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Abstract 

 
This paper presents protocols and strategies for 

coalition formation with incomplete information under time 
constraints. It focuses on strategies for coalition members 
to distribute revenues amongst themselves. Such strategies 
should preferably be stable, lead to a fair distribution, and 
maximize the social welfare of the agents. These properties 
are only partially supported by existing coalition formation 
mechanisms. In particular, stability and the maximization 
of social welfare are supported only in the case of complete 
information, and only at a high computational complexity. 
Recent studies on coalition formation with incomplete and 
uncertain information address revenue distribution in a 
naïve manner. In this study we specifically refer to 
environments with limited computational resources and 
incomplete information. We propose a variety of strategies 
for revenue distribution, including the strategy in which the 
agents attempt to distribute the estimated net value of a 
coalition equally. A variation of the equal distribution 
strategy in which agents compromise and agree to a payoff 
lower than their estimated equal share, was specifically 
examined. Our experimental results show that, under time 
constraints, the compromise strategy is stable and 
increases the social welfare compared to non-compromise 
strategies. 
 

1. Introduction 
 

Coalitions serve as a means for multi-agent 
collaboration. Agents within coalitions can perform tasks 
that they might otherwise be unable to perform. 
Recognizing this, several studies have suggested 
mechanisms for agent coalition formation, e.g.,  [7] [14] [17].  

In this paper we consider situations where self-interested 
agents may benefit from forming coalition when they have 
incomplete information about each other and there are time 
constraints. This is the case in the Request For Proposal 

(RFP) domain, where some requester business agent issues 
an RFPa complex task comprised of sub-tasksand 
several service provider agents need to join together to 
address this RFP. In such environments the RFP value may 
be common knowledge, however the costs an agent incurs 
for performing a specific sub-task are unknown to other 
agents. Additionally, time for addressing RFPs is limited.  

These constraints make it difficult to apply traditional 
coalition formation mechanisms, since those assume 
complete information, and time constraints are of lesser 
significance there. Furthermore, coalition formation 
consists of two main tasks:  (i) an agent needs to decide 
whom to form coalition with, and (ii) the members of a 
coalition need to agree on the distribution of coalition gains 
among themselves. Most classical coalition methods 
address only the distribution task  [5]. However, these two 
tasks are interdependent and both require a combinatorial 
search. A simultaneous solution of both increases the 
complexity further, especially in the case of incomplete 
information. In  [8] the first task was assumed for the RFP 
domain, however the revenue distribution method provided 
there suggested an equal distribution of profits among 
coalition members by a trusted agent. Such an approach 
seems too naïve for self-interested agents and requires a lot 
of effort on the part of the trusted agent. 

In this study we propose several strategies for revenue 
distribution and integrate them with the coalition selection 
strategies identified in [8]. Note that due to the incomplete 
information the agents do not know the actual net profit of a 
coalition and the distribution strategy can refer only to the 
estimated profits. In particular, we suggest strategies for 
revenue distribution where: (1) the estimated net value of 
the coalition is divided equally among its members; (2) the 
estimated net value is distributed proportionally to the 
relative contribution of each member to the value of the 
coalition; (3) the estimated net value is distributed based on 
a variation of the Kernel solution concept  [1]. We also 
consider variations of these strategies where coalition 
members compromise some of their profit computed 



according to the Kernel, proportional, or equal distribution 
strategies. These strategies were tested for stability. We 
also measured the social welfare of the agents (i.e., the sum 
of their profits) when using these strategies, since stable 
strategies that yield a high social welfare may encourage 
self-interested agents to join. Our findings indicate that the 
strategy in which the agents attempt to distribute the 
estimated net value of a coalition equally, but each agent is 
willing to compromise on a payoff lower than its estimated 
equal share, is stable. Furthermore, this strategy yields the 
highest social welfare among all the considered strategies. 
 

2. The problem 
 

Given a set of tasks, ℑ ={T1,...,Tn}, each task Ti ∈ ℑ 
consists of sub-tasks Ti1,…,Tiri,  and a set of self-interested 
agents, Å={A1,…,Am}. Each agent is capable of performing 
only a subset of the subtasks of each task. This partiality is 
expressed by a boolean function, φ. φ(Aj, Tik) evaluates to 
true if Aj is capable of performing Tik, and to false 
otherwise. We assume that φ is common knowledge. An 
agent Aj incurs a cost, bj

ik, for executing subtask Tik. Agent 
Ai' , i' ≠ i does not know bj

ik. That is, costs are private 
knowledge. Agents may however be able to estimate costs 
of others.  

