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Abstract deal to fall through [5]. Consider, for example, an agent
that participates in substitutional auctions. On one hand, the
This paper proposes an efficient agent for competing 2gent strives to decrease its offers in order to pay less for the
in simultaneous substitutional Cliff-Edge (SCE) environ- goods. On the other hand, if the offers are too low, the agent
ments, which include simultaneous auctions and multi- may lose the auctions. Moreover, the agent strives to win in
player Ultimatum-Games. The agent competes in one-shof0 more than one auction, without ruining the probability of
interactions repeatedly, each time against different human Winning at least in one. In this paper, we focus on one-shot
opponents, and its performance is evaluated based on allinteractions, which are repeated with different opponents.
the interactions in which it participates. It learns the gen- Such situations occur in periodically repeated auctions with
eral pattern of the population’s behavior and does not ap- the same goods, which are very popular nowadays espe-
ply any examples of previous interactions in the environ- Cially via the Internet [13, 3]. Similarly, sequential UG
ment, neither of other competitors nor of its own. More- With different opponents, as well as N-players UG versions
over, the agent rapidly adjusts to environments comprising are under thorough investigation [1, 12, 2, 7].
a large number of optional decisions at each decision point.  The topic of simultaneous auctions for substitute goods
We propose a generic approach which competes in differenthas been drawing a lot of attention both in economical re-
substitutional environments under the same configuration,search [10] and in automated agents literature [9]. Eco-
with no knowledge about the specific rules of each environ-nomical works usually assume full-rationality of the play-
ment. The underlying mechanism of the proposed agent isers. However, when interacting with humans, the theoretical
the Simultaneous Deviated Virtual Reinforcement Learning equilibrium strategy is not necessarily the optimal strategy
(SDVRL) algorithm, which is an extension of an algorithm since human subjects, inherently computationally restricted
for non-simultaneous environments. In addition, we pro- as well as rationally bounded, commonly do not behave
pose a heuristic for improving our agent’s complexity. Ex- according to perfect equilibrium. Thus, such studies (e.qg.
periments comparing the average payoff of the proposed al-[10]) are not efficient for human-involved environments,
gorithm with other possible algorithms reveal a significant as in our case. Some researchers have developed agents
superiority of the former. In addition, our agent performs for competing in simultaneous continuous auctions, where
better than human competitors executing the same tasks. other bids are visible [9]. Similarly, many agents have been
developed for the well known Trading Agent Competition
(TAC - http://tac.eecs.umich.edu) which includes substitu-
. tional auctions (e.g. [8]). In the TAC environment, how-
1. Introduction ever, the auctions are continuous and the bids of others are
visible. Moreover, the auctions are second-price - and there-
In many auctions, substitutability exists between two or fore there is no risk in overbidding, as in our environment.
more items for sale [3, 8]. This situation is especially com- Furthermore, none of the above consider repeated interac-
mon in web-based auctions, where one can find many si-tions while changing human opponents.
multaneous auctions of similar popular items on different ~ Zhu and Wurman [13] proposed an agent for interacting
sites [11]. In such situations, a bidder bids on multiple with other agents or human bidders in simultaneous first-
items in order to obtain only one of them. Similarly, there price sealed-bid auctions. Their agent, however, interacts
are many economic and political situations in which one hasrepeatedly with the same opponent. In such problems, the
to propose a resource allocation among multiple opponentsgeneral approach is to specifically model each of the op-
and to reach an agreement for the allocation from at leastponents’ behavior, and to adjust a strategy which optimally
one of them [2, 7]. reacts to the opponent’s predicted reaction. In our study,
In this work we present an approach for repeatedly inter- on the other hand, specific opponent modeling is not rel-
acting in simultaneous substitutional first-price sealed-bid evant, since the agent interacts with each opponent only
auctions and N-players Ultimatum-Game (UG). Both auc- once. Therefore, we propose using an agent which models
tions and UG environments belong to the Cliff-Edge (CE) the general pattern of the whole population of opponents.
set of negotiation environments, which are characterized byJennings and his collogues, who presented several methods
an underlying conflict for the competitor between the de- for bidding in multiple auctions of heterogeneous types (e.qg.
sire to maximize profits and the risk of causing the entire [11]) also did not consider the adaptation to the population



