
Efficient Bidding Strategies for Simultaneous Cliff-Edge Environments

Ron Katz and Sarit Kraus
Department of Computer Science and The Gonda Brain Research Center

Bar-Ilan University, Ramat-Gan 52900, Israel, sarit@cs.biu.ac.il

Abstract

This paper proposes an efficient agent for competing
in simultaneous substitutional Cliff-Edge (SCE) environ-
ments, which include simultaneous auctions and multi-
player Ultimatum-Games. The agent competes in one-shot
interactions repeatedly, each time against different human
opponents, and its performance is evaluated based on all
the interactions in which it participates. It learns the gen-
eral pattern of the population’s behavior and does not ap-
ply any examples of previous interactions in the environ-
ment, neither of other competitors nor of its own. More-
over, the agent rapidly adjusts to environments comprising
a large number of optional decisions at each decision point.
We propose a generic approach which competes in different
substitutional environments under the same configuration,
with no knowledge about the specific rules of each environ-
ment. The underlying mechanism of the proposed agent is
the Simultaneous Deviated Virtual Reinforcement Learning
(SDVRL) algorithm, which is an extension of an algorithm
for non-simultaneous environments. In addition, we pro-
pose a heuristic for improving our agent’s complexity. Ex-
periments comparing the average payoff of the proposed al-
gorithm with other possible algorithms reveal a significant
superiority of the former. In addition, our agent performs
better than human competitors executing the same tasks.

1. Introduction

In many auctions, substitutability exists between two or
more items for sale [3, 8]. This situation is especially com-
mon in web-based auctions, where one can find many si-
multaneous auctions of similar popular items on different
sites [11]. In such situations, a bidder bids on multiple
items in order to obtain only one of them. Similarly, there
are many economic and political situations in which one has
to propose a resource allocation among multiple opponents,
and to reach an agreement for the allocation from at least
one of them [2, 7].

In this work we present an approach for repeatedly inter-
acting in simultaneous substitutional first-price sealed-bid
auctions and N-players Ultimatum-Game (UG). Both auc-
tions and UG environments belong to the Cliff-Edge (CE)
set of negotiation environments, which are characterized by
an underlying conflict for the competitor between the de-
sire to maximize profits and the risk of causing the entire

deal to fall through [5]. Consider, for example, an agent
that participates in substitutional auctions. On one hand, the
agent strives to decrease its offers in order to pay less for the
goods. On the other hand, if the offers are too low, the agent
may lose the auctions. Moreover, the agent strives to win in
no more than one auction, without ruining the probability of
winning at least in one. In this paper, we focus on one-shot
interactions, which are repeated with different opponents.
Such situations occur in periodically repeated auctions with
the same goods, which are very popular nowadays espe-
cially via the Internet [13, 3]. Similarly, sequential UG
with different opponents, as well as N-players UG versions
are under thorough investigation [1, 12, 2, 7].

The topic of simultaneous auctions for substitute goods
has been drawing a lot of attention both in economical re-
search [10] and in automated agents literature [9]. Eco-
nomical works usually assume full-rationality of the play-
ers. However, when interacting with humans, the theoretical
equilibrium strategy is not necessarily the optimal strategy
since human subjects, inherently computationally restricted
as well as rationally bounded, commonly do not behave
according to perfect equilibrium. Thus, such studies (e.g.
[10]) are not efficient for human-involved environments,
as in our case. Some researchers have developed agents
for competing in simultaneous continuous auctions, where
other bids are visible [9]. Similarly, many agents have been
developed for the well known Trading Agent Competition
(TAC - http://tac.eecs.umich.edu) which includes substitu-
tional auctions (e.g. [8]). In the TAC environment, how-
ever, the auctions are continuous and the bids of others are
visible. Moreover, the auctions are second-price - and there-
fore there is no risk in overbidding, as in our environment.
Furthermore, none of the above consider repeated interac-
tions while changing human opponents.

Zhu and Wurman [13] proposed an agent for interacting
with other agents or human bidders in simultaneous first-
price sealed-bid auctions. Their agent, however, interacts
repeatedly with the same opponent. In such problems, the
general approach is to specifically model each of the op-
ponents’ behavior, and to adjust a strategy which optimally
reacts to the opponent’s predicted reaction. In our study,
on the other hand, specific opponent modeling is not rel-
evant, since the agent interacts with each opponent only
once. Therefore, we propose using an agent which models
the general pattern of the whole population of opponents.
Jennings and his collogues, who presented several methods
for bidding in multiple auctions of heterogeneous types (e.g.
[11]) also did not consider the adaptation to the population



of bidders.

One possible approach for learning the behavior of the
population of bidders in a certain environment is to observe
previous samples of interactions within this environment
[3]. This approach, however, requires a large number of
historical examples of human behavior. Moreover, the op-
tion of using a historical database is not always possible.
In a sealed-bid auction, for example, a bidder usually can-
not obtain information about the bids which were offered in
previous similar auctions. Thus, we propose a mechanism
to develop an agent which does not depend on examples of
previous interactions. Our agent performson-line learning
while interacting with others, and its performance is evalu-
ated from the first interaction.

