We divided this approach into two steps. First, we randomly generated N

MDPs. Each MDP is generated assuming that a delay will happen within a time window
of 30 minutes. In other words, we assume that resource i can experience delays up to 30
minutes (any delay longer than 30 minutes is considered to be beyond repair and a new
schedule is generated). This time window is then divided into five different time intervals:
[0, 6], [6, 12], [12, 18], [18, 24] and [24, 30] minutes and one delay is sampled for each inter-
val. In essence, this process discretizes the unknown delay length into 5 possible delays
distributed within a 30 minutes time window.

Second, we solve each MDP-based patrolling game using the LP in Section 5.1. In so
doing, we obtain N Markov policies πk

i corresponding to each MDP k. Next, we cross-
validate each policy πk

i against each MDPk′ with k 6= k′, i.e., we calculate the expected
revenue that each policy πk

i generates when evaluated against MDP k′ . This expected
revenue is calculated by running 100000 Monte Carlo simulations. Each simulation consists
of sampling one policy for the defender and calculate the resulting expected utility against
all N MDPs. At the end of the simulations, we obtain a N × N matrix where the rows
represented the policies πk

i and the columns represent the N MDPs. Each cell (k, k′) of the
matrix contains the expected revenue obtained by evaluating policy πk

i against MDP k′ .
Then, the policy to deploy was selected using a maximin strategy. In more detail, we
chose the policy which was maximizing the expected utility in the worst case scenario, i.e.
considering the MDP yielding the lowest expected utility among all the different MDPs.

From a practical perspective, the policy obtained earlier might not yield a schedule
which will represent exactly all the delays that might happen during a patrol. However,
by modelling five different delays, the schedules are now able to cover a larger range of
delays. Hence, whenever an officer is interrupted and requests an update, the smartphone
application will simply search the schedule for the state that best matches the officer current
location and time and will present the new list of actions starting from there.

6.3.3 Results

During the 21 weekdays of our experiments, we were able to run GT schedules for 11 days
of testing while UR schedules were deployed for 10 days, resulting in 855 and 765 patrol

32

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total

GT 60 60 90 60 90 10 90 110 90 90 105 855

UR 60 60 60 60 60 75 100 100 100 90 765

Table 2: Patrol duration over each of the 21 days.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total

GT 0 1 3 1 1 0 2 2 4 2 1 18

UR 0 2 1 1 1 2 2 2 3 2 16

Table 3: Number of INVOLUNTARY (delays) deviations for each day of patrol

minutes, respectively. The schedules were compared using two different metrics. First, we
counted the number of passengers checked and the number of captures at the end of each
patrol. The captures were defined as the sum of the number of warnings, citations, and
arrests. Passengers without a valid ticket could be given a warning or cited for a violation
on the discretion of the officer. This metric was chosen because it would allow us to measure
the performance of each schedule in the real world. Second, we counted the number of times
that the update function was used voluntarily and involuntarily. While involuntary updates
helped determine the value of using MDPs as discussed below, voluntary updates measured
the human (officer) perception of quality of the schedules – the more such voluntary updates,
the more the officers were dissatisfied with their given action. Table 2 shows the duration
of each day of patrol for both GT and UR schedules8.

As shown in the table, the actual duration of a daily patrol was often different over the
21 days of the experiment, for both GT and UR schedules. For this reason, providing a
comparison normalized over the days of the experiment was impossible. However, most of
the days, we were able to collect data for multiples of 30 minutes (e.g., 60, 90 minutes).
Hence, to properly compare our results, we divided our data in 30 minutes segments. More
specifically, we considered all the train and station checks within a time window of 30
minutes and collected the data resulting from these actions9. Having defined the data
points, we can now proceed to analyze our results.

Validation of the MDP model: As discussed at the beginning of this section Both GT
and UR schedules were calculated by solving an MDP. For this reason both schedules could
be updated to request a new schedule. Tables 3 and 4 then show, for each day of patrol,
the number of VOLUNTARY and INVOLUNTARY deviations requested by the officers.
In total, GT schedules were updated 18 times, all of which were involuntary deviations,

8. As shown in Table 2, each day of patrol correspond to a 2-day test where GT schedules were tested on
the first day and UR schedules were tested on the second, both at identical times.

9. In so doing, the segments are also statistically independent. Within each segment the officers will check
different people who are unable to affect each other. Each segment corresponds to a sample of different
train riders taken at different times and locations. Not only do the officers never check the same rider
twice but most importantly, during 30 minutes, they will visit different locations by riding the trains
(roughly, one train every 6 minutes in the blue line) and inspecting the stations (on-station operations
last no longer than 20 minutes).