of bidders. 2 The SCE Environments

One possible approach for learning the behavior of the
population of bidders in a certain environment is to observe  The general pattern of one-shot SCE interactions con-
previous samples of interactions within this environment siders an agent required to chodéeffersiy, ,,ix which
[3]. This approach, however, requires a large number of are all integers) < i; < N, 1 < j < K, whereN is
historical examples of human behavior. Moreover, the op- the maximal optional choice. Then, a positive rewaaotr-
tion of using a historical database is not always possible.responding to the offers, , , ik is determined, depending
In a sealed-bid auction, for example, a bidder usually can-on whether the offers passed the acceptance thresholds set
not obtain information about the bids which were offered in by the current opponents (in auctions we refer to the accep-
previous similar auctions. Thus, we propose a mechanismtance threshold of the auctioneer, which is the second high-
to develop an agent which does not depend on examples ost bid proposed). Since the SCE set includes various envi-
previous interactions. Our agent perfororsline learning ronments, we detail the models of four environments upon
while interacting with others, and its performance is evalu- which this paper focuses: substitutional auctioB8\)( re-
ated from the first interaction. tractable substitutional auctionR$A), one-accept multi-

In addition, this study focuses on settings where in each lplayer UG MUG) and retractable MUGRMUG ). The two
- - ; ; - atter environments are multi-player UG versions which re-
interaction the agent is required to choose an action fromﬂectsituations similar to the former two, respectively. Other
a large set of possible options, which reflects commercial , TeSp Y.

environments more realistically. The existence of a large SCEIe?r\lllrg'r&menotlslcsn 'be'|5|mllarcljy modﬁleqtﬁs well:
set of options demands a construction of a fast and efficient _ ® ' tNESAMOCELR Similar goods, each with a common

screening procedure. Furthermore, the importance of quick-value ofN are simultaneously auctioned. The agent can of-

ness is emphasized in this study, since we examine short!e" K bids. i1, ,, i which are all integers) < i; < N, 1 <

: ; : j < K. Given the bids, a rewandis determined according
term durations of only several dozens of interactions. to the highest bids, , .. by of all the other bidders (one or

A recent work broadly discusses the situationnof- more) in each of the simultaneous auctionsl K j < K
simultaneousrepeated CE interactions with human oppo- exists s.tb; <i;, thenr = N — 3", _, 'i; (the value of

nents without using historical information [5]. In that aitaining the item, subtracted by the winning bids), other-
study, the performance of several algorithms were evalu-yjiser=0. Similarly, in theMUG , the agent should divide
ated USI'”Q err:_plrlcal ddatza IT Var'ouuscg:Erﬁnvgon,mter(‘jt%_stucrl‘anN amount among itself and othkrplayers. Itis required
as single auctions and 2-players UG. The Deviated Virtual . ) ) K . :
Reinforcement Learning (DVRL) algorithm was found to (© C00Se integers, ,,ix, > 5, i; < N, which are the
yield the highest performance in all the examined environ- @mounts proposed to the other players. The rewasdlie-
ments. In this paper we propose an approach for extend-termined by the opponents’ acceptance threshialds .

ing algorithms which are designated for non-simultaneous!f 1 < Jj < K exists s.tz; <ij, thenr =N -5, _, i,

CE environments to function in simultaneous substitutional otherwiser=0. Thus, the fewer the number of accepted of-
environments. We show that the extended version of the fers (but at least 1), and the lower the offers - the higher the
DVRL algorithm, the Simultaneous DVRISQOVRL), per- reward.

forms significantly better than other algorithms when com- e In the RSA model,K similar goods, each with a com-
peting against human opponents in 4 different environ- mon value ofN are simultaneously auctioned. In another
ments. Likewise, it performs better than human competitors auction protocol which can be abstracted by this model, an
who face the same task. In addition, we propose an opti-item with a common value dfl is auctioned in one auction,
mization of the SDVRL, namely the Fixed Success Prob- where each bidder can off&rbids. Thus, the agent can of-
abilities algorithm ESP), which uses a simple heuristic to  fer K bids, iy, , , ix which are all integer§, < i; < N,1 <

find the optimal actions. It is noteworthy that the under- j < K and can retract any of its offers later. Given the
lying mechanisms of the algorithms discussed here are allbids, a reward is determined according to the highest bids
generic and suitable for various substitutional Cliff-Edge by, ,,bx from all the other bids (one or more) in each of the
(SCE) environments. Moreover, in all the simulations pre- simultaneous auctions. If < j < K exists s.t.b; < i,,
sented herein, each algorithm was run with a fixed configu-thenr = N' — min;; <;, i;, which is the value of attaining
ration setting of the basic parameters that was not changedhe item, subtracted by the minimal bid that won the auction
from environment to environment. (we assume that the agent retracts all the other successful

