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Abstract

In this paper, we propose a strategic-negotiation model which enables self-motivated
rational agents to share resources. The strategic-negotiation model takes the passage of
time during the negotiation process itself into account. The model considers bilateral
negotiations in situations characterized by complete information, in which one agent
loses over time while the other gains over time. Using this negotiation mechanism,
autonomous agents apply simple and stable negotiation strategies that result in efficient
agreements without delays, even when there are dynamic changes in the environment.
Simulation results show that our mechanism performs as well as a centralized scheduler
and also has the property of balancing the resources’ usage.
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Jon Wilkenfeld for his comments and Dr. Shifra Hochberg for editorial assistance.



Contents

1 Introduction 1
2 Description of the Environment 1
2.1 Goalsand resources . . . . . . .. ... 2
2.2 The negotiation process . . . . . . . .. ..ol e 2
2.3 Assumptions . . . . . . . ... e e e e 5
2.4 Subgame perfect equilibria . . . . . ... o Lo 8
2.5 Acceptable agreements . . . . . .. ..o 8
2.6 The agents’ preferences in respect to different outcomes . . . . . . . . . . .. 11
2.6.1 W'spreferences . . . . . . . . .. 11
2.6.2 A’spreferences . . .. . ... 12
3 Subgame perfect equilibrium strategies 13
3.1 Time periods when the negotiationends . . . . .. . ... .. ... ... .. 13
3.2 Time periods near the end of the negotiation . . . . . . .. ... . ... ... 14
3.2.1 W prefers Leave than 547 in a time period before s, becomes 0 (1" < t4) 14

3.2.2 sl becomes 0 before the first period in which W prefers Leave" to
AL (A <) L 17

3.3 Possible agreements when A prefers §4%*! at ¢ + 1 to §4*2 at t + 2 (losing
over time) . . . . ... 21
3.4 Specification of the subgame perfect equilibrium strategies . . . . . . . . .. 23
3.4.1 Negotiations starting at the second time period (¢t =1) ... ... .. 23
3.4.2 Negotiation during the first time period . . . . . . . .. ... ... .. 26
3.5 Examples . . . .. . 31
3.5.1 A has no preference between (41 ¢t + 1) and (542t +2) . . . . . 31
3.5.2  A’s utility from (347,¢) is not lower than that from (341t +1) .. 32
3.5.3 A prefers (3441t + 1) to (442t + 2) (losing over time) . . .. .. 33
3.5.4 W Leaves before starting the negotiation . . . . . . . .. .. ... .. 33
3.5.5 A leaves when W approachesit . . .. .. ... ... .. ....... 33
4 Simulation Results 34
4.1 Metrics . . . . . . L 35
4.2 Results and discussion . . . . . . . ... 36

5 Related work 38



6 Conclusion and Future Work

41



1 Introduction

In multi-agent environments where agents use resources to satisfy their goals, two agents may
need the same resource simultaneously. Sharing a common resource requires a coordinating
mechanism that will manage the use of the resource. We extended and applied the strategic
model of negotiation [KWZ95] to enable self-interested, rational agents to share resources,
when there is no central controller. This strategic-negotiation is a process that may include
several iterations of offers and counter offers [OR90, Rub82]. A major consideration in this
model has been to reduce overhead costs resulting from planning and negotiation time. In
this paper we focus on bilateral negotiation in which one agent uses the resource during the
negotiations, while the other agent waits to gain access to the resource.

According to the utilitarian paradigm, a rational agent’s interactions with the environ-
ment should be guided by the principle of expected utility maximization. We apply this
paradigm and develop a formalization of the agent’s utility function. Using these utility
functions and our negotiation mechanism, agents who need to resolve conflict with respect
to resource usage apply simple and stable negotiation strategies that result in efficient agree-
ments on the usage of the resources without any delays. Simulation results show that our
mechanism performs as well as a centralized scheduler, is more flexible, and also has the
property of balancing the use of resources.

In section 2, we describe the environment which we consider and provide formal definitions
of the components of our model. In Section 3, we provide the strategies which are in perfect
equilibrium. In Section 4, we present our simulation results, and in Section 6, we summarize

the results and suggest further directions for future research.

2 Description of the Environment

We consider bilateral negotiation between two self-motivated agents that need the same
resource in order to satisfy their goals. Time constraints and a deadline are associated
with each goal. One of the agents - the Attached Agent (denoted A)- uses a resource
that another agent - the Waiting Agent (denoted W)- needs. So, W starts a negotiation
process to obtain access to the resource. Possibly, A has performed work before W started
the negotiation. During the negotiation process, A continues to hold the resource and to
work toward its goal. W cannot move on to another goal and return to this goal later, since

the goals are given in a meaningful order.



2.1 Goals and resources

An agent needs a resource in order to fulfill one of its goals, which is formally defined in the

following definition.?

Definition 1 Goal:

A goal is a tuple with six elements < g,tmin, tmaz, dl, m,r >, where

® g 15 a unique goal identification number. We denote the set of all the goal identification
numbers by GI.2

® t,.in- denotes that an agent must work a minimum of at least t,,;, time periods on the
goal without interruptions in order to receive any payment. That is, this is the minimal
amount of time required to partially satisfy the goal.

® t,,4.- 15 the maximal number of time periods the agent can work on the goal.

e dl- specifies the deadline for accomplishing this goal, i.e., the number of time units from
the time the agent receives the goal until the goal stops being relevant.

e m 1is the payment the agent receives per time period after a reduction of the fee for

using the resource needed for this goal.

r 15 the resource needed for this goal.

2.2 The negotiation process

We will assume that the goal A is working on during the negotiation is

< ghtd. A - dIA, mA 4 > denoted g4, and the goal that W would like to fulfill (i.e., its
reason for the negotlatlon) is < g, tW W . dIV mW " > denoted ¢", and 4 = V.

W starts a negotiation process to obtain access to the resource. Our strategic model
of negotiation which the agents use is a model of Alternating Offers. The agents can take
actions in the negotiation only at certain times in the set IN = {0,1,2...} that are fixed in
advance. These time periods are identical to the time periods referred to in the definition of
the goal. We will use ¢ to denote the current negotiation period.

At the first time period, t = 0, W makes an offer to A. A can accept the offer (choose
Yes), leave the negotiation (choose Leave), opt out of the negotiation (choose Opt) or reject
the offer (choose No) and make a counter offer. If A accepts the offer, the agreement is
implemented immediately. Also, if A Opts out or Leaves, then its action is taken immediately.
If A rejects the offer and makes a counter offer, W will respond during the next time period

(t = 1) by either accepting the offer, leaving the negotiation, opting out or rejecting the

1A summary of the notations used in this chapter appears in table 1.
2Sometimes, we will refer to the goal using its identification number.



Notation Description Definition
Goal | g goal identification Def. 1
tomin minimum time periods needed for working
in order to get paid for this goal
tonax maximum time periods needed for working
on this goal
dl deadline: the number of time units from the goal’s arrival time
in which the goal is still relevant
m payment per time period
r the resource needed for this goal
done’ periods agent 7 has been working on the goal so far
g4 current goal that A is Working on —
< 9% timins timas, AL, mA 7 >
v the goal that W wants to work on —
< gVt W AV mW >
Offer |s the time periods A gets to keep Def. 2
the resource according to an agreement
n the time periods W gets to use the resource
according to an agreement
Wit < s,n > | best agreement for A in time period t that is not worse Def. 6
for W than opting out
sh the additional time periods that A needs in time period t Def. 7
in order to completely accomplish its goal
[0k the latest offer that was made in the negotiations Sec 3
General | q time periods needed for repairing the resource Sec 2
after opting out
c cost for W per negotiation period Sec 2.2
Time |tV the earliest time period in which agent W Sec. 3.1
periods does not have enough time to perform ¥
before its deadline after Opt
tW the earliest time period in which W
does not have enough time to perform t%.
before its deadline
t4 the time in which A would finish working
on its goal
v the earliest time in which W’s utility from leave
is not lower than its utility from any other option
t the earliest time period between tW and t4

Table 1: A short description of all notations used in this paper. The index 7 refers to either
agent A or W.




offer and making a counter offer during the next period (¢ = 2), and so on and so forth.
Negotiation continues until one of the agents agrees to a given offer, Opts out, or Leaves the
negotiation. If one of the agents Leaves, the negotiation ends, and the opponent can obtain
the resource. W can also decide not to start the negotiation at all and Leave during the
first time period. When one of the agents Opts out, the resource is not available for ¢ > 1
time periods.®> We denote by p; € [0,1], 7 € {A, W} the probability that agent ¢ will be able
to use the resource as much as it is needed after an agreement is implemented or after the
recovery period from Opting out is over.?

An offer that is made in the negotiation refers to two aspects of the use of the resource,

as shown in the next definition.

Definition 2 (Agreement:) An offer that could become an agreement is a pair < s,n >,

such that (i) s is the number of steps that A will continue to keep the resource, that is, the

number of steps W has to wait, and (ii) n is the number of steps W gets to keep the resource.
The set of possible offers is S = {(s,n) € N*: s> 0, n > 0}.

Note that s does not determine n uniquely. Rather, both s and n are subject to negotia-
tion. In particular, in an agreement, (s,n), both s and n are not restricted. However, if s is
too large, then W will not have enough time to perform its goal before its deadline. If n is
too large, then since holding a resource without using it is costly, it will not be profitable for
W. Implementing an agreement means that A will continue to work for s time periods and
then W will work for n. We will see that even after an implementation of an agreement the
agents’ goals may be only partially satisfied and they may try to obtain additional access to

the resource. We demonstrate these RAE environments

Example 1 In the first example, NASA has embarked on a scientific mission to Mars that
involves sending several mobile robots.> The European Space Agency (ESA) has also sent
several mobile robots to Mars. Both NASA and ESA’s robots work in the same environment.

The maissions of the robots involve collecting soil samples from different locations and at

3The waiting time may be required for example, if the resource is consequently damaged, when one of
the agents opts out.

4In order to simplify the agents’ utility function, we assume that agent i does not try to estimate whether
its opponent will start a second round of negotiations if agent i gets access to the resource after the event.
Suppose that ¢ can gain V; if it will be able to use the resource as much as it is needed after the event. We
found out via simulations, that it is possible to determine p; in such a way that p;V; is a good estimation
for agent 7’s expected utility.

®Given the 1997 success of NASA’s Pathfinder on Mars [GCET97], and the 1994 success of DANTE II
in exploring the crater on the Mt. Spurr volcano in Alaska, it seems that such scenarios may be realistic
in the near future (see also [Ber98]). NASA’s current plan is to send a pair of wheeled robots to search for
evidence of water on Mars in 2003.



different depths. To satisfy its goal, a robot will need one of the digging tools. The tools were
sent to Mars by a third company, which charges NASA and ESA according to their use of the
equipment, but does not schedule its usage. When a robot encounters a situation in which it
needs a resource that is used by another robot, it may start a negotiation session.

In a different example, suppose there are several automated bankers, and each has its
own communication system to communicate with its customers and with other branches of
the bank. In addition there is a public communication line available for payment. The
automated bankers usually use their own communications systems,; however, in case they
are experiencing an overload, or in case their communications system is down, they use the
public domain system. If one of the automated bankers would like to use the public line when
another automated banker is already using it, our model is applicable.

The same situation may occur when information servers are sharing a public communi-
cation line. Similarly, a person that would like to use a public phone, when another person

15 using it may face a similar problem.

