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Abstract

This paper describes a novel negotiation protocol for
cellular networks, which intelligently improves the per-
formance of the network. Our proposed reactive mech-
anism enables the dynamic adaptation of the base sta-
tions to continuous changes in service demands, thereby
improving the overall network performance. This
mechanism is important when a frequent global op-
timization is infeasible or substantially costly. The
proposed local negotiation mechanism is incorporated
into a simulated network based on cutting-edge indus-
try technologies. Experimental results suggest a rapid
adjustment to changes in bandwidth demand and over-
all improvement in the number of served users over
time. Although we tested our algorithm based on the
service level, which is measured as the number of cov-
ered handsets, our algorithm supports negotiation for
any set of parameters, aiming to optimize network’s
performance according to any measure of performance
specified by the service provider.

Introduction
A cellular network is a radio network made up of base sta-
tions. The base stations in the cellular network are used for
radio communication with mobile dynamic agents. The cel-
lular network aims to provide service to the mobile clients,
each according to their service level agreement (SLA). This
is done by optimizing some or all of the network’s parame-
ters, such as: coverage, cell power level, pilot fraction, ca-
pacity, antenna’s tilt of the base station and others (Hampel
et al. 2003). The coverage of each base station (BS) varies
according to the terrain, the location of the station, land-
marks, interference by other stations and the antenna para-
meters (such as tilt). Also, a power change by each BS can
cause a change in the users served by the BSs, including it-
self.

The infrastructure of existing cellular networks is mostly
a static one. RF engineers are involved in the testing and
planning of the (possibly) optimal deployment of the net-
work using commercial optimizing tools, after which the
network is deployed. However, as the number of users
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and bandwidth demands rise (e.g. due to rich media de-
ployed services), the complexity of optimizing the network
performance increases as well. This becomes particularly
relevant, when migrating to the third-generation (3G) and
fourth-generation (4G) networks (Rappaport 2001). While
in the first-generation (1G) and second-generation (2G) net-
works, the requested bandwidth could be associated with a
voice service, i.e. fixed requested bandwidth per call, the
introduction of data services in 3G and 4G networks signif-
icantly increases the variance in bandwidth demands. Also,
the uncertainty regarding the number of users that needs to
be served in the network at a given time and the services
each such user requires (for example, downloading a movie,
or simply making a phone call) make it difficult for current
cellular networks to react in real time to the users’ online de-
mands and optimize the network. Finally, the accumulated
experience of recent years underscores the effect of evolv-
ing events, such as crowded events (e.g. the Super Bowl)
or an unexpected environmental catastrophe (e.g. Hurricane
Katrina) on network performance. These have short-term
as well as long-term implications for network overload, and
thus require real-time responses.

Recent advances in cellular technologies suggest new op-
portunities in terms of real-networks’ time control and dy-
namic configuration of base stations. One dominating tech-
nology is the ”smart antenna” enabling dynamic changes to
the parameters of the BS. However, there is a need to pro-
vide methods that will apply the new capabilities to meet the
emerging needs. Today, once the network is deployed, most
of its configuration changes are done at predefined times
and by using global optimization tools, such as Schema’s
UMTS OptiPlanner (Schema 2005), rather than being dy-
namically triggered by real-time demand changes coming
from the users’ side. This kind of global optimization is
resource consuming and costly (for example, Schema’s op-
timization requires a few hours to optimize a medium-sized
cellular network). Thus, a central optimization cannot be
executed frequently, and new innovative techniques are re-
quired to allow a better utilization of the network and load-
balancing adjustments of the traffic.