In the next section, we formally describe the SCE set of PidS, since they incur higher costs), otherwis®. Simi-
environments. In section 3 we present the proposed SDVRL 21y in theRMUG, the agent should divide & amount
algorithm, and the FSP heuristic. In section 4 we survey @M0ng itself and otheK players. It is required to choose
other relevant algorithms, and compare their performance/Nt€gersii, . ix (0 < i; < N,1 < j < K), which are

with the SDVRLS. In addition, we compare the latter with the amounts proposed to the other players, and later it can

human performance executing the same tasks. We conclud"%etraCt any offer, even if it was accepted. The rewarke-

resent directions for future work in ion 5. ermined by the opponents’ acceptance threshldst .
and present directions for future wo section 5 T1< ) < K exists ity < iyr =N —mingy <, iy
otherwiser=0.

In this paper, we consider environments with a large set

1Actually, our approach also suits simultaneous auctions for comple- Of deci_sion options, aﬂd SN_tO be 1(?0- .
mentary goods. However, it is not discussed here due to space limitations. ~ Obviously, the basic CE interactions contain a trade-off




between the expected reward and the probability of success(DVRL) [5], as presented illgorithm 2. The main chal-

choosing an offer which increases the expected reward, de
creases the probability of success, and vice versa. In the si
multaneous environment, in addition, the agent should con-
sider increasing the total reward obtained in all the simulta-
neous interactions. To demonstrate the challenge of a com
petitor in SCE environments, |€i) be the probability that
amount offered succeeds (if the offer is higher than the

{enge of an on-line learning algorithm is to efficiently bal-
ance between the need fexplorationof new options, and
the will to exploitcurrent information in order to maximize
payoffs. The SDVRL, unlike most algorithms, distorts ob-
served information in a manner which induces exploration.
On the other hand, it selects its actions greedily and thus ef-
ficiently exploits its current information. According to SD-

other bids in the case of an auction, or is accepted by the re\VVRL's UPDATE procedure we increase the evaluation of

sponder in the UG) . Considering the basic cask=, an
efficient agent must find the optimal offeis i, for the op-
ponent population, that maximize the accumulative utility
function:

e In SA and in the MUG:
(L1) U(ir,iz) = P(i1)P(i2)(N — i1 — i2) +
P(i1)(1 — P(i2))(N —i1) + (1 — P(31)) P(i2)(N — iz)

e In RSA and in the RMUG:
(12) U(il, ig) = P(Zl)P(Zg)(N — min(il, 12)) —+
P(i1)(1 = P(i2))(N —i1) + (1 = P(i1)) P(i2) (N — i2)

3 The Proposed Approach

In this section we present a detailed description of the
proposed algorithms for competing in SCE environments.

the success probabilities, P-values, of all the offers higher
than a successful offer, as well as several offers below this
offer, as though all these offers were also (virtually) suc-
cessfully offered (line 10). Similarly, after an offer fails,
we reduce the P-values of all the offers below the actual of-
fer and several offers above the actual offer, as described in
line 8. The success probability of each offer is calculated by
dividing the number of previous successes by the total num-
ber of previous interactions in which the offer was actually
or virtually proposed (lines 8,10).

Algorithm 2 THE SDVRL ALGORITHM

Notation: n(j) denotes the number of previous interactions in
which offerj was actually or virtually proposedy, 3 denote the
deviation rate. Below we present the configuration used in our

As mentioned above, our approach extends basic algorithmg&nvironment.