In addition, this study focuses on settings where in each
interaction the agent is required to choose an action from
a large set of possible options, which reflects commercial
environments more realistically. The existence of a large
set of options demands a construction of a fast and efficient
screening procedure. Furthermore, the importance of quick-
ness is emphasized in this study, since we examine short-
term durations of only several dozens of interactions.

A recent work broadly discusses the situation ofnon-
simultaneousrepeated CE interactions with human oppo-
nents without using historical information [5]. In that
study, the performance of several algorithms were evalu-
ated using empirical data in various CE environments, such
as single auctions and 2-players UG. The Deviated Virtual
Reinforcement Learning (DVRL) algorithm was found to
yield the highest performance in all the examined environ-
ments. In this paper we propose an approach for extend-
ing algorithms which are designated for non-simultaneous
CE environments to function in simultaneous substitutional
environments.1 We show that the extended version of the
DVRL algorithm, the Simultaneous DVRL (SDVRL), per-
forms significantly better than other algorithms when com-
peting against human opponents in 4 different environ-
ments. Likewise, it performs better than human competitors
who face the same task. In addition, we propose an opti-
mization of the SDVRL, namely the Fixed Success Prob-
abilities algorithm (FSP), which uses a simple heuristic to
find the optimal actions. It is noteworthy that the under-
lying mechanisms of the algorithms discussed here are all
generic and suitable for various substitutional Cliff-Edge
(SCE) environments. Moreover, in all the simulations pre-
sented herein, each algorithm was run with a fixed configu-
ration setting of the basic parameters that was not changed
from environment to environment.

In the next section, we formally describe the SCE set of
environments. In section 3 we present the proposed SDVRL
algorithm, and the FSP heuristic. In section 4 we survey
other relevant algorithms, and compare their performance
with the SDVRL’s. In addition, we compare the latter with
human performance executing the same tasks. We conclude
and present directions for future work in section 5.

1Actually, our approach also suits simultaneous auctions for comple-
mentary goods. However, it is not discussed here due to space limitations.

2 The SCE Environments

The general pattern of one-shot SCE interactions con-
siders an agent required to chooseK offers i1, , , iK which
are all integers,0 ≤ ij ≤ N , 1 ≤ j ≤ K, whereN is
the maximal optional choice. Then, a positive rewardr cor-
responding to the offersi1, , , iK is determined, depending
on whether the offers passed the acceptance thresholds set
by the current opponents (in auctions we refer to the accep-
tance threshold of the auctioneer, which is the second high-
est bid proposed). Since the SCE set includes various envi-
ronments, we detail the models of four environments upon
which this paper focuses: substitutional auctions (SA), re-
tractable substitutional auctions (RSA), one-accept multi-
player UG (MUG ) and retractable MUG (RMUG ). The two
latter environments are multi-player UG versions which re-
flect situations similar to the former two, respectively. Other
SCE environments can be similarly modeled as well:
• In theSA model,K similar goods, each with a common

value ofN are simultaneously auctioned. The agent can of-
fer K bids,i1, , , iK which are all integers,0 ≤ ij ≤ N, 1 ≤
j ≤ K. Given the bids, a rewardr is determined according
to the highest bidsb1, , , bK of all the other bidders (one or
more) in each of the simultaneous auctions. If1 ≤ j ≤ K
exists s.t.bj ≤ ij , thenr = N −∑

j|bj≤ij
ij (the value of

attaining the item, subtracted by the winning bids), other-
wise r=0 . Similarly, in theMUG , the agent should divide
anN amount among itself and otherK players. It is required
to choose integersi1, , , iK ,

∑K
j=1 ij ≤ N , which are the

amounts proposed to the other players. The rewardr is de-
termined by the opponents’ acceptance thresholdst1, , , tK .
If 1 ≤ j ≤ K exists s.t.tj ≤ ij , thenr = N −∑

j|tj≤ij
ij ,

otherwiser=0 . Thus, the fewer the number of accepted of-
fers (but at least 1), and the lower the offers - the higher the
reward.
• In theRSA model,K similar goods, each with a com-

mon value ofN are simultaneously auctioned. In another
auction protocol which can be abstracted by this model, an
item with a common value ofN is auctioned in one auction,
where each bidder can offerK bids. Thus, the agent can of-
fer K bids,i1, , , iK which are all integers,0 ≤ ij ≤ N, 1 ≤
j ≤ K and can retract any of its offers later. Given the
bids, a rewardr is determined according to the highest bids
b1, , , bK from all the other bids (one or more) in each of the
simultaneous auctions. If1 ≤ j ≤ K exists s.t.bj ≤ ij ,
thenr = N −minj|bj≤ij

ij , which is the value of attaining
the item, subtracted by the minimal bid that won the auction
(we assume that the agent retracts all the other successful
bids, since they incur higher costs), otherwiser=0 . Simi-
larly, in theRMUG , the agent should divide anN amount
among itself and otherK players. It is required to choose
integersi1, , , iK (0 ≤ ij ≤ N, 1 ≤ j ≤ K), which are
the amounts proposed to the other players, and later it can
retract any offer, even if it was accepted. The rewardr is de-
termined by the opponents’ acceptance thresholdst1, , , tK .
If 1 ≤ j ≤ K exists s.t.tj ≤ ij , r = N − minj|tj≤ij

ij ,
otherwiser=0 .