The general problem we study is, given the above, to 
allow agents to perform tasks and maximize their profits. 
Since each agent cannot perform a whole task by itself, 
cooperative task performance is required. This can be 
achieved by forming coalitions. A coalition ℭT for a task T 
is a tuple 〈C,alloc,U〉 where C is a set of member agents, 
alloc is an allocation function that associates with each 
subtask of T a member of C such that alloc(Tik)=Aj only if  
φ(Aj,Tik)=true. U =〈u1,…,u|C|〉 is a payoff distribution vector 
– ui is the payoff of Ai. The gross value of a coalition is V= 
✟ui. Note that the agents do not know the net value of a 
coalition (because the costs agents incur are private 
information), and thus can agree only on the distribution of 
the payoff V.  In our solution, we assume that agents are 
rational and join coalitions only when they believe this will 
increase their benefits. For simplicity, we assume that an 
agent can participate in a single coalition at a time and can 
perform only one sub-task at a time.  

 
3. Solution approach 
 

To allow agents to form coalitions given the special 
settings presented above, we have devised a mechanism that 
consists of a protocol and a set of strategies. To avoid the 
exponential search for optimal strategies, our solution uses 
heuristic strategies. Participating agents must adhere to the 
protocol, and this adherence is enforceable. The use of the 
suggested strategies in conjunction with the protocol is not 

enforced, but we show that the strategies are stable and 
hence it is reasonable to assume that agents will use them 
instead of searching for others. The details of the protocol 
and the strategies follow. 
 
3.1 Coalition formation protocol 
 

The coalition formation protocol, presented initially in 
 [8], is a special type of an auction with an extension for 
coalition formation. The protocol consists of a central 
manager and multiple agents that can join in. The manager 
supports two roles – an auctioneer role and a coalition 
negotiation manager role. Both roles are neutral trusted 
third parties that neither discriminate among participating 
agents nor disclose their private information to others.  

The auctioneer publishes the available tasks, collects 
proposals of coalitions addressing these tasks, determines 
the winning coalition for each task, and discounts the price 
of the task over time. The auctioneer also distributes 
payments to coalition members after they complete task 
execution, however the decision upon the partition of 
payments depends on the agreement the members of the 
coalition arrived at when they formed the coalition.  

The auction protocol is used to allocate the tasks in ℑ to 
coalitions.  The auction is performed in rounds, r1,r2,... and 
it ends when there are no more tasks to auction or no more 
agents that participate in the auction, or the values of the 
remaining tasks are all nullified by the iterative discount. At 
the beginning of the auction, the auctioneer announces, for 
each task Ti ∈ ℑ, the price, P(Ti), that will be paid to a 
coalition that will perform Ti  and that had formed in the 
first round of the auction. In each round, the prices of 
unallocated tasks are reduced by a factor δ (δ is announced 
by the auctioneer at the beginning of the auction). At each 
round r, for each unallocated task Ti ∈ ℑ, there may be zero 
or more coalitions that propose to perform the task. The 
auctioneer awards each task to the first competent coalition. 
Selection among multiple simultaneous proposals is done 
randomly. The winning coalition is paid P(Ti) upon 
completing the task. P(Ti) should then be distributed among 
the members of the coalition. This distribution is the focus 
of this paper. Note that partial fulfillment of a task yields no 
payment. Additionally, the submission of a proposal to the 
auctioneer is binding. 

Prior to submitting auction proposals, the agents need to 
form coalitions. This is performed via negotiation. During 
the negotiation, agents send and receive proposals for 
coalitions to be formed. A proposal by an agent Aj specifies 
a coalition ℭT=〈C,alloc,U〉 where Aj ∈C. The coalition 
formation negotiation is performed via the negotiation 
manager. At each auction round the protocol allows only 
one negotiation round. This is enforced by the manager. At 
each negotiation round, the manager orders the agents 
randomly, and the agents perform negotiation actions in that 



order. Each agent, in its turn, can either send a proposal for 
forming a coalition C to all of its members or receive such a 
formation proposal made to it by another. An agent has only 
one turn in each round. All offers are valid for one round 
and thus an agent making an offer must wait until it hears 
from all of the agents to which it proposed. It cannot accept 
any other proposal in this round. Note that proposals are all 
sent via the auctioneer and recorded there. As a result, an 
attempt to bypass the protocol – sending proposals 
externally and agreeing on coalitions to be formed – will be 
detected by the manager and can be penalized for. If all the 
members of a proposed coalition accept the proposal, the 
coalition is proposed to the auctioneer for performing a 
specific task. If a coalition is awarded the task then the 
members of the coalition quit the negotiation. The agents 
that have not joined a coalition in a given round continue to 
negotiate in the next round.   