33

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 total

GT 0 0 0 0 0 0 0 0 0 0 0 0

UR 1 0 1 1 1 0 1 1 1 1 8

Table 4: Number of VOLUNTARY (updates) deviations for each day of patrol

(a) Captures (b) Warnings

(c) Violations (d) Passengers

Figure 13: Results of the Fare Evasion tests

i.e., delays. All these update requests confirm that the MDP model was able to provide
schedules that could be updated whenever necessary.

All INVOLUNTARY deviations were due to the officers writing citations or helping
people. The average delay length was of 12 minutes (the largest delay was of 20 minutes).
In each case, as discussed at the beginning of this section, a new schedule was provided
starting at the officers’ current location and closest time. Finally, Table 4 shows that
voluntary deviations were used only with UR schedules. This result strongly suggests that
the officers were mostly satisfied with GT schedules. In addition, it means that GT schedules
did not really compete against UR schedules only. Rather, the comparison was between UR
schedules which were augmented with real-time human intelligence for most of the time (8
out of 10 days). We discuss the results of such comparison next.

Game-Theory vs. Uniform Random: The results that we obtained are shown
in Figure 13 and in Table 5. Figure 13 shows eight boxplots depicting the data that
we collected during each patrol, using both GT and UR schedules. Respectively, the four
figures present data collected on captures (Figure 13(a)), warnings (Figure 13(b)), violations
(Figure 13(c)), and passengers checked (Figure 13(d)) per 30 minutes of patrolling10. For
each boxplot, the top and bottom of the box represent the 75th and 25th percentiles,

10. GT schedules also led to two arrests on day 6. This is why the patrol only lasted 10 minutes.

34

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

Days avg. C avg. W avg. V avg. P

GT 11 15.52 10.42 5.03 96.77

UR 10 9.55 6.48 3.07 60.85

Table 5: Average captures (C), warnings (W), violations (V) and passengers (P) based on
the results obtained in Figure 13

respectively, while the middle line indicates the median of the collected data. The ”+”
data points indicate statistical outliers, while the whiskers show the most extreme non-
outlier data points. Each of the four figures (captures, warnings, violations and passengers
checked) shows that the data collected using GT schedules had higher values than the
data collected using UR schedules. As shown in Table 5, on average, GT schedules led
to, respectively 15.52 captures, 10.42 warnings and 5.03 violations issued every 30 minutes
against, respectively against 9.55 captures, 6.48 warnings and 3.07 violations obtained using
UR schedules. To confirm the statistical significance of these results, we ran a number of
weighted unpaired student t-tests (p = 0.05) (Goldberg, Kercheval, & Lee, 2005; Bland &
Kerry, 1998) and verified, for each metric, that the difference in the results was statistically
significant. We used a weighted t-test because some data segments had a duration shorter
than 30 minutes and we wanted to use all the available data for our analysis. As shown
in Table 2, not all the patrol durations could be properly divided into a finite number of
30 minutes segments (e.g., UR: D6, D7, D8, D9 and GT: D6, D8, D11). Therefore, we
calculated a weighted average for each of the metric defined above, whereby each segment
was given a weight which was defined based on the segment’s duration (longer segments
corresponded to higher weights).

From a practical perspective, the magnitude of the difference between the two ap-
proaches is significant: cumulatively over a period of 21 days GT would capture a much
larger total number of fare evaders. This result can be emphasized even further if we cor-
relate it with the results shown in Tables 4 and 3. While running UR schedules the officers
were requesting INVOLUNTARY deviations essentially every day, whereas no such devia-
tions were requested while running GT schedules. In other words, they were using real-time
situation awareness to augment the quality of the schedules, thus making the UR schedule
more compelling.

The results in Table 5 also indicate that GT schedules led to 96.77 passengers checked
every 30 minutes against 60.85 passengers checked by using UR schedules. As discussed in
Section 5.1, GT schedules are generated by leveraging all the possible sequences of train
and station checks and by taking into account all the key dimensions discussed in Section
6.1, including the train schedules, the officers’ effectiveness and, most importantly the daily
ridership statistics. This means that stations or trains with a higher presence of riders will
be given a higher coverage probability since they are more likely to contain fare evaders.
Hence, these results confirm the accuracy of the model as both Figure 13(d) and Table 5
show that GT schedules led the officers to check more passengers than UR schedules.