In this paper, we consider environments with a large set
of decision options, and setN to be 100.

Obviously, the basic CE interactions contain a trade-off



between the expected reward and the probability of success:
choosing an offer which increases the expected reward, de-
creases the probability of success, and vice versa. In the si-
multaneous environment, in addition, the agent should con-
sider increasing the total reward obtained in all the simulta-
neous interactions. To demonstrate the challenge of a com-
petitor in SCE environments, letP(i) be the probability that
amount offeredi succeeds (if the offer is higher than the
other bids in the case of an auction, or is accepted by the re-
sponder in the UG) . Considering the basic case ofK=2, an
efficient agent must find the optimal offersi1, i2 for the op-
ponent population, that maximize the accumulative utility
function:
• In SA and in the MUG:

(1.1) U(i1, i2) = P (i1)P (i2)(N − i1 − i2) +

P (i1)(1− P (i2))(N − i1) + (1− P (i1))P (i2)(N − i2)
• In RSA and in the RMUG:

(1.2) U(i1, i2) = P (i1)P (i2)(N −min(i1, i2)) +

P (i1)(1− P (i2))(N − i1) + (1− P (i1))P (i2)(N − i2)

3 The Proposed Approach

In this section we present a detailed description of the
proposed algorithms for competing in SCE environments.
As mentioned above, our approach extends basic algorithms
which are designated for non-simultaneous environments.
We assume that the basic non-simultaneous algorithms se-
lect their actions according to an evaluation of the success
probability,P(i), of each offer,i, provided it is chosen. The
evaluation of the success probability is determined accord-
ing to the results of previous interactions.

Algorithm 1 THE GENERAL APPROACH

1: For each interaction,Do
2: Select offersi1, i2 according to a SELECT procedure
3: Observe results of the 2 offers, calculate reward
4: Update vector P according to the UPDATE procedure
5: For l1=0 to N, Forl2=l1 to N, Do
6: UpdateU(l1, l2) according to the appropriate utility

function (1.1or 1.2) and the currentP (l1), P (l2) values.

Therefore, each basic non-simultaneous algorithm con-
sists of its own UPDATE and SELECT procedures. The
UPDATE procedure determines how to update the success
probabilities vector,P, after observing the successfulness
of the latest action. The SELECT procedure determines
how to select the next action (apparently according to both
the current expected utility evaluation, and considerations
of optimality exploration). InAlgorithm 1 we outline our
general approach. For the simplicity of the code we present
the solution forK=2, which can be easily adjusted to higher
K values. The main idea is to maintain a table,U, contain-
ing the expected utility of each combination of offersi1, i2.

3.1 The SDVRL algorithm

In this paper we claim that the best algorithm for hu-
man environments, as we will demonstrate, is the extension
of the Deviated Virtual Reinforcement Learning algorithm

(DVRL) [5], as presented inAlgorithm 2 . The main chal-
lenge of an on-line learning algorithm is to efficiently bal-
ance between the need forexplorationof new options, and
the will to exploitcurrent information in order to maximize
payoffs. The SDVRL, unlike most algorithms, distorts ob-
served information in a manner which induces exploration.
On the other hand, it selects its actions greedily and thus ef-
ficiently exploits its current information. According to SD-
VRL’s UPDATE procedure we increase the evaluation of
the success probabilities, P-values, of all the offers higher
than a successful offer, as well as several offers below this
offer, as though all these offers were also (virtually) suc-
cessfully offered (line 10). Similarly, after an offer fails,
we reduce the P-values of all the offers below the actual of-
fer and several offers above the actual offer, as described in
line 8. The success probability of each offer is calculated by
dividing the number of previous successes by the total num-
ber of previous interactions in which the offer was actually
or virtually proposed (lines 8,10).

Algorithm 2 THE SDVRL ALGORITHM

Notation: n(j) denotes the number of previous interactions in
which offer j was actually or virtually proposed.α, β denote the
deviation rate. Below we present the configuration used in our
environment.