 
3.2 Ranking strategies 
 

An agent that participates in the protocol presented 
above needs means to decide which coalitions to propose to 
which other agents and what revenue distribution to offer. 
As stated earlier, computing the best strategy to handle such 
proposals is exponentially complex. To decrease the 
complexity of the strategies, we propose a two stages 
decision procedure. First, the agent ranks the possible 
coalitions. Second, for the top coalition, it computes the 
revenue distribution. It will offer this coalition to others, 
and accept only proposals in which its net benefit is at least 
as high as its net benefit from its computed coalition. We 
propose strategies for both stages and seek combined 
strategies that are stable and maximize the social welfare.   

Computing and ranking coalitions is performed using 
information regarding available tasks, their sub-tasks, the 
payment P(Ti) for the task, the capabilities of other agents 
and their estimated costs for performing the subtasks. An 
agent computes the coalitions in which it can jointly address 
available tasks and then ranks these. Computing coalitions, 
even without ranking, is exponentially complex, however a 
cap on coalition size reduces this complexity to polynomial. 
Fortunately, such a cap is acceptable in many real markets, 
including the RFP domain. Otherwise, the search itself 
would require simplifying heuristics to provide feasibility. 

In previous research, we have shown that ranking 
strategies are strongly affected by agents' knowledge. In 
particular, an agent's knowledge regarding the actual costs 
other agents incur for executing task plays a major role in 
this respect. When actual costs of others are not known, 
agents may estimate these and base their decisions on 
estimations. In many real markets, some rough estimation 
based on common knowledge of task costs is available.  

Following, we describe two ranking strategies. Elaborate 
experiments with these have shown good results compared 

to a centrally computed optimum and to other strategies. 
For the completeness of this paper, some of those results 
are briefly presented here, although they already appear in 
 [8]. The first strategy ranks coalitions by their marginal 
profit. We thus denote this strategy as marginal. To rank a 
coalition using this strategy, an agent computes the 
marginal profit of each candidate coalition, and sorts these 
values. A higher value is ranked higher. The marginal profit 
of a coalition is the difference between the sum of the 
(estimated) costs of its members and the value of the task 
the coalition should perform. This difference is the agent’s 
estimated net value of the task. The intuition of this strategy 
is that coalitions that have a greater net value may provide a 
higher utility to the member agents, hence should be 
preferred over others. 

The second strategy ranks coalitions with respect to the 
expertise of the ranking agent within these coalitions. We 
denote this strategy as expert. An agent is considered an 
expert with respect to a given coalition if it can perform 
within sub-tasks that only a few, or none, other members 
can perform. The expert strategy ranks coalitions in which 
an agent is an expert higher than other coalitions. 

Using the proposed strategies, each agent at its turn 
inspects and ranks possible coalitions. An agent that 
received proposals compares its share from the best 
proposal received to its share from its top-rank coalition. If 
the best proposal is acceptable, it acknowledges acceptance. 
In case it received no acceptable proposal, or no proposal at 
all, at the current negotiation round, it sends the coalition 
with the highest rank as a proposal to the members of the 
candidate coalition.  

 
3.3 Strategies for revenue distribution  

 
When proposing a coalition ℭT = 〈C,alloc,U〉, an agent 

uses the coalition ranking methods presented above to 
determine the coalition members C and their allocation to 
subtasks, alloc.  To compute its proposed U, the agent 
needs methods for computing revenue distributions. Such 
methods are presented below.  