which are designated for non-simultaneous environments.
We assume that the basic non-simultaneous algorithms se

lect their actions according to an evaluation of the success 2

probability, P(i), of each offerj, provided it is chosen. The

-1: N=100,a=10,3=15,7=0 For j=0to N, Do P(j)=1, n(j)=0

: For each interactionDo

| vide ) 3:  If t=0thenselecti, iz uniformly, 0 < i; <is < N
evaluation of the success probability is determined accord- 4. Eiseoffersiy, io=arg maxy, 1, U(ly, l2)
ing to the results of previous interactions. 5:  Observe results of the 2 offers, calculate reward
6: For each offeri,, 1 <v < 2,Do
Algorithm 1 THE GENERAL APPROACH 7. If offeri, has failecthen Forj=0to (i, + ), Do
1: For each interactiorDo a: P(j) = 2@ - pij)=n(j)+1
2: Select offerg, i» according to a SELECT procedure ) )+ .
3: Observe results of the 2 offers, calculate reward 9 If offerd, has ;ucceedetden For j=(iv — 5) to N, Do
4: Update vector P according to the UPDATE procedure 10: P() = % n@)=n()+1
5. For [1=0 to N, Forl>=l; to N, Do 1 7 =742 )
6: UpdateU(ly,2) according to the appropriate utility 12 a= ﬁ B = W
function (1.1 or 1.2) and the currenP(l1), P(l2) values. 13: Forl;=0to N, Forly =1, toN,Do
14:  UpdateU(l;,12) according to the appropriate utility

Therefore, each basic non-simultaneous algorithm con-
sists of its own UPDATE and SELECT procedures. The

UPDATE procedure determines how to update the success

probabilities vectorP, after observing the successfulness
of the latest action. The SELECT procedure determines
how to select the next action (apparently according to both
the current expected utility evaluation, and considerations
of optimality exploration). InAlgorithm 1 we outline our
general approach. For the simplicity of the code we present
the solution foilK=2, which can be easily adjusted to higher
K values. The main idea is to maintain a tatile contain-

ing the expected utility of each combination of offéysis.

3.1 The SDVRL algorithm

In this paper we claim that the best algorithm for hu-

function (1.1) or (1.2) and the currenP(l1), P(l2) values

The SELECT procedure simply selects the offers with
the current maximal U-value (line 4). The deviation prin-
ciple underlying the UPDATE procedure enables a greedy
SELECT procedure, since it induces fast exploration of the
optimal offer. For simplicity’s sake, consider the basic non-
simultaneous case. If the agent, for example, offered 70%
of the amount to its UG opponent in the first interaction,
and its offer was accepted, it would offer 55% (féx15)

in the next interaction. The agent continues to decrease its
offer until it is rejected. This fast exploration process can be
very efficient in SCE environments, as well. However, the
"inaccurate” updating of th® values according to the de-
viation principle (lines 7-10) may cause misevaluations of
theU values (line 14), which crucially rely oR and(1-P)

man environments, as we will demonstrate, is the extensionvalues. Therefore, we examine the efficiency of the devia-

of the Deviated Virtual Reinforcement Learning algorithm

tion principle in simultaneous environments by comparing



it with more guarded algorithms, as described in the nex:
section. e

In line 12 we gradually decreased the valuesxond 2
3 since the model comes closer to the real distribution of
the opponents population during the learning process. It i§”
important to note that in this study SDVRL was run in all g“
the environments with the sameand 3 configurations as ~ °
detailed in lines 1 and 12. We assume that these values cafl " " o o B SRRSO
be proportionally adjusted to other SCE environments with #interaction #interaction
differentN values. o o Figure 1. Amounts of offers (on the left) and their correspond-

The _SDVRL m‘ethOd‘ 1S S|mple and _guarantees finding ing success probabilities (on the right) during 34 interactions in the
the optimal offersiy, i (i1 < i) according to the current g, o ironment with k=2 (average of 100 runnings)
success probabilities evaluation, in each interaction. This
is because it actually checks every possible combination
of offers. However, this methodology is expensive: since
in each interaction we compa@(NX) possible combi-
nations. The total complexity equai®(! - NX), wherel T o
denotes the number of interactich§hus, the naive algo- % T 3 <5then offersi, i>=argmaxi, 1, U(ls, l2)
rithm is applicable for only a few simultaneous interactions, 5: Else j=0 .
which is usually sufficient in common real-world applica- 8 While P()< c1 Doj=j+1
tions. For highK values we may use heuristics or search /¢ Offerii = j o
algorithms, as described in the following section. 8. While P())< cz Doj=j+1