1: N=100,α=10,β=15,τ=0 For j=0 to N, Do P(j)=1, n(j)=0
2: For each interaction,Do
3: If t=0 then selecti1, i2 uniformly, 0 ≤ i1 ≤ i2 ≤ N
4: Elseoffersi1, i2=arg maxl1,l2 U(l1, l2)
5: Observe results of the 2 offers, calculate reward
6: For each offeriv, 1 ≤ v ≤ 2, Do
7: If offer iv has failedthen For j=0 to (iv + α), Do

8: P(j) = P (j)n(j)
n(j)+1

, n(j)=n(j)+1

9: If offer iv has succeededthen For j=(iv − β) to N, Do

10: P(j) = P (j)n(j)+1
n(j)+1

, n(j)=n(j)+1
11: τ = τ+2
12: α = 10

bτ/10c+1
β = 15

bτ/10c+1

13: For l1=0 to N, For l2 = l1 to N , Do
14: UpdateU(l1, l2) according to the appropriate utility

function(1.1) or (1.2) and the currentP (l1), P (l2) values

The SELECT procedure simply selects the offers with
the current maximal U-value (line 4). The deviation prin-
ciple underlying the UPDATE procedure enables a greedy
SELECT procedure, since it induces fast exploration of the
optimal offer. For simplicity’s sake, consider the basic non-
simultaneous case. If the agent, for example, offered 70%
of the amountN to its UG opponent in the first interaction,
and its offer was accepted, it would offer 55% (forβ=15)
in the next interaction. The agent continues to decrease its
offer until it is rejected. This fast exploration process can be
very efficient in SCE environments, as well. However, the
”inaccurate” updating of theP values according to the de-
viation principle (lines 7-10) may cause misevaluations of
theU values (line 14), which crucially rely onP and(1-P)
values. Therefore, we examine the efficiency of the devia-
tion principle in simultaneous environments by comparing



it with more guarded algorithms, as described in the next
section.

In line 12 we gradually decreased the values ofα and
β since the model comes closer to the real distribution of
the opponents population during the learning process. It is
important to note that in this study SDVRL was run in all
the environments with the sameα andβ configurations as
detailed in lines 1 and 12. We assume that these values can
be proportionally adjusted to other SCE environments with
differentN values.

The SDVRL method is simple and guarantees finding
the optimal offersi1, i2 (i1 ≤ i2) according to the current
success probabilities evaluation, in each interaction. This
is because it actually checks every possible combination
of offers. However, this methodology is expensive: since
in each interaction we compareO(NK) possible combi-
nations. The total complexity equalsO(I · NK), whereI
denotes the number of interactions.2 Thus, the naive algo-
rithm is applicable for only a few simultaneous interactions,
which is usually sufficient in common real-world applica-
tions. For highK values we may use heuristics or search
algorithms, as described in the following section.

3.2 The FSP heuristic

In this section we propose a heuristic, termedFixed Suc-
cess Probabilities(FSP), which improves the complexity of
SDVRL to O(Nk). This heuristic is based on the observa-
tion that when an SDVRL agent interacts repeatedly in SCE
environments, thesuccess probabilities(P-values) of the
chosen offers are almost the same during all the interactions.
Note that the chosen offers themselves might be noticeably
modified from one interaction to another, due to the updat-
ing of the P-vector. However, the corresponding P-values
of the chosen offers are quite stable. A good demonstra-
tion of this phenomena can be viewed inFigure 1, where
the amounts of the offers during 34 interactions in the SA
environment (left figure) and their corresponding success
probabilities, the P-values (on the right) are plotted. As can
be clearly seen in the right figure, the P-values are almost
constant (at around 0.005 and 0.98) from the very prelimi-
nary stages (unlike the offers on the left). Thus, rather than
examine all the possible combinations of offers and calcu-
late their utility at each interaction, we can simply choose
2 offers whose current P-values are 0.005 and 0.98. There-
fore, the FSP algorithm (Algorithm 3 ) obeys the SDVRL
method only in the first interactions (in all the SCE envi-
ronments examined in our simulations we waited 5 interac-
tions - lines 1-4, 18-19). After that (line 20) we calculate the
P-valuesc1, c2 of the 2 offers chosen in the5th interaction
(when τ

2 = 5, sinceτ is incremented by 2 at each interac-
tion - Algorithm 2, line 11). From then on, the FSP chooses
2 offers with the same P-values, according to the current P-
vector at each interaction (lines 6-9), with a complexity of
O(N).

2It can be easily proved that in the retractable environments, the upper
offer iK should always maximizeP (iK)(N−iK) independently of other
offers (forK = 2, for example, ifi1 ≤ i2, U(i1, i2) = P (i1)(N−i1)+
(1−P (i1))P (i2)(N−i2) ).Thus, for these environments the complexity
actually equalsO(I ·Nk−1).