 
3.3.1 Equal Distribution. The equal distribution strategy, 
denoted as equal, attempts to offer an equal share of the 
profit (which is the net revenue) to all agents participating 
in a coalition. When an agent does not know the exact costs 
other agents incur for performing their subtasks, it can only 
offer an estimated equal share. According to equal, after 
selecting the coalition with the highest rank, an agent 
estimates the sum of costs for all agents participating in the 
proposed coalition, B’ℭ=Σj b’j, where b’j is the estimated 
cost of Aj, summing over all Aj members of C. It then 
estimates the coalition net revenue, which for performing 
task Ti in round r is N’= P(Ti) δr – B'ℭ. Equal guides the 
agent to distribute N’ evenly among the participating 



agents. Each agent will be paid its estimated cost b’j plus an 
equal share of N’. That is, Aj's share will be b’j + N’/|C|. 

The equal strategy is a simple allocation method, 
expressing a naive type of fairness. In spite of its simplicity, 
equal has arrived at desirable results in terms of both social 
welfare and stability, as we later show. 

 
3.3.2 Proportional Distribution. Equal offers the same 
estimated profit to each member of a coalition. In real-
world situations, such a revenue allocation might not be 
realistic. The proportional distribution method, denoted as 
proportional, offers each agent a payoff proportional to its 
cost of executing its subtask. Intuitively, this reflects the 
estimated investment needed to perform the subtask, and 
sometimes also the risks incurred. After selecting a 
coalition, the agent computes its estimated net benefit N’, as 
in equal. The share of an agent Aj with an estimated cost b’j

 

will be j
j

i

N' b'
b'  + 

b'
⋅

∑
, bi is the cost Ai incurs performing its 

subtask in the coalition.  
 

3.3.3 Kernel Distribution. A desired property of a 
revenue distribution is stability. We consider two notions of 
stability. The first concept, discussed above, refers to the 
stability of coalition formation strategies. The second 
concept of stability refers to formed coalitions, and requires 
that once a coalition is formed, it will not be worthwhile for 
a group of agents to break it and form another coalition. 
Our protocol dictates that once a coalition is formed, it 
cannot be decomposed. However, this is a restriction that 
one might prefer to relax. Therefore, a method for 
computing revenue distributions should address this second 
notion of coalition stability as well. For evaluating this 
stability notion, we use the Kernel  [1], a well-known game-
theoretical stability concept. We also suggest a strategy for 
revenue distribution based on the Kernel, denoted as kernel.     

The Kernel is non-empty for any coalition configuration. 
To find a revenue distribution in the Kernel, we use 
Stearns’ method, which converges to a Kernel point from 
any given revenue distribution  [15]. The details follow: 
(1) Select the best coalition: rank all coalitions and choose 
the coalition ℭT with the highest rank (use a ranking 
strategy); (2) Create coalition structure S: assign agents not 
in ℭT to coalitions to form a structure S such that the sum of 
the gross values of the coalitions in S is maximized (use 
hill-climbing); (3) Initialize payoff vector: ≤ℭcS, distribute 
Vℭ arbitrarily among ℭ members; (4) Compute the kernel: 
use Stearns scheme as follows; (4.1) Compute the demand 
function: ≤ Ai,Aj c ℭT, compute the demand function dij; 
(4.1.1) ≤ possible coalition R that includes Ai but excludes 
Aj, compute the excess. The excess e(R, U) of a coalition R 
is the difference between the net value of R and VR, the sum 
of payoffs as suggested by the payoffs in U. The maximum 
surplus Sij of Ai over Aj is the maximal excess of all possible 

coalitions that include Ai but exclude Aj: 

,
max ( , )
i j
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(4.1.2) Compute the demand function dij as follows: 
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(4.2) Reduce differences: find agents Ai,Aj c ℭT with the 
maximal dij. If dij is higher than a certain threshold (set here 
to 0.1), stop. Otherwise, subtract dij from Aj’s payoff and 
add dij to Ai’s payoff, and then repeat step (4). At the end of 
this process, U will be in the Kernel.  

As seen above, Stearns scheme refers to all possible 
coalitions and hence requires estimates of the expected 
profits of all agents, not only those participating in a 
proposed coalition. It may be difficult to estimate profits of 
agents that have never formed coalitions. Thus, our Kernel 
revenue distribution strategy suggests the following: after 
ranking all possible coalitions and selecting the preferred 
one, an agent will compute a (near) optimal allocation of 
other tasks to the remaining agents. Then, the agent will use 
Stearns’ scheme to compute a revenue distribution for the 
selected coalition. Because of the estimated profits, the 
near-optimal allocation, and the threshold (in step 4), this is 
an approximation for a Kernel point. 