We assume that each agent has a utility function:

U': SU{Opt,Leave™V Leave®} x GI x IN x IN — IR. A utility function associates with
each of the possible outcomes, the expected benefits of the agent from the outcome. The
possible outcomes are an agreement (i.e. a member of §), opting out and Leave by one of
the agents. The expected benefits depends on goal identification (i.e., a member of GT), the
number of periods the agent has been working on the goal until the negotiation has started
(done'), and the time period of the negotiation (i.e., a member of IN). When done® and ¢
are clear from the context or do not influence the agent’s utility, we will not specify them,

i.e., we will write U (Leave",t) instead of UW (Leave™, gV done",t).

2.3 Assumptions

We consider only environments that satisfy the following assumptions:

Monetary system: There is a monetary system in the environment which is used for the

payments mentioned above, as well as for other costs described below.

Utility maximization: The agents try to maximize their payments and minimize their

costs.

Minimal consequence work: No payments will be made to the agent, unless t,,;, time
periods were completed without interruption. The work toward achieving a goal can

be stopped and resumed later, on condition the agent has worked for t,,;, periods on



it. However, if it is stopped before the agent has worked on it at least t,,;, time periods
no payment will be made. The agent will need to start from the beginning if it would

like to satisfy the goal.

Maximal number of periods: The maximal payment that could be made is m - t,,,, for
working on the goal for t,,,, time periods. No payment will be made for additional

time periods.

Cost of holding an unused resource: An agent that is holding a resource without using

it, e.g., its goal’s deadline passed, is charged a cost for holding the resource.

Cost of the negotiations: W has a fixed cost ¢ € IR for each negotiation period. The

cost is due to communication costs, etc., which it needs to pay.

Outcome with the same utility: When two outcomes have the same utility, an agent
will prefer the one in which the resource will be free in the future, as much as possible.
In particular, when an agent’s utility from leaving and from opting out is the same, it
will not opt out of the negotiation. Similarly, when an agent’s utility from leaving and

from accepting an offer is the same, it will not accept the offer but will leave.

In [Sch96] we presented a detailed description of a utility function which can be used
in such cases. Here, we only demonstrate the agents’ utility functions, using the following

example.

Example 2 We return to the example of the robots on Mars. Suppose that at some given
time, a robot sent by NASA, called RobotN, is working on goal G1, which is to dig a hole
in Mars’ surface using a special digging tool denoted 1002. Its task should take at least 15
minutes and should not last more than 70 minutes (the rock’s structure is unknown to the
researchers, and therefore a time interval is given instead of an exact amount of time). The
deadline of this goal is set at 79 minutes. The payment for each productive minute is 4. We
formally specify this goal by < (G1,15,70,79,4,1002 >. Similarly, RobotE is a robot sent
by ESA, and one of its goals is to dig a small hole in another location. We specify this goal
by < G2,10,20,30,4,1002 >. That is, t¥. = 10, t = 20, W’s deadline is 30, and its
payment, similar to RobotN, for each productive minute is 4. RobotN has started working
on its goal first. It has already been working for four minutes (done# = 4) when RobotE
wants to start working on its goal and realizes that RobotN is using the resource it needs.

This situation requires negotiation, where RobotN is the Attached agent and RobotE is the

Waiting agent. Opting out in this case causes the resource to go out of use for eight minutes



(¢ = 8). After opting out or after an agreement is implemented (i.e., A has worked for s time
periods and W for n time periods), if the agents weren’t able to fully satisfy their goals and
they still have enough time (i.e., their deadlines haven’t arrived yet) they, may try to get
access to the resource. We assume that both robots have equal probability of gaining access
to the tool and keep on using it in such a case (pyy = pa = 0.5). Since RobotE initiates the
negotiation, it has costs of 2 per minute for the communication.

Let us consider the utility of the robots from a specific possible agreement. Suppose
the robots agree at the beginning of the negotiation (i.e., t = 0) that RobotN will continue
working for an additional 20 minutes and will then allow RobotE to use the tool for 10
minutes, i.e., < 20,10 >. This will allow both RobotN and RobotE to perform their minimal
required time periods, but will allow RobotN to perform for a few more time periods before
the agreement is implemented, and possibly additional time periods after the agreement is
implemented. In particular, RobotN, which plays the role of A, is allowed to work 20 minutes

according to the agreement. Thus its utility from this work is 20 - 4 = 80. Working for 20
A

RobotN had worked before the negotiation has started (done# = 4), it is still less than its

maximal time (¢4, = 70). RobotN has enough time to work an additional 20 minutes since

minutes is more than its minimal requirement (t7,, = 15). But, even with the 4 minutes

its deadline is in 75 minutes (note that the original deadline was 79 minutes from the time
it started working on the goal, but it has already worked for 4 minutes).

After the agreement is implemented, i.e., after RobotN has worked for 20 minutes and
RobotE has worked for 10 minutes, RobotN will have 45 minutes until its deadline (which
together with the minutes worked before the agreement will give it 69 minutes, i.e., almost its
maximum). However, the probability that it will be able to work these 45 minutes is only 0.5.
Thus its expected utility from working after the agreement is implemented is 0.5-45-4 = 90.
Summing these utilities we obtain that U#(< 20,10 >, G1,4,0) = 170.

The only utility for RobotE, which plays the role of W, is attained from reaching the
agreement. It does not have future time periods since its deadline will arrive after the
agreement is implemented, i.e., in 20410 minutes. Thus its payments are 10 - 4 = 40. Since
the agreement is reached during the first time period of the negotiation, it does not have
any additional costs. Thus, U" (< 20,10 >, G2,0,0) = 40.

Opting out at the beginning of the negotiation (¢ = 0) is worse for RobotN than the
agreement < 20,10 >. If opting out occurs, RobotN won’t have any productive time periods
before it. However, it may be able to perform most of its maximal required time, i.e.,
67 minutes, after the resource becomes available again and before its deadline arrives. The
probability that it will be able to work these 67 minutes is only 0.5. Thus, U4(Opt, G1,4,0) =
0.5-67-4=134.



RobotE, which plays the role of W, will have the chance to work its total maximal
time after opting out, but again only with a probability of 0.5. Thus U" (Opt, G2,0,0) =
0.5-20 -4 = 40. This is equal to the utility from the agreement < 20,10 >, where it works

for 10 minutes with certainty.

2.4 Subgame perfect equilibria

We are now ready to consider the problem of how a rational agent will choose its negotiation
strategy. A useful notion is the Nash Equilibrium [Nas53, LR57]. It uses the concept of a

strategy profile that is an ordered set of strategies, one for each player.

Definition 3 (Nash Equilibrium) A strategy profile (f1, f2) is a Nash equilibrium of a
model of alternating offers, if each agenti € {1,2} does not have a different strategy yielding
an outcome that it prefers to that generated when it chooses f;, given that the other agent j

chooses f;.

This means, that if both agents use the strategies specified for them in the strategy
profile of the Nash equilibrium, then no agent will benefit by deviating and using another
strategy. However, the use of Nash equilibrium in a model of alternating-offers leads to an
absurd Nash equilibria [Tir88]: an agent may use a threat that would not be carried out
if the agent were put in the position to do so, since the threat move would give the agent
lower payoff than it would get by not taking the threatened action. This is because Nash
equilibrium strategies may be in equilibrium only in the beginning of the negotiation, but
may be unstable in intermediate stages. In the following definition, the concept of subgame
perfect equilibrium (SPE) [OR94] is defined, which is a stronger concept, and will be used

in order to analyze the negotiation.

Definition 4 (Subgame perfect equilibrium:) A strategy profile is a subgame perfect
equilibrium of a model of alternating offers if the strategy profile induced in every subgame

15 a Nash equilibrium of that subgame.

This means that at any step of the negotiation process, no matter what the history is, no
agent will benefit by deviating and using any strategy other than that defined in the strategy
profile.

2.5 Acceptable agreements

The main question in identifying strategies that are in subgame perfect equilibrium is what

are the offers that may be acceptable to the agents. It is clear that such offers must be



better than (or equal to) opting out or leaving for both agents. Otherwise, they will prefer

the other options to reaching an agreement.

Definition 5 (Agreements that are not Worse than Opting Out) For every periodt €
IN and agent i € {W, A} let Possible: © {s* | s' € S, Ui((s,t)) > Ui((Opt,t))} be the set
of all the possible agreements that are not worse for agent i in period t than opting out in
period t. Possible' is the set of agreements which are preferred by all the agents over opting

out, i.e., Possible’ = Possibley, N Possiblé,.

Note that Possible’ is never empty. The agreement < 0,0 > is always not worse to both
agents than opting out since < 0,0 > allows both agents the possibility of obtaining the
resource again immediately. This is better than trying to gain access to the resource after ¢
time periods, as in opting out.

Even though it is clear that the agreement that will be reached belongs to Possible’, we
still have to find out which of the members of Possible’ will be reached when the agents
follow their subgame perfect-equilibrium strategies. Since A is using the resource during the
negotiation and does not have negotiation costs, it has an advantage over W. Thus, as we
will prove later, there is a subgame-perfect equilibrium in which the best agreement for A

in Possible’ will be the basis of the strategies.

Definition 6 (Acceptable offer:) 34t =< s,n > is the best agreement for A, at time pe-
riodt, which is still not worse for W than opting out. That is, U((3",t)) = mMazT _poocibld U'((s,t)).
If there are several such agreements, the one in which the resource is left free for the

longest time is chosen.

The next definition deals with A’s needs: how many additional time periods it needs in
period ¢ in order to completely accomplish its goal, given the specifications of its goal and
the current time period. At a given time period ¢ of the negotiations, A has already worked
for t + done” time periods. In the best case, it will be able to work for enough periods to

tA

A . — done? —t. However, its deadline may arrive

reach its maximal requirements, i.e.,
before this, and thus it will be able to work only for the time left until its deadline, i.e.,

dl* — done? —t. This is summarized in the following definition.
Definition 7 s4:

sty = min{dl* — done® — t,t2  — done® —t}.

Y “mazx

SWhether this subgame-perfect equilibrium is unique is an open question.



When A works for additional s’ time periods, after ¢ time periods of negotiation, it will

accomplish the feasible part of its goal. Therefore, it is easy to prove the following lemma.”

Lemma 1 (< s%,0 > is the best agreement for A.)

Vi, n, s £ sh, UA< s, n >, g%, done? 1) < UA(< 4,0 >, g%, done?, t)

[Sch96] identified the values of §4¢ given the agents’ utility functions. Here we simply
demonstrate these findings using an example and present our findings concerning the agents’

preferences.

Example 3 We return to the example of the robots on Mars (Example 2) and compute §4°.

Recall that RobotN’s goal is < G1,15,70,79,4,1002 >, i.e., tA. =15 t4 =70, and the

min mazx

deadline is 79. The goal of RobotE is < (2,10, 20,30,4,1002 >, ie., tV. =10, t% = 20,
and the deadline is 30. In this case, RobotE, which plays the role of W, has enough time to
work for at least its minimal required time (t!V, = 10) after opting out, i.e., dIiV —q > t%,
where dI"' = 30 and ¢ = 8. Furthermore, W can accomplish its goal completely, by working
" w

mazxr mazxr

on it time periods after opting out since W has more than ¢ = 20 time periods after
opting out.