���

�

��

��

��

��

���

� � 	 
 � �� �� �	 �
 �� �� �� �	 �
 �� �� ��

��������	��
�

�
��
�
�
�

�


�
�
��
��
��
��
��
�

����

�

���

���

���

���

�

� 	 
 � � �� �	 �
 �� �� �� �	 �
 �� �� 	� 		

��������	��
�

�
�
	
	
�




��
�


�
�
�
��
��
�
��
��

��
��
�

Figure 1. Amounts of offers (on the left) and their correspond-

ing success probabilities (on the right) during 34 interactions in the

SA environment with K=2 (average of 100 runnings)

Algorithm 3 THE FSP SDVRL ALGORITHM

1-3: As inAlgorithm 2
4: If τ

2
≤5 then offersi1, i2=arg maxl1,l2 U(l1, l2)

5: Else j=0
6: While P(j)< c1 Do j=j+1
7: offer i1 = j
8: While P(j)< c2 Do j=j+1
9: offer i2 = j
10-17: As inAlgorithm 2 lines 5-12
18: If τ

2
<5 then For l1=0 to N, For l2=l1 to N , Do

19: UpdateU(l1, l2) according to the appropriate utility
· function (1.1) or (1.2) and the currentP (l1), P (l2) values
20: If τ

2
=5 then c1=P (i1),c2=P (i2)

It is worthy to note that the high complexity in the SD-
VRL stems from the need to search the K-dimensional com-
bination of offers that maximizes the utility function during
each interaction. This problem can also be solved at a lower
cost using general search algorithms, such as the Nelder-
Mead Simplex search, Brent’s method and the Steepest De-
scent as well as discrete methods such as the Genetic Search
and Hill-Climbing. However, in this limited framework we
mainly discuss methods which concern the uniqueness of
SCE environments. Moreover, the FSP heuristic can be in-
tegrated with any of these general optimization methods,
which will save the need to perform searches in progressive
interactions.

4 Experimental design and analysis

In this section we examine the performance of the pro-
posed SDVRL algorithm competing in various SCE envi-
ronments with human opponents, and compare it to the per-
formance of other algorithms. A broad survey of the algo-
rithms examined is presented, followed by a description of
the experiment design and the results. After analyzing the
results, we compare the performance of SDVRL to human
negotiators’ performance.

4.1 Comparative Algorithms description

In this section we survey several algorithms which were
successfully used in repeated CE environments, and extend



them to the SCE environments. As detailed in the introduc-
tion, we could not find any algorithm which directly deals
with the SCE environments considered here.

4.1.1 Gittins’ index strategy

Some researchers have observed CE environments as a spe-
cial case of the multi-armed bandit problem [1]. In the
latter, every period a decision maker has to decide on which
one ofn slot machines he wants to play, given each machine
has different gain probabilities (unknown a priori). These
researchers used Gittins’ indices strategy [4], which finds
the optimal choice of action at each step in multi-armed
bandit problems, for playing UG, considering each optional
offer as an arm: For each action, consider the total num-
ber of times it has been chosen,n, and the number of times
it has been successful,s. For certain discount factors of
the expected reward, there are published look-up tables of
indices,G(s,n-s)for each pair ofs and n-s.3 Each index
represents a comparative measure of the combined value of
the expected payoff of actioni (given its history of payoffs)
and the value of the information that we would attain by
choosing it. However, the CE problems are different from
the classical multi-armed bandit problem since the arms are
independent, while in CE environments the success proba-
bility of an offer is depended on the size of the offer (i.e. the
higher the offer the higher the probability). This difference
may become more critical when there is a large number of
options rather than the 10 optional arms problems consid-
ered in [1]. Thus, Katz and Kraus (2006) extended the
basic Gittins’ method using the deviation principle. Here,
the difference from the SDVRL is in the updating of the P-
values, which are calculated according to Gittins’ indices.
Thus, the P-values update in lines 8 and 10 ofAlgorithm 2
should be changed to:

(2) P(j) = G(s(j),n(j)-s(j))

In addition, after successful offers, in line 10, we should
increment s(j)=s(j)+1. We denote Gittins’ version of SD-
VRL as Simultaneous Deviated Virtual Gittins -SDVG.

4.1.2 Segment-based approach

The segment-based approach [5] was found to be very ef-
ficient in non-simultaneous CE environments, though not
as much as the DVRL. However, since it is more guarded
and conservative than the deviation approach we decided
to examine its performance in the SCE environments. In
Algorithm 4 we present the Simultaneous Segment-based
extension of Virtual Reinforcement Learning (SSVRL).

In order to perform exploration, we use theε-greedy ver-
sion of Reinforcement Learning (RL) [12]. According to
this version, at each interaction with a probability of(1− ε)
we choose offers which supposedly yield the highest profits,
according to the estimation of the current U-table. In order
to explore new options, with a probability ofε, we select our
offers uniformly. In addition, according to thevirtual RL
principle (without deviation), we increase the success prob-
ability evaluation, P-values, of all the offers higher than the

3In our finite simulations we used the Bernoulli reward process table
with a discount factor of 0.99 (see [4] p. 237), as was used in [1].