The demand function computed as part of Stearns’ 
scheme would also be used to compare the stability of the 
proposed distribution methods. In this respect, a lower 
average demand function of a method provides evidence 
that it is more stable.  

 
3.3.4 Compromise. Humans sometimes choose to 
compromise their righteous profit, if they may benefit from 
this compromise. We hypothesize that compromise may 
prove beneficial in the case of coalition revenue 
distribution. This hypothesis will be checked in our 
experiments. Compromise can be applied to any of the 
proposed distribution methods. For instance, equal provides 
agent Aj with a payoff of b’j + N’/|C|. The agent might be 
satisfied with a part α of its profit, that is, b’j + α N’/|C|, 
allowing the distribution of (1- α)N’/|C| among other agents.  

Our experiments attempt to find α values that yield high 
overall utility, and are stable, such that an agent that 
deviates and requests a payoff using a different α does not 
increase its profit. Further discussion of the way in which α 
is determined appears in Section 4.2.1. We evaluated 
experimentally the proposed strategies for selecting 
coalitions, accepting proposals and distributing the revenue, 
as we detail in the following section. 

 
4. Experimental evaluation 

 
In a previous study  [8] our goal was to examine the 

negotiation protocol and compare the strategies suggested 



to be used in conjunction with the protocol. We assumed 
that the benefits will be distributed by the auctioneer. In this 
study our major goal is to examine strategies for revenue 
distribution to be used given the protocol and the coalition 
ranking strategies. Via a series of experiments, we measure 
the expected gains resulting from the use of the proposed 
distribution strategies and the stability of each. We consider 
a strategy to be stable if, given that all agents use it, it will 
not be worthwhile for an agent to deviate and use another 
strategy. This notion of stability was tested via experiments 
in which all agents but one use one strategy and the one 
agent uses another strategy. This type of stability is referred 
to as an experimental equilibrium.2 The experiments and 
their results are presented and analyzed below. 

 
4.1 Settings 

 
In our study, experimental settings vary over the number 

of agents, the number of tasks and the number of subtasks 
per task. We denote such a setting by a tuple <a, t, s>, 
where a, t, s refer to number of agents, number of tasks and 
number of subtasks, respectively. Given an experimental 
setting, a specific configuration further requires determining 
the following parameters: the value of each task, the 
capabilities of each agent (i.e., which sub-tasks it can 
perform) and the cost of a given agent to perform each sub-
task. The experimental settings we consider are the 
following: (i) <6, 2, 3>; (ii) <10, 2, 5>; (iii) <10, 5, 5>; (iv) 
<12, 3, 4>; (v) <16, 4, 4>; (vi) <16, 5, 4>. These provide a 
variety of agents/tasks combinations. In settings i,ii,iv, and 
v, the number of agents is equal to the number of possible 
subtasks to be performed. Thus, the ability to perform all of 
the tasks depends on the agents’ capabilities. In settings iii 
and vi, the number of subtasks to be performed is larger 
than the number of agents. Such settings in our model 
(according to which each agent performs only one subtask 
at a time), result in some tasks not being performed.  

In each experiment, for each of the settings, we 
randomly generated up to 1,500 configurations. Half of the 
subtasks within a configuration were “specialized tasks” 
and the other half were “regular tasks”. An agent had a 0.4 
probability of being able to perform a regular subtask, but 
only a 0.15 probability for a specialized one. Task and 
subtask values and costs were determined as follows. For 
each subtask, we have randomly selected a mean cost mc 
with a uniform distribution between 1 and 99. The value of 
a task is the sum of the means of its subtasks times 1.5, 
providing an average profit of 50%. The actual cost of a 
given subtask was randomly drawn from a normal 
distribution with the mean cost mc, and a deviation of 2. 
                                                                 
2 An experimental equilibrium, as defined in  [3], refers to an equilibrium 

which is measured experimentally with respect to a given set of 
strategies. When new strategies are introduced, the equilibrium can be 
re-computed. 

The discount factor δ was set to 0.01. Throughout the 
experiments, we distinguish between two setting types, 
referring to the information available to the agents. In the 
first setting type, referred to here as the “complete 
information” case, each agent knows the costs of the other 
agents. In the second setting type, referred to as the 
“incomplete information” case, the agents know only the 
mean values of the costs. The capabilities of the agents are 
common knowledge in both cases. 