RobotN plays the role of A. At the beginning of the negotiations, the number of minutes
left for RobotN to work in order to fully accomplish its goal is 66. This is because the goal
requires 70 minutes and it has already worked for 4 minutes. The 66 minutes are productive
since it has enough time until its deadline. That is, s = 66. However, if RobotN continues
working for 66 minutes, RobotE will not be able to even partially accomplish its goal since
its deadline is 30 minutes. RobotE should consider two possible agreements, < 20,10 >
and < 0,0 >, which are better for RobotE than opting out. In < 20,10 >, A will work
until the last minute, after which RobotE will not be able to work its minimal required
time periods. In < 0,0 >, A will give up the resource and has a probability of 0.5 of
gaining it back immediately and use it as much as it is needed. As calculated in Example 2,
UA(< 20,10 >,G1,4,0) = 170. It is easy to see that U4(< 0,0 >,G1,4,0) = 140. This
means that RobotN’s utility from continuing to work for 20 minutes, then giving the tool to
RobotE for 10 minutes and waiting, and only after it finishes try to gain access to the tool
is higher. This option is better than leaving the resource immediately and having a chance

equal to that of RobotE to gain the tool, and to work possibly for 70 minutes. This is the

"The formal proofs of all the lemmas and the theorem of this paper can be found in [Sch96]. Here, we
only present the logic behind the proofs, when the proofs are not trivial.



case, even though in the first possibility, i.e., < 20,10 >, it will not be able to satisfy its
maximal requirements. Thus §4° =< 20,10 >.
It is useful to observe how §4* changes over time. At periods 1 and 2, the conditions do

not change significantly, and thus 4! =< 19,10 > and 542 =< 18,10 >. At time 3, RobotE
w

mazxr

does not have enough time before its deadline to do ¢ = 20 after opting out, but still
§43 =< 17,10 >, allowing RobotE to work for its minimal requirement before its deadline.
The situation changes only at time 13, when RobotE does not have enough time to work for
its minimal requirement before its deadline after opting out. In this case, §4* =< s%,0 >,
ie., §13 =< 53,0 > since A has worked for 4 minutes before the negotiations started
(done® = 4) and it continues to work for 13 minutes during the negotiations. Note that
RobotN’s utility from 54* does not change over time until ¢ = 13. However, §413
13 (UA(< 53,0 >,(G1,4,13) = 66 x4 = 264) is better than §40 at the first time period
(U4(< 20,10 >,G1,4,0) = 170).

Robot E’s utility from §4* is reduced over time. In particular, UV (< 20,10 >, G1,4,0) =
40; since RobotE pays 2 per minute for negotiation costs, U (< 19,10 >, G1,4,1) = 40—2 =
38 and U" (< 18,10 >, G1,4,2) = 36. Its utility from §4'2 is really low, since it does not
gain any productive working time, but it needs to pay for the negotiation i.e.,

UW(< 53,0 >,G1,4,13) = —26.

at period

2.6 The agents’ preferences in respect to different outcomes

An important question that we consider before specifying the strategies for A and W, which
are in equilibrium, are the preferences of the agents between opting out and 54¢, and the
way they change over time. In [Sch96], a detailed discussion and formal results are presented
concerning this issue. Here we only summarize the most interesting results, and present a

lemma that is needed for the proofs in the next section.

2.6.1 W’s preferences

In general, W loses over time. Thus we assume that the following properties are true con-

cerning its preferences.

W’s utility from opting out now is higher than from opting out later: If W Opts
out now, it has the option of more future time periods to accomplish its goal and thus
its expected utility is higher. In addition, if it spends less time negotiating because of

its opting out earlier, its negotiation costs are lower.



At

W’s utility from 54* now is higher than from §4*t! at t + 1: W’s share in 4 does

not increase over time. In addition, it pays for the negotiation.

4t now is higher than its utility from opting out later: This is the

W’s utility from 3
result of W’s gaining higher utility from opting out sooner than from opting out later

and that 547 is always not worse than opting out at time t.

The following lemma indicates that when W’s utility from opting out and Leave is the
same or its utility from Leave is higher than its utility from opting out, then it remains this
way during the negotiation. This lemma is used in the next section, and its proof follows

from the definition of W’s utility for Opt and Leave.

Lemma 2 (Leave” vs. Opt.)
Vt,t' € IN, if UV (Leave™, gV done™ t) > UW (Opt,g",done™ ,t), then
if t' > t, UV (Leave?, gW done ') > UV (Opt, gV ,done' | ¢'). 1

2.6.2 A’s preferences

We assume that the following properties are true concerning its utility function.

Opting out now vs. opting out later: In most of the cases A’s utility from opting out
at period £+ 1 is higher than if it opts out at period ¢, since it is the one that holds the
resource and is being paid for its work. However, there are periods of time in which
this is not correct: when A has not yet performed t2. periods, it does not get paid for
each negotiation period, but needs to pay for holding the resource, and therefore its
utility from opting out at a given time period ¢ is higher than from opting out at ¢t + 1.
In this way A saves the payment for holding its resource an additional time period.
Another case in which A’s utility is higher if the negotiation terminates as soon as
possible is after A has completed its maximum periods. Any additional negotiations
cause it to over-pay for holding the resource when it doesn’t actually need it and it is

not paid at all.

A obtains the same utility from 34! =< s,,n > at ¢t and §"*' =< 551, n > at t + 1:
When 54% =< s, n > for some n € IN and s%, > 0, A gains its maximal utility.® As
t increases, si, decreases, respectively. Therefore, instead of 4% =< si{,,n >, we have
§A4t1 —< 5% — 1,n >. But since A is working on its goal during the negotiation, its

utility remains the same.

85", is the maximum number of time periods needed by A at period ¢ in order to accomplish the feasible

part of its goal.



A’s utility from 4% =< 0,0 > at ¢ is higher than from 4! =< 0,0 > at t + 1: §4¢
is equal to < 0,0 > when A does not benefit from holding the resource, either because
it hasn’t reached t2, vyet, or because it has accomplished its goal: i.e., it has worked
more than t2_ but is paying for holding the resource. In both cases, A’s utility from
< 0,0 > at t is higher than its utility from < 0,0 > at ¢t + 1. Note, however, that
in some cases the utility from < 0,0 > at period ¢ may be equal to the utility from

leaving at t.

3 Subgame perfect equilibrium strategies

Having discussed the agents’ utility from different outcomes of the negotiation, we are ready
to identify the strategies that are in subgame perfect equilibrium. The details of the strategies
that are in SPE depend on the agents’ utility from §4¢, opting out, and Leaving. We will
present the strategies that are in subgame perfect equilibrium and show that when the
strategies of the subgame perfect equilibrium are used, the negotiation ends, at most, after

two negotiation time periods.

3.1 Time periods when the negotiation ends

Before discussing the strategies that are in equilibrium, we identify the time periods in which

it is clear that the negotiation will end.

Lemma 3 (A’s strategy when s = 0.) When s, = 0, if it is A’s turn to respond to an

offer and the negotiation has not ended at ¢ — 1, then A will Leave the negotiation. |

In the proofs of the rest of the lemmas and theorems, we will concentrate only on time
periods ¢, in which s% > 0, since from the previous lemma it is clear that the negotiation
will not continue after that point. The first time period in which s, = 0 is denoted 4. In
addition there are situations where W will always Leave the negotiation. This is when its
utility from Leave is not lower than its utility from 347,

Lemma 4 (Strategies when Leave" is better for W than §4+%.)
Suppose U" (Leave™, g, done™ ,t) > UW (4%, g"  done™ ,t). If it is W’s turn to respond
to an offer and the negotiation has not ended at t — 1, then W will Leave.

If it is A’s turn to respond to an offer, s, > 0, and the negotiation has not ended at t —1,

then A will say No and offer §4¢+1, |



To simplify the notation, we define t%V = di"V —tW. + 1, and tV =di" —tV. —q+ 1.

min neo min

Intuitively, these two points in time indicate changes in W's utility for different actions:
w

neo?

W gains the same utility from both opting out and Leave, since, from
w

man

when reaching ¢

that point on, it will not have enough time periods to work t,/. time periods after waiting ¢

w

ne’

W has no preference between Leaving and accepting 547,
w

min

time periods. When reaching ¢
too, since it will not have enough time to work t%. time periods if 547 is implemented. In
some situations, W will become indifferent to §4¢ as Leave for some t% < n < t¥. We
denote the earliest time period in which this happens by tW. For example, suppose diV = 14,
quandtW = 5. In this case, t7 :14—5—6+1:4andtz[£:14—5+1: 10. It is

man ) “neo
easy to see that for every t > tW =54t =< g, 0 > [Sch96]. Suppose that at time tV = 4,
s% = 3. Then W’s utility from §4* at that time is higher than its utility from Leave, since
according to the agreement, after A leaves the resource, W will still have 7 time periods to
try to work on its goal. Thus, " = 10. However, if, for example, s% = 8, Leave is better for
W at period 4 than 344, thus Y = 4. Note, however, that in the first case, where sh =3,
A will Leave the negotiation before the earliest time in which W prefers to Leave (" = 10),

i.e., the time in which A would finish working, t4, is earlier than V.

3.2 Time periods near the end of the negotiation

From Lemmas 3 and 4 it is clear that the negotiation will end at the earliest time between
the earliest time in which W's utility from Leave is not lower than its utility from any other
option (") and the time in which A would finish working (%) if it hasn’t ended before
so far. We will try to construct the strategies of the agents that are in subgame perfect

equilibrium backward from these points.

3.2.1 W prefers Leave than 5 in a time period before s, becomes 0 (" < {4)

We consider the case in which the earliest time in which W prefers to Leave is earlier than
the time in which A would finish working, i.e., ¥ < t4. We first specify the strategies for A
and W at t" — 1.

Lemma 5 (Strategies at " — 1.) Suppose the negotiation hasn’t ended at " — 2.

W’s strategy: If at time ¢ — 1 it is W’s turn to respond to an offer, then it will use the

following strategy:

1. fUY (Leave™ ,tW —1) < UV (Opt,t" —1), then if UV (Opt, t" —1) < UV (O}, W —
1), then say Yes. Otherwise, Opt.



2. Otherwise, if U" (Leave™ ,t" —1) > UW (Opt, " —1), then if UV (Leave" , W —
1) < U"(0!t" — 1), then say Yes. Otherwise, Leave.

A’s strategy: If at time " — 1, it is A’s turn to respond to an offer, then it says No and

offers §44+1,

The reasoning behind the above lemma is as follows. In W’s strategy, step 1 considers the
case where Opt is better for W than Leave. In this case, W will compare between Opt and
accepting the Offer made by A (i.e., O') and choose the best option for itself. In the second
step, Leave is better than Opt, and thus W will choose between Leaving and accepting A’s
offer.

A’s strategy above is very simple. It would like W to Leave in the next time period, and
thus rejects W’s current offer knowing that W will Leave in the next time period.

Next, we consider the agents’ behavior at time £ — 2. If it is W’s turn to respond to an
offer at ¢ — 2, then it will try to end the negotiation at that time period. If the negotiation
continues to the next time period, A will make W Leave at {". Since W loses over time,
it will prefer reaching an agreement, Leaving or Opting out in t¥ — 2. If it is A’s turn to
respond to an offer, it will try to make W Leave the negotiation. If it is not possible to make
W Leave (since Opt is better for W than Leave), A will try to prevent W from opting out

A+l

by either accepting its offer or by offering § , which is not worse for W than opting out.

This is stated formally in the next lemma.

Lemma 6 (Strategies at " — 2.) Suppose the negotiation hasn’t ended at " — 3, and
t=1" —2.
W’s strategy: Ifit is W’s turn to respond to an offer, then it will use the following strategy:
1. If UV (Leave”,t) < UV (Opt,t), then if UV (Opt,t) < U (O',t), then say Yes.
Otherwise, Opt.
2. Otherwise, if UW (Leave’ ,t) > UW(Opt,t), then if UW (Leave' t) < UV (0O',t),

then say Yes. Otherwise, Leave.