9: offerio =3
.. 10-17: AsinAlgorithm 2 lines 5-12

3.2 The FSP heuristic 18: If T <5then Forl1=0to N, For l»=l; to N, Do

In this section we propose a heuristic, ternfieced Suc- ~ 19- Updatel(l, I») according to the appropriate utility
cess Probabilitie§FSP), which improves the complexity of ;  function (1.1) or (1.2) and the currenP(l1), P(l) values
SDVRL to O(N*). This heuristic is based on the observa- 20 I 275 then ai=P(i1),c:=P(iz)
tion that when an SDVRL agent interacts repeatedly in SCE
environments, thesuccess probabilities(P-values) of the
chosen offers are almost the same during all the interactions. . . -
Note that the chosen offers themselves might be noticeably, It iS worthy to note that the high complexity in the SD-
modified from one interaction to another, due to the updat- YRL Stems from the need to search the K-dimensional com-

ing of the P-vector. However, the corresponding P-values binati_on of offers tha_t maximizes the utility function during

of the chosen offers are quite stable. A good demonstra—eaCh interaction. This problem can also be solved at a lower
tion of this phenomena can be viewedFigure 1, where cost using general search a'lgorlthms, such as the Nelder-
the amounts of the offers during 34 interactions in the SA Mead Simplex search, Brent's method and the Steepest De-
environment (left figure) and their corresponding success SCeNt as well as discrete methods such as the Genetic Search
probabilities, the P-values (on the right) are plotted. As can @nd Hill-Climbing. However, in this limited framework we

be clearly seen in the right figure, the P-values are almostMainly discuss methods which concern the uniqueness of
constant (at around 0.005 and 0.98) from the very prelimi- SCE énvironments. Moreover, the FSP heuristic can be in-
nary stages (unlike the offers on the left). Thus, rather thant€grated with any of these general optimization methods,
examine all the possible combinations of offers and calcu- which will save the need to perform searches in progressive

late their utility at each interaction, we can simply choose 'ntéractions.

2 offers whose current P-values are 0.005 and 0.98. There-

fore, the FSP algorithmA(gorithm 3) obeys the SDVRL 4  Experimental design and analysis
method only in the first interactions (in all the SCE envi-
ronments examined in our simulations we waited 5 interac-
tions - lines 1-4, 18-19). After that (line 20) we calculate the
P-valuescy, ¢, of the 2 offers chosen in thg” interaction
(whenZ = 5, sincer is incremented by 2 at each interac-
tion - Aiigorithm 2, line 11). From then on, the FSP chooses
2 offers with the same P-values, according to the current P-
vector at each interaction (lines 6-9), with a complexity of
O(N).
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Algorithm 3 THE FSP SDVRL A GORITHM
1-3: AsinAlgorithm 2

I

In this section we examine the performance of the pro-
posed SDVRL algorithm competing in various SCE envi-
ronments with human opponents, and compare it to the per-
formance of other algorithms. A broad survey of the algo-
rithms examined is presented, followed by a description of
the experiment design and the results. After analyzing the
results, we compare the performance of SDVRL to human
negotiators’ performance.

2|t can be easily proved that in the retractable environments, the upper
offer iy should always maximiz& (i x ) (N —ix ) independently of other
offers (forK = 2, for example, ifiy < iz, U(i1,42) = P(i1)(N—i1)+ . . ) .
(1= P(i1))P(iz)(N —iz) ).Thus, for these environments the complexity In this section we survey several algorithms which were
actually equal© (1 - Nk—1). successfully used in repeated CE environments, and extend

4.1 Comparative Algorithms description



them to the SCE environments. As detailed in the introduc- Algorithm 4 THE SSVRL ALGORITHM
tion, we could not find any algorithm which directly deals Notation: H denotes the number of segmentation hierarchies

with the SCE environments considered here. configured by the user according to the size of the options set (the
order of magnitude of the expected number of interactibmapust
4.1.1 Gittins’ index strategy be considered when setting this parametgf)js the size of each

. segment in theh!” segmentation hierarchy, and, is the serial
Some researchers have observed CE environments as a Spgmper of the last interaction of tha!" segmentation hierarchy.