This raises the question of whether a static type of schedule, which only deploys the
officers at the most crowded locations, would lead to similar or even better results than

35

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

those obtained with GT. Given the limited amount of time that we had to conduct our
experiments, we were unable to compare GT schedules against a static deployment – where
the key weakness is predictability in the longer term. Indeed, effective randomization was
one of the main reasons for LASD to collaborate on these experiments – security agencies
know that static schedules become predictable in the long term11. After a certain amount
of time, the passengers would know where the officers are located and could exploit this
information to avoid paying the fare.

7. Summary and Future Work

This paper addressed dynamic execution uncertainty in security resources allocation. More
specifically, this paper presented four main contributions. First, we proposed a general
Bayesian Stackelberg game model for security patrolling whereby execution uncertainty is
handled via a Markov decision process (MDP). Second, we studied the problem of computing
a Stackelberg equilibrium (SSE) for this game and showed that by exploiting some structure
in the game’s utility functions, we could represent the defender’s strategy space in a compact
form which could be efficiently solved using canonical algorithms for solving Bayesian SSGs.
In addition, we showed that it is always possible to generate a mixed strategy with a
polynomially-sized support. Third, we ran a number of simulations whereby we tested our
framework within various different settings. The key result is that by modeling execution
uncertainty as an MDP, we were able to generate policies that overcame the failures of
existing SSG algorithms which do not take such uncertainty into account. Finally, for
our fourth contribution, we ran a real-world experiment whereby we compared schedules
generated using our approach against competing schedules comprised of a random scheduler
augmented with officers providing real-time knowledge of the current situation. Our results
supported our MDP-based model because we were actually able to show the use of the
contingency plans provided by the MDP in the real-world. In addition, our results showed
that game-theoretic schedules outperformed the competing schedules, despite the fact that
the latter were improved with real-time knowledge. In so doing, these results constitute
one of the first examples of the potential of employing algorithmic game theory to solve
real-world security allocation problems.

In terms of future work, there exist a number of challenges left to address. One inter-
esting technical challenge is that of addressing adjustable autonomy (Huber, 1999; Scerri,
Pynadath, & Tambe, 2002) or mixed initiative planning (Ferguson, Allen, & Miller, 1996)
in the context of game theoretic scheduling. Our experiments showed that the officers might
deviate from a schedule if they perceive that it might lead to a poor performance in terms of
fare evaders captured. Hence, it would be interesting to augment our schedules to take this
possibility into account. More specifically, we could extend the game theoretic model de-
scribed in Section 3 to account for the possibility that the officers would eventually deviate
from the schedules and execute some action based on real-time situational awareness.

One interesting empirical challenge would be to run a long-term controlled experiment
(e.g., one year) complementary to the one we present in this paper. The idea would be to
measure how the riders will react to game-theoretic scheduling. As discussed in Section 6.3,
given the practical difficulties related to running real-world security experiments, security

11. Tambe (2011) discusses the benefits of randomization in detail.

36

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

agencies such as the LASD typically prefer to avoid running long term experiments because
they would interfere with the every-day security of the transit system. Nonetheless, if this
could be done, such an experiment would provide some very valuable insight on the effects
of SSGs in the real-world.

Acknowledgements

This article is the product of the joint work of Francesco M. Delle Fave and Albert. X.
Jiang. Both of them are first authors of this work.

In terms of contributions, this article extends the paper by Jiang, Yin, Zhang, Tambe,
and Kraus (2013). In this work, we extend this initial version with the following contribu-
tions: (i) we present a new theoretical result, whereby we show how we can always calculate
an optimal mixed strategy for the defender with a polynomially-sized support; (ii) we ex-
tend the simulations presented by Jiang et al. (2013) by evaluating our approach against
a uniform random scheduler; (iii) we present results of a large scale real-world experiment
whereby we validate the MDP-based approach defined by Jiang et al. (2013) in the field; (iv)
in the same experiment, we compare the actual outcome of executing schedules generated
by the MDP-based approach against ones generated using a competing uniform random
scheduler — presenting some of the first results of algorithmic game theory in the field; (v)
to run these real-world experiments, we describe the development of a smartphone applica-
tion to load and visualize game-theoretic schedules and a sampling technique to instantiate
key parameters of the MDP; (vi) we discuss significant new related work and future work.

We thank the Los Angeles Sheriff’s Department for their exceptional collaboration. This
research is supported by TSA grant HSHQDC-10-A-BOA19, MURI grant W911NF-11-1-
0332 and MOST 3-6797.