A’s strategy: If t = " — 2 and it is A’s turn to respond to an offer, then it will use the
following strategy:
1. If UW(Opt,t + 1) < U"(Leave",t + 1), then say No and offer < si,,0 >.

2. Otherwise, if U4(Leave#,t) > U4(Opt,t) > U4(O',t)
and U4(Leave, t) > UA(54%1 ¢t 4 1), then Leave.



3. Otherwise, if U4(0',t) < UA(344*1t + 1) and UA(Opt,t) < UA(FAHLt + 1),

then say No and offer §44+1.

4. Otherwise, if U4(0',t) = UA(34*1 ¢ 4+ 1), then
(a) If O' = 54, then say Yes,
(b) Otherwise, say No and offer §44+1.

5. Otherwise, if U4(O!,t) > UA(344* ¢ + 1) and UA(OY,t) > UA(Opt, t), then say
Yes.

6. Otherwise, Opt.

In the lemma above (Lemma 6), W’s strategy is simpler than A’s (while in the previous
lemma, A’s strategy was simpler). W’s strategy is exactly as in period w1 (Lemma 5):
it chooses the best option between Opt, Leave, and accepting A’s offer. This is because if
the negotiation continues to t — 1, it will be A’s turn and A will delay the negotiation and
make W Leave, as in t". This will yield W a lower utility than taking an action in " — 2.

In the first step of A’s strategy above, the case where W prefers to Leave is considered.
In this case, A would like to delay the negotiation to the next time period, where W will
Leave.

In the second step A compares its utility from Leave®

At+1

now and its utility from opting
out now, accepting W’s current offer and § at t 4+ 1. Since these are the options with the
highest utility, if its utility from Leave® is not lower than its utility from all these options,
it will Leave the negotiations.

In step 3, A compares between its utility from accepting W’s current offer, its expected
utility in the next time period (i.e., its utility from §4¢*! at ¢ + 1) and its expected utility
from Opting out now. If the future option is the best, it will not accept the offer, and wait

At+1 in the next time period.

for W to accept its offer

Step 4 considers the case in which W’s offer is as good as the future option of 54*+1. To
make W offer 54 and not an offer that will keep the resource busy, it will accept the offer
only when it is equal to §47.

Step b considers the case in which W’s offer is better than the future option and Opt.
Thus, the best option for A is to accept the offer.

If none of the conditions of steps 1-5 holds, A would conclude that Opt out is the best

option, as indicated in step 6.



3.2.2 s% becomes 0 before the first period in which W prefers Leave’ to 54¢
(t4 < tV)

We now consider the case where the time in which A would finish working is earlier than the
earliest time in which W prefers to Leave ({4 < t"). We know from Lemma 3 that if it is
A’s turn to respond to an offer at ¢4, it will Leave. In the next lemma, we consider the case

where t = t4, but it is W’s turn to respond.

Lemma 7 (W’s strategy at {4) Suppose the negotiation hasn’t ended at {4 — 1. If at

t = t4 it is W’s turn to respond to an offer O', then it will use the following strategy:
1. fU" (O t) > U™ (Opt,t) and U" (O, t) > UV (Leave®,t + 1), then say Yes.

2. Otherwise, if U (Opt,t) > U" (Leave?,t + 1), then Opt.

3. Otherwise, say No and offer §4¢+1,

A

In W’s strategy of the lemma above, W compares Leave” in the next time period, A’s offer,

and Opt. If A’s offer is the best (step 1), then it will accept the offer. If Opt is the best
option (step 2), then W will opt out. Otherwise, (step 3) it will wait until the next period
by saying No and making a counteroffer.

The next time period to be considered in our backward induction is £4 — 1.

Lemma 8 (Strategies at {4 — 1) Suppose the negotiation hasn’t ended at {* — 2.

W’s strategy: If at time t4 —1 it is W’s turn to respond to an offer O, then it will use the

following strategy:

1. Opt is better for W than Leave™:
If UV (Leave”,t4 — 1) < UW(Opt,t4 — 1), then
(a) If UW (Leave?, t4) > UV (Opt,t4 — 1), then
i. If UW(O! 4 — 1) > UV (Leave*,t*), then say Yes.
ii. Otherwise, say No and suggest gAY,
(b) Otherwise, if UV (0!, #4 — 1) > UW (Opt,t4 — 1), then say Yes.
(c) Otherwise, Opt.
2. W prefers to Leave now than A’s Leaving in the next time period:

Otherwise, if UW (Leave™,t4 — 1) > UW (Leave?,t4), then



(a) If UW (Leave™,t4 — 1) < UW(O!,t4 — 1), then say Yes.
(b) Otherwise, Leave.

3. Accepting A’s offer is the best option for W:
Otherwise, if UW (0,14 — 1) > UW (Leave*,t#), then say Yes.

4. Waiting for A to Leave is the best option for W:
Otherwise, say No and offer FAE:

A’s strategy: If in time t4 — 1 it is A’s turn to respond to an offer, then it will use the

following strategy:

1. Accepting W’s offer is A’s best option:
If [UA(O', 14 — 1) = UA(E4*,#4) and O' = §4-1] OR U404 — 1) >
UA(§A’£A, t4), then say Yes.

2. 4" in the next time period is the best option:

Otherwise, say No and suggest gAH,

In the above lemma, if it is W’s turn to respond to A’s offer at 4 — 1, it will choose

A w

between Leave” in the next time period, Opt now, Leave”™ now, or accept A’s offer. Step 1

considers the case where Opt now is better for W than Leave’. In step la, Leave? in the
next time period is better for W than Opt. Thus, W compares A’s offer and Leave?. In
step 1b, the case where Opt is better than Leave® is considered, and thus W compares Opt
and A’s offer.

The rest of the steps consider the case in which W prefers to Leave now rather than to
opt out. Step 2 considers the rare case where W prefers to Leave now rather than to wait for
A to leave during the next time period. Thus it compares accepting A’s offer and Leave' .

In step 3, A’s offer is better than Leave” in the next time period, which is better than

w

Leave"” now, which, in turn, is better than Opt.

The case where Leave?

That is, UW (Leave™ ,t4—1) > UW (Opt,t4—1), but UV (Leave™ ,#4—1) < UV (Leave?, t4).

This may occur when t% < t4 < tv.

in the next time period is the best option is considered in step 4.

A’s strategy in the lemma above, when it needs to respond to W’s offer at t4 — 1 is
simpler. First, it is easy to see that A =< 0,0 > and that if it is offered by A at ¢4, it will
be accepted by W. Thus A will compare W's offer and 5" in the next time period. Note



that if its utility from 544" and O' is the same, it will accept the offer only if O! = 5

~Af4—1

in order to keep the resource free as long as possible.

We will continue by considering the strategies at 4 — 2. We will specify the strategies

of 4 — 2 as generally as possible, in order to be able to go on to extend it to earlier time

periods.

Lemma 9 (Strategies at t4 — 2) Suppose the negotiation hasn’t ended by 4 — 3.

W’s strategy: If at time t = ¢4 — 2 it is W’s turn to respond to an offer, it will use the

following strategy:

1.

A prefers 344t at t 4+ 1 than 442 at t + 2:
If UA(ZAHL ¢ + 1) > UA(5442)t 4 2), then
(a) FUW(O!,t) > UW (344t + 1) and UV (O',t) > U"(Opt, t), then say Yes.
(b) Otherwise, if U (Leave™ t) > UY (Opt,t), then
i. If U (Leave™,t) > UV (§4%*1 ¢ 4+ 1), then Leave.

ii. Otherwise, say No and suggest §4**1.

c therwise, 1 ol t+1)> t,t), then say No and offer s#*7*.

Otl : "f Uuw ~At+1, uw Op, ) 1 yN d offer s4t+1

(d) Otherwise, Opt.

W is not worse for W than Opt:

Otherwise, if U (Leave™,t) > U" (Opt,t), then

(a) If UW(OYt) > UV (5442t 4 2) and U™ (O, t) > UW (Leave",t), then say
Yes.

(b) Otherwise, if U" (Leave™, t) > UV (5442 ¢ + 2), then Leave.

Leave

(c) Otherwise, say No and offer 544+,

Accepting A’s offer now is the best option:

Otherwise, if UW (O, t) > UW(34**2 ¢t + 2) and UY(O',t) > UY(Opt,t), then
say Yes.

Waiting for 54" at {4 is the best option:

Otherwise, if UW (34442 ¢t + 2) > UW(Opt, t), then say No and offer §4+1,

Opt is the best option:

Otherwise, Opt.

A’s strategy: If in time t = t4 — 2 it is A’s turn to respond to an offer, then it will use the

following strategy:



W is not worse for W than Opt in the next time period:

If UW(Opt,t +1) < UW(Leave™,t + 1), then say No and offer < s%,0 >.

1. Leave

2. Leave” is the best option:
Otherwise, if U4(Leave?,t) > UA(Opt,t) > U4(O, t)
and U4A(Leave,t) > UA(34*1 ¢ 4 1), then Leave.

3. Accepting W’s offer is the best option:

Otherwise, if UA(O',t) < UA(34**1t + 1) and U4(Opt,t) < UA(3A ¢t + 1),
then say No and offer §4#+1,

zA+1

4. A has no preference between W’s offer now and 3 in the next time

period:
Otherwise, if U4(OYt) = UA(5441 ¢t + 1), then

(a) If O' = 541, then say Yes,

(b) Otherwise, say No and offer 544+,

5. Accepting W’s offer is the best option:
Otherwise, if U4(0%,t) > UA(34**1 ¢ + 1) and UA(O',t) > U4(Opt,t), then say
Yes.

6. Opting out is the best option:
Otherwise, Opt.

In the first step of W’s strategy of the lemma above, the case where A’s utility from

At+1 At+2 at t + 2 is considered. In this case, if

at t + 1 is higher than its utility from §
W offers A §4*! in the next time period (t = t4 — 1), it will be accepted. Thus W will
compare accepting A’s offer, O!, Opt, and Leave’. In step la, accepting A’s offer is the
best option, and thus W says Yes. In step 1bi, Leave" is the best option, and in steps 1bii

~At+l

and lc, § is the best option.

The situations in which A’s utility from 54+ at ¢ 4 1 is not higher that its utility from
§44+2 at t + 2 are considered in steps 2-5 of W's strategy above. In Step 2, Leave’ is not
worse for W than Opt. In this case, W cannot threaten A with opting out, and thus A will
try to delay the negotiations until t + 2 = 4. Thus W will compare O (step 2a), Leaving
now (step 2b), or §+2 at t4 = n + 2 (step 2c).

In steps 3, 4, and 5, the situations where Opt is better for W than Leave" are considered.

W will choose between accepting A’s offer (step 3), waiting until t4 = n + 2 and accepting



§At+2 (step 4), and Opt (step 5). Note that when t = ¢4 — 2, A will not leave in the next
time period, and thus W will not consider this option.

The logic behind A’s strategy in the lemma above is as follows. A prefers that W leave.
This is possible only if Leave" is not worse for W than Opt. This situation is handled in
step 1. In this case, A rejects W's strategy, waiting for it to leave in the next time period.

GAt+1

Otherwise, A will compare accepting W’s offer, O, in the next time period, leave now,

Ajt+1

or Opt now. As in previous cases, A can be sure that § will be accepted. Also, as in

At+1 in the next period,

the previous lemma, if it has no preference between O! now and 3
and both are better than Opt, it will accept O' only if it is equal to 54*. Deviating will not
increase its expected utility, and it is assumed that A prefers to leave the resource free, as

much as possible.