 
4.2 Results 
 

The metric we use for evaluating the social welfare of 
the agents obtained when using various revenue distribution 
strategies is the ratio between the sum of agent payoffs 
within a system where agents implement our proposed 
strategies, and the equivalent centrally computed near 
optimal sum. Combinatorial complexity prohibits the 
computation of the optimal cumulative payoff, however a 
near-optimal value was computed using hill-climbing.  

Recall that in a previous study  [8] we have examined a 
rather restrictive revenue distribution method, according to 
which profits are distributed equally among coalition 
members, and this distribution is performed by a central 
manager. In this study, and in particular in the set of 
experiments we examine alternative revenue distribution 
strategies. Previous results indicate that, in the case of 
incomplete information, expert was better than marginal; in 
the case of complete information, marginal was better. 
Both strategies performed significantly better with complete 
information, though marginal gained from complete 
information much more than expert did. The following 
experiments may use these results as a reference. 

 
4.2.1 Compromising.  As mentioned above compromising 
may be beneficial, especially in environments where fast 
contract closing is important, as in our case. Let αc[0..1] 
quantify the willingness of an agent to compromise its 
profit, α=1 refers to no compromise. Smaller α values 
promote acceptance of other agents’ offers, leading to an 
increase in overall utility. In the extreme case (α=0) where 
each agent demands a zero profit for itself and divides the 
whole profit between the other agents, all negotiated 
contracts will be signed immediately, and the average gain 
of all agents will be high. However, this extreme strategy is 
unstable, as deviating free riders will profit. We sought α 
values such that, if all agents follow a strategy that dictates 
demanding the same α share, it will not be worthwhile for 
any of them to deviate. We were aware that such α may not 
exist, nevertheless we did find such α, as discussed below. 

In the first experiment of this section, we tested various 
values of α, from 0 to 1.02. Most of the agents demanded 
their exact complete share, without compromising, but in 
each environment, one agent deviated and compromised for 



α of its share. We calculated the average utility of all 
agents, versus the utility of the one deviating agent. We 
used the strategies according to their superiority: expert for 
incomplete information and marginal for complete 
information. We computed an average of 1500 runs. 

 

Compromise Profits/Non-Compromise Profits

0

0.5

1

1.5

0 0.3 0.4 0.45 0.5 0.7 0.8 0.85 0.9 1 1.02
alpha

Incomplete Information Complete Information

Figure 1. Compromise is beneficial 
Figure 1 shows the ratio between the utility of the 

deviating agent and the average utility of all other agents. 
Clearly, a small compromise increases the profit of the 
compromising agent. The peak for incomplete information 
is at α=0.8. For the complete information the peak is at 
α=0.9, but the difference between the profits for α=0.8 and 
α=0.9 is not significant. When an agent demands more than 
its rightful share, as for α=1.02, it inflicts a sharp decrease 
on its profits. Note that although compromise increases the 
gains for both complete and incomplete information, the 
gains for incomplete information are more significant. This 
is also apparent in Figures 2 and 3. 

Based on the α results above, we studied the marginal 
and expert strategies subject to compromise where α=0.8. 
We compared two homogenous environments, one where 
all agents implement α=0.8, and one where all agents 
implement α=1. In each, we experimented with both 
marginal and expert, with incomplete and complete 
information. We expected the overall utility for α=0.8 to be 
larger than for α=1.  
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Figure 2. Incomplete info. Figure 3. Complete info. 

As Figure 2 shows, with incomplete information, 
compromising for 0.8 of the expected payoff led to a 
significant increase in agents’ average gain (t-test, 
p<0.001). Interestingly, the compromise nullified the 
advantage of expert over marginal in the incomplete 
information case. When the agents compromise, contracts 

are signed faster than when they do not. This reduces the 
effectiveness of expert’s ability of resolving conflicts, and 
therefore marginal yielded gains similar to expert's gains. 
In the complete information case (Figure 3), compromising 
did not increase marginal's gains. It did increase the gains 
of expert, however these were still lower than those of 
marginal.  

Experiments not presented here because of space 
limitation show that deviating from α=1 to α=0.8 is 
significantly profitable (t-test, p<0.001). Similar 
experiments with several α values have shown, in both 
incomplete and complete information cases, that deviating 
from α=0.8 was not beneficial, hence the α=0.8 
compromise is a dominant strategy. Furthermore, when 
using compromise distribution, marginal becomes the 
stable strategy for the case of incomplete information too.  
 