Appendix A

This appendix complements the simulations results discussed in Section 6.2, by presenting
the results obtained on the Blue, the Green and the Gold line. Figure 14 compares, for the
former three lines, the defender’s revenue per rider obtained by the LP (Equation (8)), i.e.,
the upper bound, and the true value obtained by running 100000 Monte Carlo simulations
over the Markov strategy. The experiment was run assuming the same setting as discussed
at the beginning of Section 6.2: 3 hours of patrolling and 6 resources.

Figure 15 shows the simulation results complementing the ones presented in Section 6.2
for Hypothesis 1. The setting is the same as described in Section 6.2: 6 resources patrolling
the Blue, the Green and the Gold lines for 3 hours with η varying from 0% to 25% and the
delay time from 5 to 25 minutes.

Figure 16 shows the results complementing the ones presented in Section 6.2 for validat-
ing hypothesis 2. In this simulation, we considered 6 resources patrolling for 3 hours over
each of the four lines and varied uncertainty from 0% to 25%.

Figure 17 shows the results complementing the ones presented in Section 6.2 for vali-
dating hypothesis 4. In this simulation, we considered 3, 6 and 9 resources representing 3
levels of coverage, low, medium and high respectively. We then evaluated the revenue per
rider varying the delay probability from 0% to 25%.

37

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

(a) Blue line

(b) Green line

(c) Gold line

Figure 14: the Markov Strategy (Equation (17)) vs. the true LP (Equation (8)) for the
Blue, Green and Gold lines

Figure 18 shows the results complementing the ones presented in Section 6.2 for validat-
ing hypothesis 5. In this simulation, we considered different delay probabilities (0%, 10%
and 20%) and evaluated the revenue per rider varying the number of patrol units from 2 to
6.

38

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

(a) Blue line

(b) Green line

(c) Gold line

Figure 15: Defender’s revenue per rider for the Blue, Green and Gold line, for varying
uncertainty and delay time.

39

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

(a) Blue line

(b) Green line

(c) Gold line

Figure 16: Fare evasion rate over the Blue, Green and Gold lines for varying delay proba-
bility

40

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

(a) Blue line

(b) Green line

(c) Gold line

Figure 17: Revenue per rider over the Blue, Green and Gold lines for different allocation of
resources

41

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

(a) Blue line

(b) Green line

(c) Gold line

Figure 18: Revenue per rider over the Blue, Green and Gold lines for three levels of delay
probability

42

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

References

Agmon, N., Kaminka, G. A., & Kraus, S. (2011). Multi-robot adversarial patrolling: facing
a full-knowledge opponent. Journal of Artificial Intelligence Research (JAIR), 42 (1),
887–916.

Agmon, N., Kraus, S., & Kaminka, G. A. (2008a). Multi-robot perimeter patrol in ad-
versarial settings. In Proceedings of the International Conference on Robotics and
Automation (ICRA), pp. 2339–2345. IEEE.

Agmon, N., Sadov, V., Kaminka, G., & Kraus, S. (2008b). The impact of adversarial
knowledge on adversarial planning in perimeter patrol. In Proceedings of the Sev-
enth International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 55–62.

An, B., Kempe, D., Kiekintveld, C., Shieh, E., Singh, S., & Tambe, M. (2012). Security
games with limited surveillance. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 1241–1247.

An, B., Tambe, M., Ordonez, F., Shieh, E., & Kiekintveld, C. (2011). Refinement of strong
Stackelberg equilibria in security games. In Proceedings of the Twenty-Fifth Confer-
ence for the Advancement of Artificial Intelligence (AAAI), pp. 587–593.

Aoyagi, M. (1996). Reputation and dynamic Stackelberg leadership in infinitely repeated
games. Journal of Economic Theory, 71 (2), 378 – 393.

Archibald, C., & Shoham, Y. (2011). Hustling in repeated zero-sum games with imperfect
execution. In Proceedings of the Twenty-second International Joint Conference on
Artificial Intelligence (IJCAI), pp. 31–36.

Basilico, N., Gatti, N., & Amigoni, F. (2009a). Leader-follower strategies for robotic pa-
trolling in environments with arbitrary topologies. In Proceedings of the Eight Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
57–64.

Basilico, N., Gatti, N., Rossi, T., Ceppi, S., & Amigoni, F. (2009b). Extending algorithms
for mobile robot patrolling in the presence of adversaries to more realistic settings. In
Proceeding of the Conference of Intelligence Agent Technology (IAT), pp. 557–564.