3.3 Possible agreements when A prefers 34+ at ¢ +1 to 542 at
t +2 (losing over time)

Before we continue to specify the strategies for A and W, we will discuss more closely the

case in which A’s expected utility from §4+* at period t is higher than its expected utility of

§41+1 at period t1. We name this case “A loses over time.” As mentioned in Section 2.6.2,

A

this is the case when A has not yet performed ¢;, time periods, it does not get paid for any

A

period of the negotiation, and §4* will not let it finish working for ¢4, . In this case, W has

more negotiation power than in the cases where A does not lose over time. In particular, it

may try to offer A something that is better for W than §4*

. As can be seen in step 4 in
A’s strategies of Lemma 6 and Lemma 9, in cases where Opt is better for W than Leave,
A, in time t, compares its offer with §4**! and if 547 is better for A than §4**! there is
some freedom for W here, in turn, regarding what to offer. The exact agreement for W that
will be better for A than 34**+! depends on the cost of holding the resource. We denote this
agreement with 5V*. However, during time periods that are prior to those in which W offers
sVt A will take this into consideration when it makes an offer. If it would like W to accept
an offer at time ¢ (since A loses over time), it will need to offer W an agreement that is
better for W than 7+ and not just §4*. Otherwise, W will reject the offer and suggest
5"+ Thus we define 5" backward from the first time that A suggests 341 to W. It
is important to notice that when A is losing over time, t" < t4. The backward definition
of 3 will start from ¢. We define  to be the latest time period such that { < t% and
U (Leave" ,t) < UW(Opt,t). In addition, we require that it be A’s turn to make an offer

at time period ¢ — 1. It is easy to see that { < t/  and that it is either t" —1 ort" —2

neo? neo neo
w

oo 18 even or odd.

depending on whether ¢



Definition 8 Base case (t = {): s = 544

W’s turn to respond (¢ is odd): For anyt < t, ift is odd then 3" is the best agreement
for A in time t that is still better for W than 5W**! at time t + 1 and is not worse for

W than Opt at time t.

A’s turn to respond (t is even): For anyt < t, ift is even, then /™

ment for W in time t that is still better for A than 3V**! at time t+1 and is not worse

for A than Opt at time t.

1s the best agree-

Wit — 547 for several time periods before t. To

Note that there are situations in which 3
demonstrate the way the values of 3¥* can be determined, we consider a revised version of

the example of the robots on Mars.

Example 4 Consider the case where the goal of RobotN is < (1,40, 80,99,4,1002 >, i.e.,
tA. =40,t4 =80 and its deadline is 99, but the other details of the situation are exactly
as in Example 2. In particular, RobotE’s goal is < G2,10, 20, 30,4,1002 >, and the agents
needs to pay 2 for holding the resource without doing productive work. We first need to

determine §4°

. This situation is similar to that of Example 3, since RobotE’s goal hasn’t
changed and s = 76 is even larger than in the original situation. As in the original case, we
need to compare < 20,10 > and < 0,0 >. However, in this case, RobotN cannot perform the
minimal required time needed for its goal in 20 minutes. This is since t2. = 40 and RobotN
has worked only for 4 minutes before the negotiation. Thus its utility is only from future time
periods after the agreement is implemented. Also, it will then be able to work only for 65
minutes if it gains access to the resource when < 20,10 > is implemented. However, it needs
to pay for holding the resource for 20 minutes, since it is not productive during this time.
So, U4(< 20,10 >,0) = 0.5-65-4 —2-20 = 90. On the other hand, the agreement < 0,0 >
will allow it to work for 80 minutes before its deadline and without paying for holding the
resource; thus U4(< 0,0 >,0) = 0.5-80 -4 = 160. We can conclude that Y =< 0,0 >
and that it will remain < 0,0 > up to period 13 of the negotiation, at which time RobotE
will not have had enough time to perform even its minimal requirements after opting out.
During this time, RobotN’s utility from 34? decreases over time, since it needs to pay for
holding the resource, i.e., U4(< 0,0 >,1) = 0.5-80 -4 — 2 = 158.

We will now consider the values of tV W t" . and t4. tW =30—-8—-10+1 = 13,
tl’t‘g =30—-10+1 = 21, and t* = 76. To compute ", we must first compute §413.
Since at ¢t = 13, W has fewer future time periods than t". ~after opting out, s}> = 67 and
413 =< 67,0 >. It is easy to see that U" (Leave™,13) > U™ (3413 13), and therefore

t" =13 and t = 12. Thus, since §4'2 =< 0,0 >, 312 =< 0,0 >. At time 12, RobotN can



still do its 80 time periods, and since it needs to pay for holding the resource for 12 time
periods, then U4(< 0,0 >,12) = 80-4-0.5 —2-12 = 136. RobotE’s utility from this is
U"(<0,0>,12) =18-4-0.5—2-12 = 12. To compute 3! we need to consider that in
order for it to be better for W than < 0,0 >, W must obtain at least t!V. = 10. However,
the utility for RobotN from < 0,10 > at time 12 is 73 -4 -.5 — 2 - 13 = 124, which is lower
than that of < 0,0 > at time 12. Thus 3% =< 0,0 >, and %10 = 5410 =< 0,0 >. This
is the case, i.e., V% = §* =< 0,0 >, until £ = 5. Since at time 5 it is A’s turn to make
an offer and 3¢ =< 0,0 >, 3 is also equal to < 0,0 >, where U4(< 0,0 >,5) = 150
and U" (< 0,0 >,5) = 30. However, at time period 4, W can offer something that is better
for it than < 0,0 >. In particular, 3"* =< 0,11 >, where UA(< 0,11 >,4) = 152 and
U (< 0,11 >,4) =11-4+4+9-4.0.5—2-4 = 54. Similarly, 3¥® =< 0,11 >, 3% =< 0,13 >,
V1 =< 0,13 >, and 0 =< 0,15 >.

Wit enables RobotN to make use of its maximal future time periods,

A

In this example, 3
similar to its situation in § However, in this example, if the payment for holding the
resource is higher, or p4 is lower, i.e., the losses of time are larger than the gain from

Wat "’A,t

additional working time periods, A’s share in 5" may decrease relative to §

3.4 Specification of the subgame perfect equilibrium strategies

We are now ready to continue with the specification of the strategies that are in equilibrium.

First, we will present the strategies for any time period except the first one. For the last
possible steps of the negotiations, we will combine the strategies for both t¥ — 3 and ¢4 — 3,
taking into consideration the differences in the strategies for tV — 2 and 4 — 2. We denote
by ¢ the minimum of {" and #%. Next, we will consider the special case of the first time
period during which W cannot opt out of the negotiation. Finally, we will combine all our
results and present the subgame perfect equilibrium strategies for the entire negotiation. We

will conclude this section with a short discussion of the results.

3.4.1 Negotiations starting at the second time period (t = 1)

In the next lemma, we specify the strategies for any time period 0 < t < t — 3.

Lemma 10 (Strategies at 0 <t < { —3) Consider the negotiation at period ¢ such that
0 <t < t— 3, and suppose that the negotiation hasn’t ended at period t — 1.

W’s strategy: If at t it is W’s turn to respond to an offer, then it will use the following

strategy:



w

1. Leave" is not worse for W than Opt in two time periods:

If U (Leave™ t + 2) > UW (Opt,t + 2), then
(a) FUW (< s41,0>,t + 1) > UY(Opt,t), then
i fUW (st +1) < UW(04t), then say Yes.

ii. Otherwise, say No and offer 54+,

(b) If UW(Leave™,t) < UY(Opt,t), then if UV (Opt,t) < UV (O, t), then say
Yes. Otherwise, Opt.
(c) Otherwise, if UV (Leave",t) > UW (Opt, t), then if U" (Leave™ ,t) < UV (O t),

then say Yes. Otherwise, Leave.

2. Waiting for Leave® is the best option:
Otherwise, if U4(Leave®,t + 1) > UA(Opt, t + 1) > UA(844+1 ¢ + 1)
and UA(Leaved, t + 1) > UA(34+2 ¢ + 2), then
if UW(0',t) < UA(Leave?,t + 1) then say No and offer §44+2.
3. Accepting A’s offer now is the best option:
Otherwise, if U (O',t) > U" (Opt,t) and
[ [UA(EAH ¢ 4+ 1) > UA(3442, ¢ + 2) and UV (O t) > UV (31 ¢t 4+ 1)] OR
[UA(3AH ¢ 4+ 1) = UA(EAH2 ¢ + 2) and UV (O',t) > UV (3441t +1)] OR
[UA(§A’t+1,t +1) < UA(§A’t+2,t +2) and UV (0O, t) > UA(§A’t+2,t-I— 2)] ], then
say Yes.
4. A prefers 541 at t + 1 than 542 at t + 2 (losing over time):
Otherwise, if [UA(§A’t+1,t+1) > UA(§A’t+2,t+2) and UY (Opt, t) < UW (3Wi+1 ¢+

1)], then say No and offer 3#+1.

5. A has no preference between 54/*! at t + 1 and 54**2 at t 4 2:
Otherwise, if UA(54%+1 t4-1) = UA(5442 ¢ +2) and UV (Opt, t) < UV (544 ¢+

1), then say No and offer §44+1,

6. A prefers %2 at ¢t + 2 than 5! at t + 1 (gaining over time):
Otherwise, if [U4(34"*!, ¢ 4+1) < UA(34"*%,¢4+2) and U" (Opt, t) < UV (54742, 1+

2), then say No and offer §4¢+1,

7. Opt is the best option:

Otherwise, Opt.

A’s strategy: Ifitis A’s turn to respond to an offer at period ¢, then it will use the following
strategy:



W is not worse for W than Opt:

If UY (Opt,t + 1) < U"(Leave”,t + 1), then say No and offer < s%*,0 >.

1. Leave

2. Leave® is the best option:
Otherwise, if U4(Leave#,t) > U4(Opt,t) > UA(O',t)
and U4 (Leave?,t) > UA(34**1 ¢t + 1), then Leave.
3. A prefers 41 at t + 1 than 54%*2 at t + 2 (losing over time):
Otherwise, if UA(344+ ¢ + 1) > UA(5442,¢ + 2), then
a) If UA(OL,t) > UA(3WH*L ¢t + 1) and UA(O, t) > U4(Opt,t), then say Yes.
(a)
(b) Otherwise if U4(O',t) < UA(ZW*+1 t4+1) and UA(Opt, t) < UA(ZVHHL ¢t 4+1),

then say No and offer sW#+1,

(c) Otherwise, Opt.

4. §4%*! is the best option:

Otherwise, if U4(0',t) < UA(3**!t + 1) and U4(Opt,t) < UA(34*H ¢ + 1),

then say No and offer §4#+1.

5. A has no preference between §4/t! and W’s offer:
Otherwise, if U4(0',t) = UA(341 ¢ 4+ 1), then
(a) If O' = 3¢, then say Yes.
(b) Otherwise, say No and offer gAtHL

6. W’s offer is the best option:
Otherwise, if U4(0%,t) > UA(54*1 ¢ + 1) and UA(O',t) > UA(Opt, ), then say
Yes.

7. Opt is the best option:
Otherwise, Opt.

The proof of the lemma is by backward induction on t. As in the previous lemmas, W’s
position in the negotiation is weak when its expected utility from Leave is not higher than
its expected utility from opting out. It cannot threaten A with opting out and thus will not
gain anything better than < s%',0 > in the future. This situation is handled in step 1 of
W'’s strategy. Thus W will compare Opting now, Leaving now, accepting A’s current offer,
and reaching an agreement of < s%™,0 > in the next time period.