4.2.2 Proportional revenue distribution. We studied the 
effect of using proportional, compared to equal. We 
hypothesized that equal would give a higher overall utility, 
because it will better match the agents’ expectations of their 
share.  

The results of experiments not presented here show that 
the overall profit is slightly higher when using equal with 
compromise (α=0.8) than when using proportional. In 
additional experiments deviation was examined. The results 
(Figure 4) show that deviation from equal to proportional 
was not worthwhile (t-test, incomplete info.: p=0.004, 
complete info.: p=0.04). However, deviating from 
proportional to equal was beneficial (t-test, incomplete: 
p<0.001, complete: p=0.009); in that context, proportional 
is not stable, while equal is. 

Figure 4: Equal/Propo.       Figure 5: Equal/Kernel 
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Figure 6: Deviation kernel/equal, equal/kernel  
 
4.2.3 Kernel allocation and stability testing.  Above, we 
have examined stability by allowing some agents to deviate 



from the majority strategy, checking whether they gained or 
lost by deviating. This method of stability testing only 
compares a selected strategy with some other selected ones. 
However, there might be other, not considered strategy, 
which performs better than the examined ones. To 
overcome this, a game-theoretic method for computing 
equilibrium  the Kernel  is used. In the following 
experiments, we compare kernel to equal, focusing on the 
overall utility and the average demand function.  

In the first set of experiments, we compared equal and 
kernel; in both cases marginal was used for coalition 
selection. We conducted the experiments for both α=1 and 
α=0.8 (compromise). Here, compromise affected both equal 
and kernel. The Kernel tends to divide revenues unevenly; 
very often, a weak agent may be offered a zero payoff. 
Because with equal the agents’ expectations match the 
offers that they get better than with kernel, we expected that 
more contracts will be signed and that the overall profits 
will be higher with equal. 

The results (for compromise, seen in Figure 5) confirm 
our hypothesis. In most cases, the kernel average payoff 
was substantially lesser than the equal payoff (t-test, 
p<0.001). Stability in the coalition decomposition sense, 
measured by means of average demand, was expected to be 
better (i.e., have lower values) for kernel than it would for 
equal. We have computed the average demand function of 
some homogenous environments, and the results are listed 
in Table 1. As expected, the kernel was found more stable 
than both equal and proportional, as its average demand 
was significantly lower than the average demand of the 
others. We can also observe that equal is more stable than 
proportional, and that environments where all agent 
compromise are the least stable. 
Table 1. Average demand: kernel the most stable 

Information: Incomplete Complete
Equal 4.34 4.86
Proportional 5.33 5.47
Kernel 1.77 1.10
Equal 0.8 Compromise 5.12 5.11
Kernel 0.8 Compromise 2.14 1.76
Equal with Adaptation 4.46 4.84
Proportional with Adaptation 5.29 5.44
We then tested the revenue distribution strategies in 

heterogeneous environments, where agents deviate from the 
majority method. We used the dominant α=0.8, and studied 
deviation from equal to kernel and vice versa. Similar 
experiments were conducted with no compromise, yet the 
results were comparable.  

Figure 6-right shows that deviating from equal to kernel 
is not profitable (t-test, p<0.001). This result was not 
surprising. However, the results of the experiment depicted 
in Figure 6-left might require some explanations: we see 
that even if all agents are using kernel, it is worthwhile for 
one agent to deviate and use equal (t-test, p<0.001). This 
seems unexpected, since the kernel aims at creating a stable 
state; but it is not, given the notion of stability that we used. 
The kernel ensures stability of coalitions that were formed, 

such that breaking a coalition will not be profitable; with 
our protocol, this is unnecessary, as the protocol enforces 
the stability of formed coalitions. The kernel method might 
have an important role if the protocol would allow 
coalitions decomposition. 
 

5. Related Work 
 

Game theory provides various stability concepts for 
determining distribution of coalition values (see, e.g.,  [5]) 
but usually does  not consider situations where there is 
incomplete information about coalition values. There are 
only few attempts to generalize the stability concepts of 
coalition formation, such as the core, for situations of 
asymmetric information  [16], [8]. Additionally, game theory 
does not provide algorithms that agents can use to form 
coalitions and to reach an agreement on value distribution. 
Thus, given a specific negotiation protocol for coalition 
formation, a game theoretic stability concept does not 
necessarily provide stable strategies. We demonstrated this 
problem by implementing a revenue distribution strategy 
based on the Kernel  [1], for which we have shown via 
experiments, that deviation to equal distribution with 
compromise is beneficial.   