I(;;?[lefaesvee?f tgﬁ()ggg’:éggﬂ r?f;irI](céi: f?z;gt'zl)e(rjneci[&]e. orl1nvmi?: hPh and U, are the P-vector and the Utility table corresponding
one dfn slo¥r$1achines he wants to play, given each machinetO the .h.th segmentation hie.ramhy’ respectively. denotes the
has different gain probabilities (unknown a priori). These ProPability for random selection.

researchers used Gittins’ indices strategy [4], which finds _ N _

the optimal choice of action at each step in multi-armed 1: Forh=1toHDo Forj=0to[g-], Do Px(j)=1,

bandit problems, for playing UG, considering each optional 2: For each interactiorDo

offer as an arm: For each action, consider the total num- 3: If 0< 7 <Ti: c=1, mi, ma = arg max, .k, U1(k1, k2)

ber of times it has been chosem,and the number of times With a probability of (1¢) select segments, j2 = m1, ma
it has been successfud, For certain discount factors of With a probability ofe, select segments, j2 (from

the expected reward, there are published look-up tables of the 1% hierarchy) uniformly

indices, G(s,n-s)for each pair ofs andn-s® Each index Select offergy, i uniformly from segments; , jo

represents a comparative measure of the combined value of

the expected payoff of actidr(given its history of payoffs) 4 f Ty_y <7 <Th: c=H,
and the value of the information that we would attain by o
choosing it. However, the CE problems are different from
the classical multi-armed bandit problem since the arms are
independent, while in CE environments the success proba-
bility of an offer is depended on the size of the offer (i.e. the
higher the offer the higher the probability). This difference :
may become more critical when there is a large number of 5 For eachofferi,, 1 < v < 2 Do

options rather than the 10 optional arms problems consid- 6: If offeri, has failecthen .

ered in [1]. Thus, Katz and Kraus (2006) extended the 7:  Forh=ctoH, Forw =0to|Z-| Do
basic Gittins’ method using the deviation principle. Here, Pu(w) = % n(w) = n(w)+1
th(la dlﬁeret?cE from thle SIIZngQL is mdt.he lilpdGalj[tlpg of tgg P- g If offeri, has succeedeatien

values, which are calculated according to Gittins’ indices. . - 4 N
Thus, the P-values update in lines 8 and 1@gforithm 2 o Forh=ctoH, Forw =[] tofg,]Do

mi, Mo = arg max, k, Un (K1, k2)
With a probability of (1¢) select segmentgs, jo = m1, m2
With a probability ofe, select segments, j» (from
the H'" hierarchy) uniformly
Select offerg, i5 uniformly from segmentg, , j2

h
should be changed to: Py(w) = Bolednlo L () = n(w)+1
10: 7=7+1
(2 P() = G(s(j).n()-s()) 11: For h=cto H, For [;=0to N, For lx=l; to N, Do
In addition, after successful offers, in line 10, we should 12: UpdateU, (I1,l2) according to the appropriate utility func-
increment s(j)=s(j)+1. We denote Gittins’ version of SD- tion (1.1) or (1.2) and the current values %, (1), Pr(l2)

VRL as Simultaneous Deviated Virtual GittinSDBVG.

4.1.2 Segment-based approach actual offer, provided it was successful (line 9). Similarly,
we should reduce the P-values of all the offers lower than
The segment-based approach [5] was found to be very ef-the actual offer (line 7), provided it was unsuccessful (while

ficient in non-simultaneous CE environments, though not with the deviation principle we also increase (reduce) sev-
as much as the DVRL. However, since it is more guarded eral offers below (above) the actual offer).

and conservative than the deviation approach we decided The idea of the segment-based approach is to hierarchi-
to examine its performance in the SCE environments. In cally divide all the options into segments, and in the initial
Algorithm 4 we present the Simultaneous Segment-basedinteractions to activate the learning method on these seg-
extension of Virtual Reinforcement Learning (SSVRL). ments, rather than on specific discrete options (line 3). After
In order to perform exploration, we use tfigreedy ver-  several interactions the resolution can be increased by fo-
sion of Reinforcement Learning (RL) [12]. According to cusing on smaller segments. This process continues gradu-
this version, at each interaction with a probability df- ) ally towards the last segmentation hierarchy with the small-
we choose offers which supposedly yield the highest profits, est segments, i.e. specific discrete options, where final fine
according to the estimation Of the current U'table. In Order tuning is performed (“ne 43 Th|s a|gorithm is based on
to explore new options, with a probability afwe selectour  the assumption of locality, i.e. adjacent options yield sim-
offers uniformly. In addition, according to thertual RL  jlar average profits. The advantage of this approach is the
principle (without deviation), we increase the success prob-
ability evaluation, P-values, of all the offers higher than the  “In our simulations we used H=3 hierarchies. In the fifs£5 inter-
actions we focused on 5 segmentsSaf=20 integers each. Then, till the
3In our finite simulations we used the Bernoulli reward process table 10%" interaction {>=10), we focused on 20 segments$§=5 integers
with a discount factor of 0.99 (see [4] p. 237), as was used in [1]. each. From then on we focused on 100 segments of single offerd |.