In step 2, W checks whether there is a possibility that A will leave in the next time

period and whether it is worth it to wait for A to leave.



In step 3, W compares A’s offer with possible future outcomes. For W to accept the
offer, it needs to be the best option and also better than opting out. The possible future
outcomes depend on whether A’s utility from §4*+2

FAIHL gt + 4+ 1. If A’s utility from 3At+2 at ¢+ 1 92 is lower than its utility from FALHL at ¢ 4 1,

at t + 2 is higher than its utility from

then W will offer 3V, which will be accepted by A in the next time period. If A’s utility
from 54%*! at t + 1 is equal to its utility from §4¢+2 at ¢ 4+ 2, then W will offer 54%+! which

will be accepted by A. If A’s utility from 54%%2 at ¢ 4+ 2 is higher than its utility from §4*+!

at t + 1, then the best W can hope for in the future is §4**+2. If accepting O' now yields a
higher utility than these possible outcomes, W will accept it.

In steps 4-7, W compares the above possible outcomes with Opt. If the relevant outcome
is better than Opt out, then W will say No and will make an offer. If Opt is better, W will
opt out.

The logic behind A’s strategy in the lemma above is as follows. As in the previous

w

lemmas, if Leave' in the next time period is not worse for W than Opt out in the next time

period (step 1), then A will wait until the next time period for W to Leave. In step 2, A

considers leaving. Otherwise, if A’s utility from §44+1

FAt+2

at t + 1 is higher than its utility from

Wi+l

at t + 2, it will choose between accepting W's offer (step 3a), , in the next time

period (step 3b), and Opt out now (step 3c). The rest of the strategy (steps 4-6) considers

At+1 At+42

the situations in which A’s utility from § at t+1 is not higher than its utility from s

At+1

at t + 2. In these situations, A will compare A’s offer, § in the next time period and

Opt. Note that if A gains the same utility from O' and §4*+! it will insist that O! = §4¢

according to the assumption “Outcome with the same utility”.

3.4.2 Negotiation during the first time period

The first period of the negotiation is different from the others since W cannot Opt, but can
only make an offer or Leave the negotiation. In the next Lemma we specify W's strategy in

this period.

Lemma 11 (W’s strategy during the first period (¢t = 0)) In the first period of the

negotiation, W will use the following strategy:

1. Leave" in the second period (¢ = 1) is not worse for ¥ than Opt:
If UW(Opt,1) < U"(Leave™ 1), then
(a) If UY (Leave™,0) > U" (< s4,0 >,1), then Leave.

(b) Otherwise, offer §4.°.



2. Waiting for Leave” is the best option:
Otherwise, if U#(Leave®,0) > U#(Opt,0) > U4(54°,0)
and U#(Leave?,0) > U4(54,1), then

offer 349,

3. A prefers 540 at 0 than 54! at 1 (losing over time):
Otherwise, if U4(340,0) > U4(54,1), then offer 3.

A0

4. A has no preference between 5 now and 54! in the next time period:

Otherwise, if U4(54°,0) = U4(541,1), then offer §4°.

5. A prefers 341*2 at t + 2 than §4**! at t + 1 (gaining over time):

Otherwise, if U4(34°,0) < UA4(341,1) and UW (341,1) > U (Leave",0), then offer
540,

6. Leave is the best option:

Otherwise, Leave.

The logic behind the strategy in the previous lemma is that A will accept an offer from
W only if it believes that W can threaten it with Opt in the next time period.

The first step of the strategy treats the case in which it is better for W to Leave in the
second time period (¢t = 1) than to Opt. In this case, W’s threat to Opt is not credible. A,

W over any other option, will not accept any offer from W and will offer

who prefers Leave
< s%,0 > in the next time period. This will allow A to work for its maximal possible time
periods. Thus, in this case, W compares < s,0 > and Leave now, and decides either to
Leave or to make some offer which it knows will be rejected.

The second step of the strategy considers the situation where A will leave the negotiation
when W approaches it.

The third step of the strategy considers the situation where A’s utility from 54 at 0 is
higher than its utility from 54! at 1. As explained above, W can offer 3V, which will be
accepted by A. If A does not lose, but also does not gain over time (step 4), it will accept
§40 If A gains over time (step 5), W’s offer will not be accepted. A will offer §41 in the
next time period, which will be better for W than Opt. Thus, W is left with two options:
accepting 5! during the next time period, or Leave now. In the first case, it will offer §4°.
If the second case occurs, it will Leave.

We can now combine the strategies presented in the lemmas above and specify the strate-

gies that are in subgame-perfect equilibrium.



Theorem

1 (Strategies) The strategies below are in perfect equilibrium given our as-

sumptions.

A’s strategy:

1.

A has finished working on its goal:

If s% = 0, then Leave.

w

Leave" is not worse for W than Opt:

Otherwise, if U (Opt,t + 1) < U"(Leave,t + 1), then say No and offer <

st 0 >,

A prefers (341t + 1) than (34'*2 ¢ + 2) (losing over time):

Otherwise, if UA(344+1 ¢ + 1) > UA(5442,¢ + 2), then

(a) If UA(O4t) > UA(™*+1t + 1) and UA(O,t) > UA(Opt, t), then say Yes.

(b) Otherwise if U4(O',t) < UA(3W**1 ¢t +1) and U4(Opt, t) < UA(ZV*H ¢ +1),
then say No and offer 3V*+1,

(c) Otherwise, Opt.

Accepting W’s offer is the best option:

Otherwise, if U4(O!,t) > UA(344* ¢ + 1) and UA(OY,t) > UA(Opt, t), then say

Yes.

§44*1 in the next time period is the best option:

Otherwise, if UA(O',t) < UA(3M*1 t + 1) and UA(Opt,t) < UA(E4*H ¢ + 1),

then say No and offer §4#+1.

A has no preference between accepting W’s offer now and 54**! in the

next time period:
Otherwise, if U4(O,t) = UA(34*1 ¢t + 1), then
(a) If O' = 3¢, then say Yes.

(b) Otherwise, say no and offer §4*+1.

Opting out is the best option:
Otherwise, Opt.

W’s strategy:

t=0:



t > 0:

. A has no preference between s

. Leawve

. Leave” in the second period (t = 1) is not worse for W than Opt:

If UV (Opt,1) < UW(Leave’ 1), then
(a) U™ (Leave’,0) > UV (< s4,0 >, 1), then Leave.
(b) Otherwise, offer 54

. Waiting for Leave” is the best option:

Otherwise, if U4(Leave?,0) > U4(Opt,0) > UA(54°,0)
and U4(Leave#,0) > U4(§41,1), then

offer 549,

. A prefers (34°,0) than (54',1) (losing over time):

Otherwise, if UA(§A’0 0) > UA(§A’1 1) then offer s,

540 now and 54! in the next time

period:
Otherwise, if U4(349,0) = U4(541, 1), then offer 540,

. A prefers 3442 at t 4+ 2 than 34! at ¢t + 1 (gaining over time):

Otherwise, if U4(54°,0) < UA(341,1) and U™ (541,1) > UY(Leave™,0),

then offer 340,

. Leave is the best option:

Otherwise, Leave.

W is not worse for W than Opt in two time periods:

If UV (Leave” t +2) > U (Opt,t + 2), then

(a) U (< st 0 >t + 1) > U%(Opt,t), then
i. UV (< 510>t +1) <UY (0 t), then say Yes.

. Otherwise, say No and offer §4%+1,

(b) If U (Leave’,t) < UW(Opt,t), then if UV (Opt,t) < UV (O',t), then
say Yes. Otherwise, Opt.

(c) Otherwise, if U" (Leave™,t) > UW(Opt,t), then if UV (Leave" t) <
UW (0! t), then say Yes. Otherwise, Leave.

. Waiting for Leave” is the best option:

Otherwise, if U4(Leaved,t + 1) > UA(Opt,t + 1) > UA(344 ¢ + 1)
and U4(Leave,t + 1) > UA(54%+2t + 2), then
if UW(0',t) < UA(Leave?,t + 1) then say No and offer §4:¢+2.



Proof:

. Accepting A’s offer now is the best option:

Otherwise, if U (0%, t) > UV (Opt, t) and

[[UAEMt + 1) > UA(FA2)¢ + 2) and UW(O',t) > UV (3" ¢ + 1)]
OR

[UA(ZAHHL ¢ + 1) = UA(34*2 ¢ + 2) and UV(O,t) > UV (5441t + 1))
OR

[UA(FMH ¢ 4+ 1) < UA(3M*2,t + 2) and UV (O, t) > UA(ZAH2,t + 2)] ],

then say Yes.

. A prefers (34%*1 ¢t + 1) than (54**2 ¢ 4 2) (losing over time):

Otherwise, if [[U4(34+1, t4+1) > UA(54+2, £42) and U™ (Opt, t) < U™ (W41, 1

1)], then say No and offer 3"+

. A has no preference between (54**1 ¢ 4 1) and (342t 4 2):

Otherwise, if U4 (5441 ¢4+1) = UA(544+2 ¢4+2) and UW (Opt, t) < UW (34441 ¢4

1), then say no and offer 344+1.

. A prefers (341*2 ¢t 4+ 2) than (34%*1 ¢t 4+ 1) (gaining over time):

Otherwise, if [/4(344+1, 1) < UA(#4442,1:2) and U™ (Opt, 1) < U™ (344, 14

2), then say no and offer gAML,

. Opt is the best option:

Otherwise, Opt.

The proof is clear from the previous lemmas. ||

It it important to discuss the ways the negotiations may end according to the above

theorem:

W will Leave without starting a negotiation process: If, in the second period of the

negotiation, W does not have enough time to do ¢

w

min

before its deadline after opting

out, i.e., UV (Opt, 1) < UW(Leave" 1), then it considers leaving because A will reject

any offer and make a counteroffer < s}, 1 >. If W prefers Leaving in period 0 over

such an agreement, it will Leave.

Another situation in which W may Leave before even starting the negotiations is when

A gains over time, i.e., if U4(54°,0) < UA(541,1) and W prefers Leaving over (541, 1).

A will Leave when W approaches it: If A’s utility from Leave® at the first time period

(0) is not lower than its utility from Opt at period 0 and from §4! at period 1, it will

leave in the first period of the negotiations. This is the case when A hasn’t worked



for tA. before W approaches it, and it does not have enough time to finish working
w

min

for tA. before it needs to give W the resource so that W will be able to work for ¢

before W’s deadline, and it does not have enough time to work on its goal after opting

out.

An agreement will be reached in the first time period: Ifin period 1, W prefers Opt
over Leave and A’s utility from 54 period 0 is not lower that its utility from 54 at

period 1, then an agreement will be reached in the first period of the negotiation.

An agreement will be reached in the second time period: If, in period 1, W prefers
Opt over Leave, A’s utility 54! at period 1 is higher than its utility from 54 at 0 and
W prefers < 54,1 > over Leaving before starting the negotiation, then the negotiation

will end during the second period of the negotiation.

3.5 Examples

We will consider several examples of negotiation to demonstrate the cases where A prefers
(3441 ¢ + 1) to (84442 ¢t + 2) (losing over time), A prefers (34442 ¢ +2) to (441t + 1)
(gaining over time), or A has no preference between (§4**1 ¢ + 1) and (3442t 4+ 2). We
will also consider an example where W Leaves before even starting the negotiation and an

example where A leaves when W approaches him.