Many group formation algorithms for cooperative 
environments were suggested (e.g.,  [14], [4]). The revenue 
division is not important in such settings. Agents may have 
different views on the environment and tasks, and thus need 
to compromise in reaching a coalition formation agreement. 
However, since they try to maximize social welfare, they 
simply follow system-imposed strategies, with no attempt to 
deviate. In  [17] the problem of coalition formation is 
addressed for self-interested agents, but in superadditive 
environments. In  [13], solutions were proposed for non-
superadditive environments where the value distribution is 
based on the Kernel. However the value of each coalition is 
known and the stability of the overall strategies was not 
considered. Sandholm and Lesser  [12] present a coalition 
formation model for bounded-rational agents and a general 
classification of coalition games.  As in  [12] we also allow 
for varying coalitional values, however we provide the 
agents with strategies that could be computed in polynomial 
time. We assume that time is costly, and that agents take the 
coalition formation time into consideration when deciding 
on whether to join a coalition. We focus on the stability of 
the proposed strategies, while Sandholm and Lesser focus 
on the agents' social welfare. Sandholm et al.  [11] discuss 
the problem of identifying coalition structure that 
maximizes the sum of the values of coalitions. They neither 
discuss coalition value distribution nor the stability of 
forming such coalitions. Griffiths and Luck  [2] introduced 
the notion of clans, a group of agents that share similar 
objectives, and treat each other favorably when making 
decision about cooperation. They described mechanisms to 



form, maintain and dissolve clans of self-interested agents. 
However, they do not address deviation either from the 
clan, or from commitments in the context of the clan. We 
explicitly address deviation. 

All the works we mentioned assume complete 
information: each of the agents knows the exact value of 
each possible coalition. For the problem we solve, this 
assumption does not hold. In real world situations, rarely do 
other agents know each agent’s exact value and costs of 
fulfilling each task  [6]. Therefore, solutions presented in the 
studies discussed above are inapplicable for our problem. In 
particular, the methods used to check the stability of a given 
state require that all agents hold the same beliefs about the 
state. More related to our work is research on fuzzy and 
stochastic co-operative games  [10].  In such games agents 
face situations of uncertainty, including, for example, 
vagueness of expected coalition values and corresponding 
payoffs. This preliminary research attempts to find formal 
models to address these problems, while we provide 
experimental results that present the advantages of using 
our proposed protocol and strategies.   
 
6. Conclusion 

 
In this paper we consider the problem of coalition 

formation for cases where groups of self-interested agents 
can only perform tasks cooperatively. In particular, we 
consider situations where a complex task is comprised of 
sub-tasks, and each sub-task should be performed by a 
different agent. We studied situations in which the costs 
that an agent incurs for performing a specific sub-task may 
be unknown to other agents, and time for addressing a task 
is limited. We focused on the problem of revenue 
distribution, seeking stable strategies for this distribution. 
We also aimed at maximizing the social welfare, i.e., the 
sum of agent payoffs. We found out, via extensive 
simulation experiments, that the strategy according to which 
the agents attempt to distribute the estimated net value of a 
coalition equally, but each agrees to compromise 20% of its 
estimated equal share, is stable. Further, that strategy yields 
the highest social welfare when compared to the other 
strategies that we examined. The stability exhibited by the 
compromising strategy is surprising, as it contrasts the well-
known free-rider phenomenon. The advantages of 
compromising in fully cooperative multi-agent systems, 
where agents attempt to maximize the system overall 
performance, are widely known. However, our results 
concern self-interested agents who may deviate to increase 
their own expected rewards. Our hypothesis is that 
compromise is stable and beneficial under pressing time 
constraints. In our environment, these constraints are 
manifested in two ways: firstly, in each time period the 
value of a given possible coalition is discounted; secondly, 
tasks are awarded to coalitions based on the first-formed-

first-awarded criterion. These factors encourage the 
formation of coalitions as early as possible. Apparently, 
agents that are not willing to compromise are not able to 
join a beneficial coalition. Future work should study 
additional multi-agent environments where compromising 
of self-interested agents is stable and beneficial. 
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