We propose a novel approach to be incorporated into the
infrastructure of cellular networks to improve the perfor-
mance of the network, bypassing the need for frequent, and
usually infeasible, global optimizations. Our approach is a



reactive approach, in that it enables, via negotiation, changes
in the base station’s parameters (e.g. the change in the pilot
power of the base stations, which is its total transmission
power). The negotiated changes are generated and evaluated
according to their predicted effect on the network’s perfor-
mance as measured, for example, by load balancing the net-
work’s traffic or the global coverage of the network. Though
the evaluation process of the negotiated changes cannot pre-
cisely predict the effect on global network performance (due
to the localization of the calculation and parallel negotia-
tions that take place) overall, our proposed mechanism im-
proves network’s performance over time. Furthermore, in
case of conflicting changes, the mechanism immediately re-
covers by readjusting the relevant BSs’ configuration. The
distributed nature of the method implies several impor-
tant advantages such as minimized communication cost and
the ability to quickly combine partial information to form
a good global assessment (Shen, Zhang, & Lesser 2004;
Yadgar, Kraus, & Ortiz 2003). Although the implementa-
tion described in this paper focuses on negotiating a single
parameter, the negotiation protocol itself can be easily ex-
tended to allow the negotiation over any set of parameters.

A second contribution of our research is the introduction
of one of the first integrated simulation environments for
cellular networks with an agent-oriented paradigm. Most
simulation environments for cellular networks have thus far
focused on technical implementation and modeling of the
cellular network, such as: propagation model, traffic dis-
tribution, path loss and others (Rappaport 2001). We have
succeeded in incorporating agent-oriented capabilities, i.e.
transforming the base stations to reactive, autonomous, en-
tities with AI capabilities, which can serve as a test-bed for
numerous aspects of artificial intelligence and agent-based
mechanisms in cellular networks, far beyond the negotiation
protocol.

The distributed negotiation mechanism, as well as the sys-
tem we describe, were developed as part of the RAN Opti-
mization group in the REMON consortium, targeted at the
development of pre-competitive generic technologies for the
fourth-generation (4G) Mobile Cellular Systems.

Key Challenges

The transformation of the static base stations into reac-
tive AI entities presented us with several challenges regard-
ing the negotiation protocol that we decided to implement.
These can be categorized as challenges that influence the
theoretical-based aspects of our algorithm and challenges
that influence the empirical implementation and testing of
our algorithm in a realistic cellular network. The challenges
associated with the first group included:

• Selecting the negotiation protocol:A cellular network
is usually a very large distributed network. The antenna
resource, which is utilized for communication purposes,
should not be excessively used for purposes other than
communications between mobile users. Thus, a negotia-
tion between all the base stations in the network, resulting
in sending numerous negotiation messages using the an-
tenna resource, seems to be too costly, whereas distributed

local negotiation appears to provide a better solution (Du
et al. 2003; Du, Bigham, & Cuthbert 2003; Kraus 2001;
Mailler, Lesser, & Horling 2003; Shen, Zhang, & Lesser
2004; Xuan, Lesser, & Zilberstein 2001). However, using
a local negotiation mechanism might cause only minor lo-
cal changes which have no impact on the global network,
or it might cause conflicting local improvements, which
overall, worsen the network’s performance. The designed
protocol should overcome these potential problems.
Note that although we propose a distributed negotiation
mechanism, it does not necessarily imply that the changes
in the network will be done in a distributed manner. For
example, since the base stations in today’s cellular net-
works are connected to a centralized system (e.g. Mobile
Telephone Switching Office), which is responsible for co-
ordinating the base stations and providing handoff opera-
tions, each base station can be modeled as an entity in that
system. Our proposed distributed negotiation mechanism
enables the negotiation between those entities, while the
actual change in the network is managed by the central-
ized system.

• Neighborhood Formation: For a distributed local nego-
tiation, the communication is to be made with predefined
(or dynamically defined) negotiation partners (”neigh-
bors”). A decision on the method for tagging other base
stations as neighbors should be carefully made since it has
considerable impact on the mechanism’s performance.
The following aspects of neighborhood formation should
be addressed: (a) Should the neighborhood be based on
the locations of the base stations (for example, geograph-
ical distances or geographical location)? (b) Should it rely
also on the level of interference? (c) Is there room to in-
corporate the level of influence between the base stations,
caused by changing the power of other antennas as a pa-
rameter in this process?
In the second category, we find challenges that impact the

method that allows the empirical evaluation of our proposed
mechanism:
• Integration with cellular network simulation: As we