3.5.1 A has no preference between (34**1 ¢ + 1) and (34%+2 ¢ 4 2)

We will demonstrate the negotiation in this case using the original Mars example.

Example 5 We return to the example of the robots on Mars (Examples 2 and 3). Re-
call that RobotN’s goal is < G1,15,70,79,4,1002 >, i.e., t2. = 15 tA = 70 and its
deadline is 79, and that of RobotE is < G2,10,20,30,4,1002 >. As calculated in Ex-
ample 3, 540 =< 20,10 >, ! =< 19,10 > and §? =< 18,10 >, etc., until pe-
riod t¥ = 13 where 13 =< 53,0 >. Recall that RobotN’s utility from 54* does not
change over time until ¢ = 13. RobotE’s utility from §4* decreases over time. However,
its utility from Opting out also decreases over time. As was computed in Example 2,
UY (Opt,G2,0,0) = 40, U" (Opt,G2,0,1) = 38 and U"(Opt, G2,0,2) = 36. Furthermore,
U%(Opt,G2,0,3) = 19-4-.5—2-3 = 32; UV (Opt,G2,0,4) = 18 -4-.5—2 -4 = 28;
UW(Opt,G2,0,12) = 10-4-5—2.12 = —4; UY(Opt,G2,0,13) = —2 - 13 = —26;
UY(LeaveV,G2,0,0) = 0; UY (Leave™,G2,0,1) = —2.



Since t = 13, and U4(34°,0) = U4(541,1), this is equivalent to case 4 of W’s strategy

neo

for t = 0 in Theorem 1. Thus RobotE will offer 4° =< 20,10 >, which will be accepted by
RobotN.

3.5.2 A’s utility from (34 t) is not lower than that from (541 ¢t +1)

We will demonstrate this case using a modification of the example of the robots on Mars.

Example 6 We return to the example of the robots on Mars (Example 2) but assume that
RobotN works on goal < G1,13,27,30,4,1002 >, tA. =13, tA = 27 and the deadline is

man » Ymazx

30. RobotE needs to work on < G2,2,12,20,4,1002 >, ie., V. =2 tW = 12 and the

min mazx

deadline is 20. The other details remain as in Example 2, e.g., done® = 4.

RobotN would like to work for an additional 23 minutes to satisfy its maximal possible

requirement; i.e., s = 23. However, this will prevent RobotE from satisfying even its

minimal requirement. We shall now compute §4¢. In the first time period, W can accomplish
w

max

time periods after opting out, but after s§' periods
w

max

its goal completely by working for ¢
W will not have enough time before its deadline to accomplish ¢ periods. We need
to compare RobotN’s utilities from the following: < 10,2 >, < 14,6 > and < 0,0 >.
UA(< 10,2 >,0) = 10-4+13-4-.5 = 66; UA(< 14,6 >,0) = 14-4+6-4-.5 = 68 and
UA(< 0,0 >,0) = 26-4-.5 = 52. Thus §40 =< 14,6 >. RobotE’s utility from this agreement
is: UV (< 14,6 >,0) = 6 - 4 = 24 and its utility from Opt is U" (Opt,0) = 12-4..5 = 24.

At time period 1, RobotE does not have enough time to complete its maximal requirement
after opting out before its deadline. In this period, s} = 22. We need to compare < 8,0 >,
whose utility at period 1 to RobotN is 64, < 10,2 >, whose utility is 68; < 13,5 >, whose
utility is 70; and < 0,0 >, whose utility is 50. Thus §4' =< 13,5 >. RobotE’s utility from
< 13,5 > at period 1 is: U" (< 13,5 >,1) =4-5+1-4-0.5—2 = 20. Its utility from opting
out is UV (Opt,1) = 11-4-.5 — 2 = 20.

In the next time period, ¢ = 2 and s% = 21, and again we will compare < 8,0 >,
< 10,2 >, < 13,5 >, and < 0,0 >. RobotN achieves maximum utility from < 13,5 >, and
it is 72 (i.e., RobotN’s utility continues to increase). Thus 542 =< 13,5 >. RobotE’s utility
from 542 is 16, and so its utility from Opt is also 16. Note that in this time period RobotE’s
utility from Leave is much lower than from Opt. Thus, according to Theorem 1, it offers
540 but RobotN, which prefers 541, will say no and will offer 54!. RobotE will accept the

offer and the negotiation will end in the second round of the negotiation.



3.5.3 A prefers (541t + 1) to (542t + 2) (losing over time)

A prefers (3441t + 1) to (§44+2 ¢ 4 2) when it can’t work for at least ¢, and make W
an offer that will prevent it from opting out. This case happens when W’s deadline expires
(so it cannot work t%. ) before A can work for (at least) ¢4, time periods on its goal, i.e.

min min

diV —tW. < tA.  _ done?. We have already considered this situation in Example 4. We

min min

will present the resolution of the negotiation in this case in the following example.

Example 7 We return to the example of the robots on Mars when the situation is exactly
as in Example 4. That is, the goal of RobotN is < (1,40, 80,99,4,1002 >, and the goal of
RobotE is < G2, 10, 20, 30,4, 1002 >. We have shown in Example 4 that A’s utility from §4*
at period ¢ is higher than its utility from §4+! at period t+1 and found that 53"* =< 0,15 >.

Since t¥ = 13, U"(Opt,1) > UV (Leave",1), and since A loses over time, we are in
case 3 of W’s strategy, when ¢t = 0, in Theorem 1. Thus RobotE will offer < 0,15 >, which
A will accept according to step 3a of its strategy.

In summary, the negotiation will end in the first period of the negotiation with an agree-

ment.

3.5.4 W Leaves before starting the negotiation

There are situations in which, regardless of whether A gains or loses over time, W will Leave

the negotiation. We demonstrate this case in the following example.

Example 8 We modify the example of the robots on Mars. Suppose that RobotN’s goal is
< (G1,15,70,79,4,1002 >, as in Example 2, but RobotE’s deadline is earlier:

< (G2,10,20,15,4,1002 >. The rest of the details of the example are as in Example 2, e.g.,
g = 8. In this case, in the first time period RobotE does not have enough time to work for
10 time periods after opting out before the deadline. Thus RobotE’s utility from Opt and

W in the first time period is equal to zero. RobotN would like to work for an additional

Leave
66 time periods, will not accept any offer, and will offer < 66,0 > to RobotE in the second
time period of the negotiation. RobotE prefers to Leave rather than to accept such an offer.

Thus RobotE will Leave before starting a negotiation process.

3.5.5 A leaves when W approaches it

Example 9 We modify the example of the robots on Mars. Suppose that RobotN’s goal
is < G1,10,12,12,4,1002 >, ie., tA. = 10, t2 = 12 and its deadline is 12, and it has

man mazx

worked on its goal for 5 time periods (i.e., done” = 5) before RobotE starts the negotiation.



That is, when W starts the negotiation, there is only 7 time periods left until A’s deadline.
RobotE’s goal is < G2,10,12,14,4,1002 > and ¢ = 2.

If A will continue working on its goal and finish its minimal number of time periods, i.e.,
work for an additional 5 time periods, W will not be able to complete its own minimal time
periods since its deadline is in 14 time periods, and it needs to work for at least 10 time
periods. Thus, 54 =< 0,0 >.

In addition, if A interrupts its work, it will not be able to work for its minimal number
of time periods (i.e., for 10 periods) because its deadline is in 7 time periods when the
negotiation begins. Thus A’s utility from opting out, leaving, and the agreement 54" =<
0,0 > at time period 0 are the same. Its utility from §4! =< 0,0 > at time period 1 is even
lower since it needs to pay for using the resource.

However, W prefers to opt out than to leave at time period 1, since after opting out it
will need to wait for 2 time periods and then it will still have enough time to work on its
goal for the minimal number of time periods before its deadline.

Thus, when W will approach A with the offer 4% =< 0,0 >, A will leave, knowing that
otherwise W will opt out in the next time period and given its preferences of leaving now to

W'’s opting out in the next time period.

4 Simulation Results

This section presents the simulation results of the protocol and the strategies discussed in
the previous sections. We will see how different variables, such as the cost of opting out,
and the goals’ deadlines affect the performance of the algorithms. We have also compared
our algorithms to a well-known algorithm, Earliest-Deadline-First (EDF), which has been
shown to achieve good scheduling results.

Several simplifying assumptions are required to apply the formal model and to make a
reasonable implementation feasible. First, it is assumed that communication is foolproof
and that the message delay time is known to all agents. Second, in order to carry out
coordination activities, agents share a global clock reference. However, we would like to
emphasize that the system is distributed in such a way that there is no one process which
manages the others; each process acts independently.

The experiments were conducted with a system comprising three agents: A;, A,, and Aj3.
Each agent has 50 goals, GGy, ..., Gxg, to accomplish. The agents’ utility functions satisfied
our assumptions and their details are presented in [Sch96]. Such a scenario was tested for
10 runs, to guarantee that all results presented were significant to the 0.05 level or below
(p < 0.05).



Field Description Values
Goal tmin | minimum time periods needed for working [1,10]
in order to be paid for a goal
tmar | Maximum time periods needed for working [tmin—+1,20]
on a goal
dl deadline to accomplish a goal [tmaz+ 1 tmaz+10]
m payment per time period [4,10]
Resource | ¢ cost per time unit when using the resource [1,3]
1 cost per time unit when holding the resource | [0,c-1]
General | q time periods needed for repairing the resource | 1,3,6
after opting out

Table 2: Values of the parameters used in simulation.

Table 2 shows the values of all parameters used in the experiments. Note that ¢ was

tested for different values. All other parameters were created using a uniform distribution.

4.1 Metrics

The agents’ utility function has been used as the main metric for evaluation and comparison.
We also count the number of negotiation sessions and the number of goals that were not
completed successfully. The following are formal definitions of the metrics we used in our

experiments.

Definition 9 Utility score:
The utility gained when running a session, divided by the maximum utility that could be gained
when each agent has all needed resources, is the utility score. The ratio will be represented

as a percentage.

Since the EDF algorithm tries to maximize the number of goals that were completed suc-

cessfully, we add the following metric to our tests.

Definition 10 Abandoned goals:
The percentage of goals that the agents are forced to abandon due to deadlines are called

Abandoned goals.

The following metric is an attribute of the environment, which specifies the load of the
system: how many times the agents needed to use a strategy to solve a conflict for shar-
ing resources. We chose environments with heavy loads, because we believe that in such

environments our model is applicable.



q Utility score Opting Outs | Abandoned goals | Nego. sessions
Al | A2 | Average | St.Dev. out of 30 out of 30

1]88%|94% | 91% 5% 1 9.6 43%
94% | 87% 90% 5% 1 9.6 43%

6 || 84% | 93% 89% 5% 0 9.6 43%

Table 3: Experimental results with different values of q.

Definition 11 Negotiation/Alternations:
The number of times a conflict arises between two agents over the usage of a common re-
source 1s called Negotiation/Alternations. The conflict is solved either by negotiation or by

alternation, depending on the model used.

4.2 Results and discussion

Recall that our model is designed to maximize the utility function of each agent rather than
the utility of the agents as a group. Therefore, both the utility score of each agent and the
average score were considered.

We ran the simulations with different values of the ¢ parameter, that is, the time delay
due to opting out. As Table 3 shows, our model gives a fair share of the resources to all
agents. This is even though agents that play the role of A in the negotiations usually obtain
a higher utility. However, since the agents have an equal probability of playing the role of
A and W in the simulations, fair distribution is obtained.