gradual filtering of the optimal solution. A common prob- end of the experiment, each participant was paid between 15
lem in conventional RL, for instance, is that an option might to NIS 30, proportionally to her earnings in the interactions
have a high P-value in a progressive stage of the learningin which she participated.
process, although it is far from the optimal option. Withthe  After extracting the 34 simple auction bids, the 13 SA
segment-based approach, this situation is prevented alreadiids, the 13 RSA bids, the 34 acceptance thresholds in
in preliminary stages, by weakening the P-value of the en- MUG and the 34 thresholds in RMUG, we constructed sets
tire range surrounding this non-beneficial solution. of opponents’ reactions for each environment. k2 we

The segment-based approach can also extend Gittinsconstructed 2 sets of 34 integers, f6r3 3 sets of 34 in-
strategy, by modifying the bottom expressions in lines 7 and tegers, etc. In the UG environments each set was a ran-
9 according to expressid). We call this version, Simul-  dom permutation of the 34 original thresholds. In the auc-
taneous Segment-based Virtual GittirfSSVG algorithm. tions each set contained random bids selected from all the
auctions’ environments. With this, we simulated a realistic
auction environment, where part of the bidders bid simulta-
neously in several auctions, and part of them participated in
only one auction. Therefore, we could use the same sets for

In order to evaluate the performance of the proposed SD-the SA and for the RSA simulations. At this stage we ex-
VRL algorithm, and to compare it with the other algorithms amined the performance of each of the algorithms detailed
described above, we experimentally examined agents interabove, which were run serially against the sets of oppo-
acting with human opponents in the 4 SCE environmentsnents’ data. Thus, each algorithm had one interaction with
mentioned above: SA, RSA, MUG and RMUG. The exam- each of the human opponents in each of the four environ-
ination of different environments guarantees generality and ments, without knowing in advance the number of interac-
robustness of the results. It is important to mention that tions. Since there is importance to the order of the oppo-
each algorithm was run with fixed parameter configurations nents, we constructed 100 random permutations of the hu-
(such as deviation rates (8 in the SDVRL and SDVG al- man decisions series, for each environment, and compared
gorithms) for all the different environments. Though spe- the average payoffs of the different algorithms for each per-
cific configurations for each environment could yield better mutation. In addition, these algorithms were run against an
performance, we preferred the generality of the algorithms artificial series of 50 auction opponents, constructed ran-
over a variety of SCE environments, ensuring that no envi- domly according to a normal distribution of N(71,10). In
ronment specific characterization would be used. this manner, we examined the performance of the algo-

In the first experiment human participants were used asrithms with a theoretical population which distributes nor-
responders in the MUG and RMUG games, and as biddersmally, though there is no evidence of such a distribution in
in the auctions. Each person participated only once in eachany CE environment.
environment, while the automated agents interacted serially
against different human opponents. Evaluating agents thaly 3  Experimental results
were designed for human-involved environments by exam-
ining their performance with real human data is necessary.
As mentioned above, human competitors do not obey sub-
game perfect equilibrium, and thus their behavior cannot be
a priori simulated. Additionally, human behavior cannot be
accurately statistically modeled, especially in small popula-
tions as in this case. Another benefit from empirical exper-
iments is the ability to provide a concrete algorithm, with
a concrete configuration of parameters, which successfully

4.2 Experiment Description

Table 1 presents the average payoffs for each algorithm,
competing in the environments mentioned above, WitR.
The average payoffs were calculated based on the data of all
the 100 permutations. Due to the fact that the algorithms’
random factors cause a variation in the results, we ran each
algorithm repeatedly for 30 times for each permutation.