Algorithm 4 THE SSVRL ALGORITHM

Notation: H denotes the number of segmentation hierarchies
configured by the user according to the size of the options set (the
order of magnitude of the expected number of interactions,I, must
be considered when setting this parameter),Sh is the size of each
segment in thehth segmentation hierarchy, andTh is the serial
number of the last interaction of thehth segmentation hierarchy.
Ph andUh are the P-vector and the Utility table corresponding
to the hth segmentation hierarchy, respectively.ε denotes the
probability for random selection.

1: For h=1 to H,Do For j=0 tod N
Sh
e, Do Ph(j)=1,

2: For each interaction,Do
3: If 0 < τ ≤ T1 : c = 1, m1, m2 = arg maxk1,k2 U1(k1, k2)

With a probability of (1-ε) select segmentsj1, j2 = m1, m2

With a probability ofε, select segmentsj1, j2 (from
the1st hierarchy) uniformly

Select offersi1, i2 uniformly from segmentsj1, j2
...

4: If TH−1 < τ ≤ TH : c=H,
m1, m2 = arg maxk1,k2 UH(k1, k2)
With a probability of (1-ε) select segmentsj1, j2 = m1, m2

With a probability ofε, select segmentsj1, j2 (from
theHth hierarchy) uniformly

Select offersi1, i2 uniformly from segmentsj1, j2
5: For each offeriv, 1 ≤ v ≤ 2 Do
6: If offer iv has failedthen
7: For h=c to H, For w = 0 to b j

Sh
c Do

Ph(w) = Ph(w)n(w)
n(w)+1

, n(w) = n(w)+1
8: If offer iv has succeededthen
9: For h=c to H, For w = b j

Sh
c to d N

Sh
e Do

Ph(w) = Ph(w)n(w)+1
n(w)+1

, n(w) = n(w)+1
10: τ = τ+1
11: For h=c to H, For l1=0 to N, For l2=l1 to N , Do
12: UpdateUh(l1, l2) according to the appropriate utility func-

tion (1.1) or (1.2) and the current values ofPh(l1), Ph(l2)

actual offer, provided it was successful (line 9). Similarly,
we should reduce the P-values of all the offers lower than
the actual offer (line 7), provided it was unsuccessful (while
with the deviation principle we also increase (reduce) sev-
eral offers below (above) the actual offer).

The idea of the segment-based approach is to hierarchi-
cally divide all the options into segments, and in the initial
interactions to activate the learning method on these seg-
ments, rather than on specific discrete options (line 3). After
several interactions the resolution can be increased by fo-
cusing on smaller segments. This process continues gradu-
ally towards the last segmentation hierarchy with the small-
est segments, i.e. specific discrete options, where final fine
tuning is performed (line 4).4 This algorithm is based on
the assumption of locality, i.e. adjacent options yield sim-
ilar average profits. The advantage of this approach is the

4In our simulations we used H=3 hierarchies. In the firstT1=5 inter-
actions we focused on 5 segments ofS1=20 integers each. Then, till the
10th interaction (T2=10), we focused on 20 segments ofS2=5 integers
each. From then on we focused on 100 segments of single offers (S3=1).



gradual filtering of the optimal solution. A common prob-
lem in conventional RL, for instance, is that an option might
have a high P-value in a progressive stage of the learning
process, although it is far from the optimal option. With the
segment-based approach, this situation is prevented already
in preliminary stages, by weakening the P-value of the en-
tire range surrounding this non-beneficial solution.

The segment-based approach can also extend Gittins’
strategy, by modifying the bottom expressions in lines 7 and
9 according to expression(2). We call this version, Simul-
taneous Segment-based Virtual Gittins -SSVGalgorithm.

4.2 Experiment Description

In order to evaluate the performance of the proposed SD-
VRL algorithm, and to compare it with the other algorithms
described above, we experimentally examined agents inter-
acting with human opponents in the 4 SCE environments
mentioned above: SA, RSA, MUG and RMUG. The exam-
ination of different environments guarantees generality and
robustness of the results. It is important to mention that
each algorithm was run with fixed parameter configurations
(such as deviation ratesα, β in the SDVRL and SDVG al-
gorithms) for all the different environments. Though spe-
cific configurations for each environment could yield better
performance, we preferred the generality of the algorithms
over a variety of SCE environments, ensuring that no envi-
ronment specific characterization would be used.

In the first experiment human participants were used as
responders in the MUG and RMUG games, and as bidders
in the auctions. Each person participated only once in each
environment, while the automated agents interacted serially
against different human opponents. Evaluating agents that
were designed for human-involved environments by exam-
ining their performance with real human data is necessary.
As mentioned above, human competitors do not obey sub-
game perfect equilibrium, and thus their behavior cannot be
a priori simulated. Additionally, human behavior cannot be
accurately statistically modeled, especially in small popula-
tions as in this case. Another benefit from empirical exper-
iments is the ability to provide a concrete algorithm, with
a concrete configuration of parameters, which successfully
competes against human opponents. Thus, this agent can be
immediately applied in real applications, at least as a start-
ing point.