wanted to compare the usefulness of our approach to real
cellular networks, we needed to incorporate the agent-
based mechanism in an existing cellular network simu-
lation. The incorporation of two such complex systems,
in order to generate a single integrated system, presented
us with many technical, as well as design challenges. Ide-
ally, we would have tested our mechanism on an existing
cellular simulation tool. However, while surveying exist-
ing simulation tools, such as Andrew’s Odyssey (Andrew
) and Actix’s CellOpt ACP (Actix ), we learned that none
of them support adjustable autonomy at the base station
level. We therefore we had to rely on an ”off-the-shelf”
state-of-the-art optimization tool - Schema’s UMTS Op-
tiPlanner(Schema 2005) - to model the network, and de-
velop a system that would interface with this tool to model
the base stations as self-contained entities.
In the remainder of this paper, we will present our ap-

proach given the above challenges, both in terms of the the-
ory and implementation. In the next section, we will review



related work in the field of distributed local negotiation, and
continue with the presentation of our negotiation protocol.
Then, we will describe the experimental settings and the re-
sults. Finally, we will conclude and propose future work in
this field.

Related Work
As stated above, a negotiation of all the agents with each
other is highly costly. This is also supported by (Xuan,
Lesser, & Zilberstein 2001), who argue that while the com-
munication is crucial for the coordination of the different
agents, it is unrealistic for the agents to reach perfect com-
munication.

In the context of cooperative negotiation, (Shen, Zhang,
& Lesser 2004) studied the relationship between the degree
of local cooperation, the characteristics of the environment
and the global utility achieved by all agents in the negotia-
tion. Their statistical analysis shows that mechanisms for
local negotiations, that will allow the optimization of the
system dynamically, can be designed. (Mailler, Lesser, &
Horling 2003) present a negotiation model for the task of
resource allocation in soft real-time environments, in which
the agents are both autonomous and cooperative. They show
that the cooperative nature of the agents makes it possible to
maximize the social utilities of the agents. These two pa-
pers motivated us to design the distributed local negotiation
mechanism, to enable the efficient utilization of the network,
and also make it possible to reach near-optimal global opti-
mization, using local changes.

(Du et al. 2003) present a local negotiation approach trig-
gered by the congestion level in the network. The trigger
is made by the base station itself whenever it observes that
its utilization exceeds a given threshold. Their results show
that local negotiation is effective for the network and yields a
performance very close to that obtained by global optimiza-
tion techniques. However, as opposed to (Duet al. 2003),
we aim to allow the negotiation to be made at any given time
and not depend on a single agent’s view of the network load.
While we are simulating real cellular networks, their sim-
ulations had some permissive assumptions concerning the
cellular networks which they simulated. For example, they
assume that the interference comes only from other traffic
units in the same cell, whereas in real cellular networks, as
in our simulations, this is not the case.

(Du, Bigham, & Cuthbert 2003) present a utility-based
approach for geographic load balancing in mobile cellu-
lar networks. The cooperation is encapsulated in the util-
ity function rather than in exchanging negotiation messages.
The utility function proposed is employed on a traffic unit,
that is, a user that generates traffic to the network, and is
composed of the total traffic load at each base station and
the distance of the traffic unit from the given base station.
The utility determines whether a traffic unit is served at a
given base station or at another base station. We, on the
other hand, try to optimize the network by making it reactive
to real-time events and not to each single traffic unit in the
network. As such, we allow the network to serve any traffic
unit at any given time, while preserving the load-balancing
of the network.

In the next section, we will describe our negotiation pro-
tocol and the mechanism of the offer evaluation.

The Negotiation Protocol
We propose a bilateral negotiation scheme between the base
stations in which each base station is capable of negotiating
with its neighbor stations. The negotiation is done over a
change in the configuration parameter/s of the base stations
(for example, the pilot power of both negotiators). As we
stated above, this can be easily extended to support nego-
tiation over a set or a subset of the network’s parameters.
Formally, letV denote the set of possible values for a given
parameter of the base stations,vi, vj ∈ V , O denotes the set
of possible offers such thato(i, j) = ((vi, v

′
i), (vj , v

′
j)) ∈ O

is an instance of an offer made by BS namedi to BS named
j, indicating the change in the parameter value for BSi and
BS j, respectively, whereinvi andvj are the current para-
meter values andv′i andv′j are the new parameter values.
The negotiation itself is local - both for the agents doing the
negotiation and in the evaluation of the offer. Notice that in
our proposed distributed mechanism, the overall bandwidth,
i.e. cost, required for communication is negligible in com-
parison to the amount of overall bandwidth existing today
in 4G, and even 3G networks. This is due to the fact that
only local negotiation messages between two base stations
are transmitting at each iteration.