In addition, we can see that agents chose to opt out very rarely. This happened only
in cases of incomplete information that we did not consider in our theoretical work. When
an agent Opts out during negotiation, both the attached agent, that is currently using the
resource, and the agent that opted out must wait ¢ time periods until the resource is repaired.
However, under the EDF model, when preemption occurs no payment is made by either side:
neither by the attached agent nor by the new agent that gained access to the resource.

Another interesting development is the evolution of the agents’ achievements under dif-
ferent opting out constraints. As shown in Table 3, as g increases, the agents’ average utility
score decreases slightly. However, the frequency of opting outs decreases, meaning that
the agents avoid opting out when it hurts their achievements. The difference between the
agents’ scores, i.e., Al vs. A2, is insignificant. It is a result of applying goals with different
attributes.

In the second set of experiments, we used the same data sets for two algorithms: our
negotiation model and the EDF algorithm. As shown in Table 4, our model did as well as

EDF, with small differences in the standard deviation.



Metric Negotiation (q=1) EDF Conclusion

Average | St.Dev. || Average | St.Dev.
Utility score 91% 5.2% 91% 3.5% Same
Abandoned goals 9.6 3.1 8.4 2.6 Same
Nego. / Alternation | 21.2 4.5 15.5 1.7 Less in EDF

Table 4: Experimental results, comparing Negotiation and EDF.

Index | Description | Utility score (q=1) Changes in Metrics
1 W =0 91% Number of opting outs increases.
2 v =t 91% Number of abandoned goals decreases.
3 Py(t) = 91% Remain the same.

Table 5: Experimental results of studying the effect of different parameters on the negotiation
results.

In addition to its achievements with respect to the utility score metric, our algorithm
outperforms EDF in other aspects. First, the EDF algorithm can be used only in cases
where the central agent has complete information on all agents competing for the resource.
Another advantage of our model over EDF is its flexibility. Each agent may opt out and
reject its opponents’ offers. Such an option does not exist in EDF which forces the agents to
accept decisions. Furthermore, we must be sure that any new agent that might be created
in the future will obey the EDF scheduler.

In our model, which uses negotiation as a way of sharing resources, each agent accepts only
the communication protocol, without any need for additional rules concerning the schedule
itself. We believe that a system with fewer rules is more flexible and thus would be able to
meet more future needs, as they arise.

The third set of experiments was designed to study the effect of different parameters on
the negotiation results (table 5).° We first considered the case in which the minimum time
period (t! ) is zero, meaning that the agent gets paid from the first working time period.
The average utility score remains the same as before, but opting out increased. Next, we
studied a case in which each goal requires a specific amount of time to be achieved, and the
agent gets paid only when it accomplishes maximum periods (i.e., t! . =t' ). Again, the
average utility score remains the same, but the number of abandoned goals increases. The
last modification in our model was to eliminate the effect of negotiation cost. The results

show that there was no difference between the two scenarios.

?See [Sch96] for a formal analysis of this issue.



5 Related work

Our research applies modified game theory techniques to a distributed artificial intelligence
(DAI) environment. In this section we discuss relevant work on using negotiation in DAI
environments similar to ours. For related work in game-theory, resource allocation, and
scheduling in real-time systems see [Sch96].

Bond and Gasser [BG88| divide DAI research into two basic classes: Distributed Prob-
lem Solving (DPS) and Multi-Agent Systems (MA ). The main difference between these two
categories is in the motivation of the agents to cooperate. Whereas in DPS, all agents act
to achieve a common interest, in MA, agents act from individual (and possibly contradic-
tory) interests. Research in MA is concerned with coordinating intelligent behavior among a
collection of autonomous (possibly heterogeneous) intelligent (possibly pre-existing) agents.
In MA, there is no global control and there are no globally shared goals or success criteria.
Thus, a possibility exists for real competition among the agents. Our work falls in the Multi-
Agent (MA) category, since our agents are assumed to be non-benevolent, and each acts to
maximize its own utility, rather than the group’s utility. Negotiation has been used in MA
environments as a means of achieving mutually beneficial agreements.!’

Rosenschein and Zlotkin [RZ94] have identified three distinct domains where negotiation
is applicable and have found a different strategy for each domain: (i) Tasks-Oriented Domain:
finding ways in which agents can negotiate and come to agreement, and allocating their
tasks in a way that is to everyone’s benefit; (ii) State-Oriented Domain: finding actions
which change the state of the “world” and serve the agents’ goals; and (iii) Worth-Oriented
Domain: same as the above, but, in this domain, the decision is taken according to the
maximum utility the agents gain from the states. Our model belongs to the worth-oriented
domain. Rosenschein and Zlotkin do not discuss the issue of resource allocation, but focus
on the issue of performing the agents’ goals. They assume that the agents’ goals can be
divided into several distinct subgoals. States in which only some of the subgoals are achieved
are rated lower than states in which they are all achieved. Mapping our problem to their
framework, we can assume that the subgoals are working in a given time period. However,
time plays no explicit role in the agent’s utility functions of Rosenschein and Zlotkin [RZ94],
and therefore, their strategies cannot be used in our model.

Sycara [Syc90, Syc87] presented a model of negotiation that combines case-based rea-
soning and optimization of multi-attribute utilities. In her work, agents try to influence
the goals and intentions of their opponents. We do not model the agents’ intentions in our

model. We assume that the agents’ goals are fixed before the negotiation starts. Thus,

0Research that applies negotiation to DPS environments includes [CML88, DL89, MLB92, KG94].



the agents in our model do not argue about the goals, but rather exchange offers. This is
possible because we assume that there is complete information and each agent can compute
the utility of both agents from a given agreement.

In [KL95], Kraus and Lehmann developed an automated Diplomacy player that negoti-
ates and plays well in actual games against human players. The Diplomacy environment is
more complex than the environments that we consider in this paper, (e.g. more agents, more
possible actions, simultaneous actions). Thus, finding strategies that are in equilibrium is
not possible and in [KL95] heuristics that were developed based on informal models (e.g.,
[Rai82, FU81, Dru77, Kar70, Joh93, Hal93]) were applied.

Sierra et al. [SFJ97] present a model of negotiation for autonomous agents to reach
agreements about the provision of service by one agent to another. Similar to [KL95], the
model defines a range of strategies and tactics, distilled from intuition about good behav-
ioral practice in human negotiation, that agents can employ to generate offers and evaluate
proposals. Their agents are able to negotiate in more complex environment than ours, but
no formal justification for their strategies is provided.

Zeng and Sycara [ZS98] consider negotiation in a marketing environment with a learning
process in which the buyer and the seller update their beliefs about the opponent’s reserva-
tion price using the Bayesian rule. In the current paper, we consider situations of complete
information and thus learning is not needed. However, the utility functions of our agents
are more complex, and finding stable strategies depends on the specification of the agents’
goals. Sandholm and Lesser [SL95| discuss issues, such as levels of commitment, that arise
in automated negotiation among self-interested agents whose rationality is bounded by com-
putational complexity. These issues are presented in the context of iterative task allocation
negotiations, while we consider negotiation on resource allocation. The study of these issues
in the context of our environment is left for future work.

Sandholm and Vulkan [SV99] consider situations of bilateral negotiation where agents
have firm deadlines that are private information. The agents negotiate on splitting a dollar
and are allowed to make and accept offers in any order in continuous time. Sandholm and
Vulkan proved that agents cannot agree to a nontrivial split because offers signal sufficient
bargaining power weakness (early deadline) so that the recipient would never accept. We
consider more complex scenarios, where the agents need to reach an agreement on two
attributes and their utility depends on the exact specification of their goal and their status
with respect to the resource. We also assume that the agents can opt out of the negotiations.
These assumptions lead to non-trivial agreements. In addition, while Sandholm and Vulkan
focus on the problems resulting from the agents’ incomplete information, in this paper, we

assume that the agents have complete information. We are currently working on extending



our results to situations where the agents do not know the details of the other’s goal (e.g.,
its deadline).

Kraus, Wilkenfeld, and Zlotkin [KWZ95] have proposed a strategic model of negotiation
that takes the passage of time during the negotiation process itself into account. Their
model considers situations characterized by complete, as well as incomplete, information and
situations in which some agents lose over time, while others gain over time. Our research is
strongly based on this work. We extended the former model in several directions in order

for the model to be applicable to more complex environments.

e Two attributes in an agreement: In previous work, there was only one attribute to the

negotiation. In this paper, an agreement consists of two parts.

e Goals have deadlines: In this paper, the agents’ goals have deadlines. Thus, the possible
beneficial agreements are limited and the utility functions are much more complex. It
is common to assume that goals have deadlines [But97], and if we want the negotiations

method to be applicable to resource allocation, we need to allow this assumption.

The results of [KWZ95| are not applicable in environments with the above features.
The main question is whether, when considering more complex environments, the important
property, that the negotiation should end without delay, remains valid. We were able to
identify stable strategies for the agents in the environments with two attributes and deadlines.
Even though the strategies are more complex than in the strategies identified in [KWZ95],
the negotiation ends after the first time period.

Other work in the DAT community dealing with the resource allocation problem includes,
for example, [CML88, KL89], which present a multistage negotiation protocol that is useful
for cooperatively resolving resource allocation conflicts arising in distributed networks of
semi-autonomous problem solving nodes. A key element in their solution is the ability to
detect subgoal interactions in a distributed environment and reason about their impact.
The interactions between goals in our domain is very simple, and the aim of the negotiations
between our agents is to resolve conflicts between opponents, and not to solve local conflicts
between cooperative agents.

Combinatorial auction has been proposed for resource allocation when the value of some
resources to an agent depends upon which other resources it obtains (e.g., [LOS99, FLBS99,
San02].)

Lesser et al. [LPD88| address tradeoffs in resource allocation and real-time performance,
and develop a mechanism for resource allocation based on the criticality of tasks. They focus

on the planning issue, while we assume that no planning is needed for the satisfaction of the



goals, but rather the agents should solve their conflict on the usage of the resource. In more
recent work [HVM*01, HLVWO02] they extended their model to deal with dynamic soft-real
time constraints which requires the negotiation protocol to adapt to the available time left.
Kornfeld and Hewitt [KH81] propose resource allocation using specialist “sponsor” agents.
Their main attempt is the development of a language for the interactions between the agents.
The agents in our environment exchange only messages that include simple agreements.
Chandrasekn [Cha81] proposes resource allocation via resource pricing. Sengupta and
Findler [SF92] discuss dynamic scoping and constrained lattice-like structures for distributed
resource allocation in multi-agent environments. Chavez et al. [CMM97] developed a market-
based control system, named Challenger, that performs distributed resource allocation (in
particular, allocation of CPU time.) Whereas all these works are applicable to DPS envi-

ronments, we consider MA environments.

6 Conclusion and Future Work

This work is concerned with how automated agents can be designed to interact effectively
in order to share resources. A strategic model of negotiation has been proposed as a way of
reaching mutual benefit, while avoiding costly and time-consuming interactions which might
increase the overhead of coordination. That is, we have provided a model in which two
agents can avoid spending too much time negotiating an agreement and will therefore be
better able to adhere to a timetable for satisfying their goals.

There are a number of directions which we think are interesting and are worth further
investigation. The main extensions that are needed are (i) negotiations when the agents
have incomplete information about their opponents’ utility function; (ii) negotiations be-
tween more than two agents. These are enhancements to our theoretical model, and hence
require theoretical support before implementing them in the simulator. We emphasize that
given our simulation tools, implementing any strategies specified by the theoretical results

is straightforward.
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