competes against human opponents. Thus, this agent can he___Envionment | SSVG [ SSVRL [ SDVG [ SDVRL || FSP |
immediately applied in real applications, at least as a start- SA 81.08 | 8843 | 88.68 94.5 95.21
ing point. RSA 2219 | 245 | 2647 | 2712 || 2584
In the first stage of the experiment we surveyed 34 stu- MOUG 47.49 | 5099 | 46.79 | 496 | 48.78
dents who participated in non-simultaneous auctions, 13 RMUG °8.14 | 6235 | 60.79 | 643 | 6413
students who participated in both SA and in RSA 2-offer distrib’:jgg:"’;ucﬂon 86.8 | 89.96 | 94.92 | 100.67 ) 100.93
auctions (in random order), and 34 students who played
both MUG and RMUG (in random order). The partici- ;:I:ﬁﬁ?grl\ealocrt?;il 1699 | 19.94 1 20451 2116 || 19.79

pants were students at Bar-1lan University, aged 20-30, who
were not experts in negotiation strategies nor in economic  Table 1. Average payoff of the various algorithms against hu-
theories directly relevant to the experiment (e.g. game the-  man opponents in several SCE environments Wit

ory, decision theory). In both 2-responder ultimatum games

the participants were required to determine their acceptance

threshold, i.e. the minimal offer they would accept as re-  The results show that the SDVRL algorithm was almost
sponders of the total NIS 100 to be divided among the 3 always the most profitable algorithm among the 4 basic al-
players (without knowing how much the other responder gorithms. A non-parametric Friedman test revealed signifi-
would be offered). In the auctions the participants were re- cant differences in the ranking of the algorithms{©01).
quired to propose a bid, which could be any integer from O Further pairwise Wilcoxon tests showed that the most ef-
to NIS 100. The winner gained a virtual NIS 100. At the ficient algorithm was significantly the SDVRL algorithm,



except for the MOUG, where SSVRL was significantly bet- 5 Conclusion and future work

ter (though the differences were not substantial, compared

to the outstanding advantage of SDVRL in other environ-  \We have presented a new algorithm, namely SDVRL,

ments). The FSP heuristic was found to be very efficient aswhich efficiently competes in various multi-interaction SCE

well, and it even performed better than the basic SDVRL in environments with different human opponents. Our experi-

the SA auction. In the normal distribution auction and in mental findings show that the SDVRL performs better than

the RMUG no significant difference was found between the humans and other algorithms surveyed in this paper. An

basic SDVRL and the FSP-SDVRL. optimization heuristic, which runs in most interactions in
linear time was found to yield a high performance, as well.

In future work we intend to extend the approaches dis-

cussed in this paper to more sophisticated classes of inter-

Environment | SSVG [ SSVRL [ SDVG [ SDVRL [ FSP ] > ; - .
SA 380 761 | 1503 | 18359 T 18305 actions. Particularly, we would like to examine the repeated
RSA 3565 3396 | 3254 | 3327 2556 version of SCE interactions, in which several negotiation
VOUG 5557 T 5305 | 4895 | 5115 E106 rounds can be conducted against the same opponents. When
competing repeatedly against the same opponents, a specific
RMUG 63.12 | 6859 | 68.99 | 69.7 69.65 ; " >
Normal 18564 18763 | 17338 | 19443 || 19445 modeling of each opponent must be done, in addition to the
distribution auction generic modeling of the population. Moreover, in contrast
Retractable Normal | 2439 | 2457 | 2345 | 24.78 3359 to the one-shot version, a current move may influence the
distribution auction future behavior of the opponents, a fact that must be taken

Table 2. Average payoff of various algorithms against human
opponents in several SCE environments Wit8

In Table 2we present the average payoffs in the same en-
vironments withK=3, i.e. 3-responder MUG and RMUG,

and 3 simultaneous auctions. The opponents’ responsegg

were based on the same data of s simulations. Con-
sistent with the results df=2, the SDVRL algorithm was
usually the most profitable algorithm (Wilcoxon<p001).
However, in the MOUG, SSVRL was significantly bet-
ter, while in the retractable normal distribution auction and
in the RSA no significant difference was found between
SSVRL and SDVRL. The SDVRL using the FSP heuris-
tic was found to be very efficient as well, and except for
the RSA and the retractable normal distribution auctions no
significant difference was found between the basic SDVRL
and the FSP-SDVRL.

In order to compare the performance of the FSP-SDVRL
algorithm with the performance of human competitors we

into account. Therefore, we intend to design an agent that
develops several optional models of typical opponents in

the population, and matches the appropriate model to each
opponent with which it interacts.

In addition, we intend to model a human’s decision-
making process when interacting in SCE environments, as
was done for non-simultaneous CE environments [6].
Acknowledgements:This work is supported in part by NSF #
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