In the first stage of the experiment we surveyed 34 stu-
dents who participated in non-simultaneous auctions, 13
students who participated in both SA and in RSA 2-offer
auctions (in random order), and 34 students who played
both MUG and RMUG (in random order). The partici-
pants were students at Bar-Ilan University, aged 20-30, who
were not experts in negotiation strategies nor in economic
theories directly relevant to the experiment (e.g. game the-
ory, decision theory). In both 2-responder ultimatum games
the participants were required to determine their acceptance
threshold, i.e. the minimal offer they would accept as re-
sponders of the total NIS 100 to be divided among the 3
players (without knowing how much the other responder
would be offered). In the auctions the participants were re-
quired to propose a bid, which could be any integer from 0
to NIS 100. The winner gained a virtual NIS 100. At the

end of the experiment, each participant was paid between 15
to NIS 30, proportionally to her earnings in the interactions
in which she participated.

After extracting the 34 simple auction bids, the 13 SA
bids, the 13 RSA bids, the 34 acceptance thresholds in
MUG and the 34 thresholds in RMUG, we constructed sets
of opponents’ reactions for each environment. Fork=2 we
constructed 2 sets of 34 integers, fork=3 3 sets of 34 in-
tegers, etc. In the UG environments each set was a ran-
dom permutation of the 34 original thresholds. In the auc-
tions each set contained random bids selected from all the
auctions’ environments. With this, we simulated a realistic
auction environment, where part of the bidders bid simulta-
neously in several auctions, and part of them participated in
only one auction. Therefore, we could use the same sets for
the SA and for the RSA simulations. At this stage we ex-
amined the performance of each of the algorithms detailed
above, which were run serially against the sets of oppo-
nents’ data. Thus, each algorithm had one interaction with
each of the human opponents in each of the four environ-
ments, without knowing in advance the number of interac-
tions. Since there is importance to the order of the oppo-
nents, we constructed 100 random permutations of the hu-
man decisions series, for each environment, and compared
the average payoffs of the different algorithms for each per-
mutation. In addition, these algorithms were run against an
artificial series of 50 auction opponents, constructed ran-
domly according to a normal distribution of N(71,10). In
this manner, we examined the performance of the algo-
rithms with a theoretical population which distributes nor-
mally, though there is no evidence of such a distribution in
any CE environment.

4.3 Experimental results

Table 1presents the average payoffs for each algorithm,
competing in the environments mentioned above, withK=2.
The average payoffs were calculated based on the data of all
the 100 permutations. Due to the fact that the algorithms’
random factors cause a variation in the results, we ran each
algorithm repeatedly for 30 times for each permutation.

Environment SSVG SSVRL SDVG SDVRL FSP

SA 81.08 88.43 88.68 94.5 95.21
RSA 22.19 24.5 26.47 27.12 25.84

MOUG 47.49 50.99 46.79 49.6 48.78
RMUG 58.14 62.35 60.79 64.3 64.13
Normal 86.8 89.96 94.92 100.67 100.93

distribution auction
Retractable normal 16.99 19.94 20.45 21.16 19.79
distribution auction

Table 1. Average payoff of the various algorithms against hu-

man opponents in several SCE environments withK=2

The results show that the SDVRL algorithm was almost
always the most profitable algorithm among the 4 basic al-
gorithms. A non-parametric Friedman test revealed signifi-
cant differences in the ranking of the algorithms (p<.001).
Further pairwise Wilcoxon tests showed that the most ef-
ficient algorithm was significantly the SDVRL algorithm,



except for the MOUG, where SSVRL was significantly bet-
ter (though the differences were not substantial, compared
to the outstanding advantage of SDVRL in other environ-
ments). The FSP heuristic was found to be very efficient as
well, and it even performed better than the basic SDVRL in
the SA auction. In the normal distribution auction and in
the RMUG no significant difference was found between the
basic SDVRL and the FSP-SDVRL.

Environment SSVG SSVRL SDVG SDVRL FSP

SA 173.89 176.15 159.3 183.59 183.99
RSA 32.62 33.26 32.54 33.27 32.56

MOUG 52.57 53.05 48.95 51.15 51.06
RMUG 63.12 68.59 68.99 69.7 69.65
Normal 185.64 187.63 173.38 194.43 194.45

distribution auction
Retractable Normal 24.39 24.57 23.45 24.78 23.59
distribution auction

Table 2. Average payoff of various algorithms against human

opponents in several SCE environments withK=3

In Table 2we present the average payoffs in the same en-
vironments withK=3, i.e. 3-responder MUG and RMUG,
and 3 simultaneous auctions. The opponents’ responses
were based on the same data of theK=2 simulations. Con-
sistent with the results ofK=2, the SDVRL algorithm was
usually the most profitable algorithm (Wilcoxon, p<.001).
However, in the MOUG, SSVRL was significantly bet-
ter, while in the retractable normal distribution auction and
in the RSA no significant difference was found between
SSVRL and SDVRL. The SDVRL using the FSP heuris-
tic was found to be very efficient as well, and except for
the RSA and the retractable normal distribution auctions no
significant difference was found between the basic SDVRL
and the FSP-SDVRL.