Basilico, N., Gatti, N., & Villa, F. (2010). Asynchronous multi-robot patrolling against in-
trusions in arbitrary topologies. In Proceeding of the Conference for the Advancement
of Artificial Intelligence (AAAI), pp. 345–350.

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2004). Solving Transition Inde-
pendent Decentralized Markov Decision Processes. JAIR.

Bland, M. J., & Kerry, S. M. (1998). Weighted comparison of means. BMJ: British Medical
Journal, 316, 125–129.

Booz Allen Hamilton (2007). Faregating analysis. Report commissioned by the LA Metro,
http://boardarchives.metro.net/Items/2007/11_November/20071115EMACItem27.pdf.

Bowling, M., & Veloso, M. (2004). Existence of multiagent equilibria with limited agents.
Journal of Artificial Intelligence Research (JAIR), 22, 353–384.

43

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Brown, A., Camerer, C. F., & Lovallo, D. (2012). To review or not to review? limited strate-
gic thinking at the movie box office. American Economic Journal: Microeconomics,
4 (2), 1–26.

Clarke, R. V. (1993). Fare evadion and automatic ticket collection on the london under-
ground. Crime Prevention Studies, 1, 135–146.

Clarke, R. V., Contre, S., & Petrossian, G. (2010). Deterrence and Fare Evasion: Results
of a Natural Experiment. Security Journal.

Conitzer, V. (2012). Computing game-theoretic solutions and applications to security. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 2106–2112.

Conitzer, V., & Sandholm, T. (2006). Computing the optimal strategy to commit to. In
EC: Proceedings of the ACM Conference on Electronic Commerce.

Dickerson, J. P., Simari, G. I., Subrahmanian, V. S., & Kraus, S. (2010). A graph-theoretic
approach to protect static and moving targets from adversaries. In Proceedings of the
Ninth International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 299–306.

Fang, F., Jiang, A., & Tambe, M. (2013). Protecting moving targets with multiple mobile
resources. Journal of Artificial Intelligence Research (JAIR), 48, 583–634.

Ferguson, G., Allen, J., & Miller, B. (1996). Trains-95: Towards a mixed-initiative planning
assistant. In Proceedings of the 3rd Conference on Artificial Intelligence Planning
Systems (AIPS), pp. 70–77.

Filar, J., & Vrieze, K. (1996). Competitive Markov Decision Processes. Springer.

Gatti, N. (2008). Game theoretical insights in strategic patrolling: Model and algorithm
in normal form. In Proceedings of the European Conference on Artificial Intelligence
(ECAI), pp. 403–407.

Goldberg, L. R., Kercheval, A. N., & Lee, K. (2005). t-statistics for weighted means in
credit risk modeling. Journal of Risk Finance, 6 (4), 349–365.

Grotschel, M., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1 (2), 169–197.

Gruber, P. M. (2007). Convex and Discrete Geometry. Springer.

Huber, M. J. (1999). Considerations for flexible autonomy within bdi intelligent agent ar-
chitectures. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 431–438.

Jain, M., Kardes, E., Kiekintveld, C., Tambe, M., & Ordonez, F. (2010). Security games
with arbitrary schedules: A branch and price approach. In AAAI.

Jaulmes, R., Pineau, J., & Precup, D. (2007). A formal framework for robot learning and
control under model uncertainty. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pp. 2104–2110. IEEE.

Jiang, A. X., Yin, Z., Zhang, C., Tambe, M., & Kraus, S. (2013). Game-theoretic random-
ization for security patrolling with dynamic execution uncertainty. In Proceedings of
the Twelfth International Conference on Autonomous Agents and Multiagent Systems,
pp. 207–214.

44

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1137–1143.

Korzhyk, D., Conitzer, V., & Parr, R. (2011a). Security games with multiple attacker
resources. In Proceedings of the Twenty-second International Joint Conference on
Artificial Intelligence (IJCAI), pp. 273–279.

Korzhyk, D., Conitzer, V., & Parr, R. (2011b). Solving stackelberg games with uncertain
observability. In Proceedings of the Tenth International Conference on Agents and
Multi-agent Systems (AAMAS), pp. 1013–1020.

Letchford, J., & Conitzer, V. (2013). Solving security games on graphs via marginal prob-
abilities. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 591–597.