We continue in the next section with a description of the
distributed local negotiation mechanism incorporated into
the cellular network.

Distributed Local Negotiation Model
In order to allow local negotiation between the base stations,
we needed to define how a local evaluation of the negotia-
tion can be done so that it best reflects the potential global
change in the network’s performance. To this end, we de-
fined a locality for each base station and the local evaluation
of the offers. The locality of each agent consists of two lev-
els of neighborhood. The first level, denotedL1, includes
the immediate neighbors of the agent. We denote byL1(i)
the set of neighbors in theL1 level for agenti. The second
level, denotedL2, includes the second level of neighbors,
that is, the immediate neighbors for all theL1 neighbors.
Formally,L2(i) = {L1(j)|j ∈ L1(i)}. An example is de-
scribed in Figure 1. Each agent can send an offer to its neigh-
boring agents. Each neighbor agent evaluates the sent offer
based on its neighbors and then returns the evaluation re-
sult to the sender. The sender then evaluates the offer based
on its neighbors and the returned results. The evaluation is
based on the utility function, which is described below.

The utility function evaluates an offer locally. Since we
propose a general model, the utility function can change,
according to the network’s performance measure that we
want to optimize. We present here an example of such
a local utility function which, as stated, aims to optimize
the network’s performance based on the number of covered
handsets. This utility function calculates the difference be-
tween the served mobiles before the change in the para-
meter value and after the change in its value. Formally,



Figure 1: Levels of neighborhood: Agent A’s point of view

let servedMobilesj(vj , vi) denote the number of mobiles
served by a given BSj with a parameter value ofvj and a
neighbor BSi with a parameter value ofvi. To enable each
BS calculate the number of mobiles it can serve, the BS has
to take into consideration the pilot power of its neighbors as
well as the distribution of the mobile users in its locality. To
this end, at each iteration, each BS transmits its pilot power,
if it was changed from the previous iteration, and distrib-
ution of users in its area to all of its neighbors. Note that
evaluating the effect on the network caused by a change in
a network’s parameter is not an easy task. This is due to
the fact that even a change in a single network’s parameter
can influence the connectivity of the mobile users in the net-
work and the interference between the base stations. Fortu-
nately, Schema’s application, supplies an efficient evaluation
tool for this purpose, which returns a quick evaluation to the
number of total served mobiles by a given base station. This
tool is used in our simulations to calculate the absolute and
relative differences in the service level parameter described
above. Finally, letu : O → N be the utility of an offer to be
implemented, which is defined as:

uj(o) = uj( (vi, v
′
i), (vj , v

′
j) ) (1)

= servedMobilesj(v′j , v
′
i)−

servedMobilesj(vj , vi)

We denote byUj(o) the sum of utility values of all the
L1 neighbors ofj, including j itself, from an offero. Let
BS i be the proposer of an offero. In order to evaluate the
offer, i calculates the utility values of all itsL1 neighbors,
while eachL1 neighbor calculates the utility values of all its
L1 neighbors that are distinct from theL1 neighbor of the
proposeri. Formally, letval : O → R be the value of an
offer o ∈ O, calculated by the proposeri of the offer, then:

vali(o) = ui(o) +
∑

j∈L1(i)

Uj(o) (2)

= ui(o) +∑

j∈L1(i)

[(
∑

k∈L1(j),k/∈L1(i)

uk(o)) + uj(o)]

In the next subsection we address the neighborhood for-
mation problem.

Neighborhood Formation
In the context of deciding on the negotiation’s partners for
each agent, (Baert & Seḿe 2003) illustrated the importance
of correctly identifying those partners in cellular networks.
Too many neighbors might cause a large communication
overhead, while too few neighbors might allow for only
small local changes. Also, the neighbors can be constructed
by taking into account several network parameters, and thus,
choosing the best parameters can greatly influence the per-
formance of the algorithm and that of the network.