In order to compare the performance of the FSP-SDVRL
algorithm with the performance of human competitors we
asked 26 participants to compete iteratively against a se-
ries of other human opponents, exactly in the same manner
the automated agents had competed. Thirteen participants
were proposers in 2-responder MUG and RMUG, and the
other 13 participated in SA and RSA auctions withk=2, in
random order. After each decision, the participants were in-
formed of the success of their 2 offers by the ”current” op-
ponents. Actually, these proposers were expected to learn
the distribution of the responders’ population, exactly as
the agents had learned. All the learners, including the FSP
agent, competed with the same series of opponents.

The results, which are not presented due to space con-
straints, showed a clear advantage of the FSP SDVRL agent
(usually the naive SDVRL even performed better) over the
human learners in all the environments. The average payoff
of our agent was in average above the human’s average pay-
off, with about 0.8 standard deviation. Thus, our agent suc-
ceeded in outperforming human natural intuitions and life
experience in this context. Note that the automated agent
was run with the same parameters for all the environments,
and it did not apply domain specific knowledge.

5 Conclusion and future work

We have presented a new algorithm, namely SDVRL,
which efficiently competes in various multi-interaction SCE
environments with different human opponents. Our experi-
mental findings show that the SDVRL performs better than
humans and other algorithms surveyed in this paper. An
optimization heuristic, which runs in most interactions in
linear time was found to yield a high performance, as well.

In future work we intend to extend the approaches dis-
cussed in this paper to more sophisticated classes of inter-
actions. Particularly, we would like to examine the repeated
version of SCE interactions, in which several negotiation
rounds can be conducted against the same opponents. When
competing repeatedly against the same opponents, a specific
modeling of each opponent must be done, in addition to the
generic modeling of the population. Moreover, in contrast
to the one-shot version, a current move may influence the
future behavior of the opponents, a fact that must be taken
into account. Therefore, we intend to design an agent that
develops several optional models of typical opponents in
the population, and matches the appropriate model to each
opponent with which it interacts.

In addition, we intend to model a human’s decision-
making process when interacting in SCE environments, as
was done for non-simultaneous CE environments [6].

Acknowledgements:This work is supported in part by NSF #
IIS0222914 and ISF #1211-04. Kraus is affiliated with UMIACS.

References

[1] P. Bourgine and B. Leloup. May learning explain the ultima-
tum game paradox ? Technical Report GRID Working Paper
No. 00-03, Ecole Polytechnique, 2000.

[2] D. Diermeier and R. Morton. Proportionality versus perfect-
ness: Experiments in majoritarian bargaining. In D. Austen-
Smith and J. Duggan, editors,Social choice and strategic be-
havior, pages 157–196. Berlin: Springer, Forthcoming.

[3] M. Dumas, L. Aldred, G. Governatori, and A. ter Hofstede.
Probabilistic automated bidding in multiple auctions.Elec-
tronic Commerce Research, 5(1):25–49, 2005.

[4] J. Gittins.Multiarmed Bandits Allocation Indices. Wiley, New
York, 1989.

[5] R. Katz and S. Kraus. Efficient agents for cliff-edge environ-
ments with a large set of decision options. InAAMAS’06.

[6] R. Katz and S. Kraus. Modeling human decision making in
cliff-edge environments. InAAAI’06.

[7] M. Knez and C. Camerer. Outside options and social com-
parison in a three-player ultimatum game experiments.Games
and Economic Behavior, 10:65–94, 1995.

[8] R. L. Milidiu, T. Melcop, F. T. S. Liporace, and C. J. P. Lu-
cena. Simple - a multi-agent system for simultaneous and re-
lated auctions. InIAT’03.

[9] C. Preist, A. Byde, and C. Bartolini. Economic dynamics of
agents in multiple auctions. InAgents 2001, pages 545–551.

[10] B. Szentes and R. W. Rosenthal. Three-object two-bidder
simultaneous auctions: Chopsticks and tetrahedra.Games and
Economic Behavior, 44:114–133, 2003.

[11] D. Yuen, A. Byde, and N. R. Jennings. Heuristic bidding
strategies for multiple heterogeneous auctions. InECAI’06.

[12] F. Zhong, D. Wu, and S. Kimbrough. Cooperative agent sys-
tems: Artificial agents play the ultimatum game.Group Decis.
Negot., 11(6):433–447, 2002.

[13] W. Zhu and P. R. Wurman. Structural leverage and fictitious
play in sequential auctions. InAAAI’02, pages 385–390.