Letchford, J., & Vorobeychik (2013). Optimal interdiction of attack plans. In Proceedings of
the Twelfth International Conference of Autonomous Agents and Multi-agent Systems
(AAMAS)., pp. 199–206.

Letchford, J., & Conitzer, V. (2010). Computing optimal strategies to commit to in
extensive-form games. In Proceedings of the ACM Conference on Electronic Com-
merce (EC), pp. 83–92.

Letchford, J., MacDermed, L., Conitzer, V., Parr, R., & Isbell, C. L. (2012). Computing
optimal strategies to commit to in stochastic games. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Marecki, J., & Tambe, M. (2008). Towards faster planning with continuous resources in
stochastic domains. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), No. 1049–1055.

Mausam, Benazera, E., Brafman, R. I., Meuleau, N., & Hansen, E. A. (2005). Planning
with continuous resources in stochastic domains. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, pp. 1244–1250.

Nguyen, T. H., Yang, R., Azaria, A., Kraus, S., & Tambe, M. (2013). Analyzing the
effectiveness of adversary modeling in security games. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pp. 718–724.

Ostling, R., Wang, J., Tao-yi, J., Chou, E. Y., & Camerer, C. F. (2011). Testing game theory
in the field: Swedish lupi lottery games. American Economic Journal: Microeconomics,
3 (3), 1–33.

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., & Kraus, S. (2008a).
Playing games with security: An efficient exact algorithm for Bayesian Stackelberg
games. In AAMAS.

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., & Kraus., S. (2008b).
Playing games for security: An efficient exact algorithm for solving bayesian stackel-
berg games. In Proceedings of the Seventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 539–547.

45

Delle Fave, Jiang, Yin, Zhang, Kraus, & Tambe

Pita, J., Jain, M., Western, C., Portway, C., Tambe, M., Ordonez, F., Kraus, S., & Paruchuri,
P. (2008). Deployed ARMOR protection: The application of a game theroetic model
for security at the los angeles international airport. In Proceedings of the Seventh
Internation Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., & Steigerwald, E. (2011). GUARDS -
game theoretic security allocation on a national scale. In Proceedings of the Tenth
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 37–44.

Scerri, P., Pynadath, D. V., & Tambe, M. (2002). Towards adjustable autonomy for the
real-world. Journal of Artificial Intelligence Research (JAIR), 17, 171–228.

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., & Meyer, G.
(2012). Protect: A deployed game theoretic system to protect the ports of the united
states. In AAMAS.

Sless, E., Agmon, N., & Kraus, S. (2014). The impact of adversarial knowledge on adver-
sarial planning in perimeter patrol. In Proceedings of the Thirteenth International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), p. In press.

Tambe, M. (2011). Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press.

Tsai, J., Rathi, S., Kiekintveld, C., Ordóñez, F., & Tambe, M. (2009). IRIS - a tool for
strategic security allocation in transportation networks. In Proceedings of the Eight
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 831–839.

Vanek, O., Jakob, M., Lisy, V., Bosansky, B., & Pechoucek, M. (2011). Iterative game-
theoretic route selection for hostile area transit and patrolling. In Proceedings of
the Tenth International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pp. 1273–1274.

Varakantham, P., Lau, H. C., & Yuan, Z. (2013). Scalable randomized patrolling for securing
rapid transit networks. In Proceedings of the Conference for Innovative Applications
for Artificial Intelligence (IAAI), pp. 1563–1568.

Vorobeychik, Y., & Singh, S. (2012). Computing stackelberg equilibria in discounted
stochastic games. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 1478–1484.

Weidner, R. R. (1996). Target-hardening at a new york city subway station: Decreased fare
evasion– at what price?. Crime Prevention Studies, 6, 117–132.

Yang, R., Kiekintveld, C., Ordonez, F., Tambe, M., & John, R. (2011). Improving resource
allocation strategy against human adversaries in security games. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pp. 458–464.

Yin, Z., Jiang, A., Johnson, M., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm,
T., & Sullivan, J. (2012). Trusts: Scheduling randomized patrols for fare inspection
in transit systems. In Proceedings of the Conference on Innovative Applications for
Artificial Intelligence (IAAI), pp. 59–72.

46

Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

Yin, Z., Jain, M., Tambe, M., & Ordonez, F. (2011). Risk-averse strategies for security
games with execution and observational uncertainty. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pp. 758–763.

Yin, Z., & Tambe, M. (2012). A unified method for handling discrete and continuous un-
certainty in Bayesian stackelberg games. In Proceedings of the Eleventh International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 234–242.

47