In our simulations, we tested the negotiation protocol
based on several neighborhood definitions, and the re-
sults obtained indicate that the user-served-threshold based
method generates the best result for the network’s perfor-
mance, measured by the number of covered handsets. In
this method, for each BS a change of a specified parameter
in a given range is made and all other BSs are checked to see
how they are affected. All of the BSs which had a change
of at least±T are considered to be neighbors of the given
BS. This method best reflects the relations between the BSs,
yet fine tuning of the threshold is needed. We tested the
change in the pilot power parameter and set the range to 25-
35dBm1, T was set to 5 and we looked at the effect of the
number-of-mobiles-served parameter.

The Negotiation Sequence
The negotiation itself can be triggered by different events.
Examples of such events include global events (e.g. time in-
terrupt) or local events (e.g. a base station observes that the
number of served mobiles exceeds a certain threshold). The
specific trigger to be used is principally external to our pro-
posed mechanism. Specifically, in our simulations we used
predefined time-unit intervals as the trigger for initiating a
local negotiation. Each time unit of the negotiation consists
of several synchronized serialized phases, in which a given
set of actions can be made. The phases by their order in a
given iteration are listed below:

1. Proposal Generation: In this phase, one base station2 s
can generate offers and send them to its neighboring sta-
tions. In our simulations a random base station was se-
lected in each iteration to generate the proposals. The
base stations generated three proposals in each iteration.
Each such proposal consisted of a random change in the
pilot power parameter. Note that this setting was used
only to prove the applicability of our method. Obviously,
this can be significantly improved by implementing more
efficient heuristics in the base station to generate offers
tailored for the specific environment it is operating in.

2. Returned Offers: In this phase, each offer sent to BSr is
returned to the senders with the evaluation of its value to
r, based on the utility value ofr and itsL1 neighbors.

1dBm represents a measured power level indecibelsrelative to
1 milliwatt. It is used to express power.

2This can be easily extended to allow for any number of base
stations to generate offers in each iteration.



3. Evaluation Phase: This phase consists of an evaluation
process, carried out by the senders, of the returned of-
fers in order to select the best offer. As we have men-
tioned, this phase involves using Schema’s evaluation tool
to evaluate the number of served mobiles in the network.

4. Commitment Phase: In this phase, the senders selects an
offer for commitment, based on a comparison between the
best offer it initiated and the best offer it has received.

The base stations can exchange the following messages,
based on the negotiation phase:

• Offer Messages: An offer including the change in the pa-
rameter value for the proposer and the change in the value
for the designated base station.

• Evaluation Messages: In this message, an evaluation of a
proposed offer is sent back to the proposer.

• Commit Messages: After a base station chooses the offer
that is best for it, it sends a commit message to the base
station that is involved in that offer.

The negotiation protocol is based on hand-shakes, that is,
an offer obtains commitment at the final phase of each nego-
tiation’s iteration if both agents decide to commit the same
offer.

Schema’s UMTS OptiPlanner (Schema 2005) was used
as a simulation tool, both prior to the simulations and during
them. Prior to the simulations it was used in order to create
simulated cellular networks, which are replications of real
cellular networks. Throughout the negotiation, it was used
for evaluation purposes. Using its evaluation tool, we could
evaluate the effect of the different offers on the cellular net-
work, and using our utility function, decide which offer will
potentially produce the best improvement to the network.

We note that the local negotiation mechanism we have
presented above simplifies the process of making changes in
the network. Even with our proposed simple mechanism we
managed, in a distributed manner, to reach a solution, not too
inferior to the optimal solution, which is significantly timely
and resource consuming if done, otherwise, centrally.

Experiments
In order to convey the advantages of our proposed mech-
anism to the cellular industry, so that it will embrace this
approach, we demonstrated the mechanism’s capabilities in
realistic simulations. To this end, we applied a leading in-
dustrial optimization tool for real cellular settings (Schema
2005). Schema’s UMTS OptiPlanner, a tool with field-
proven experience, is a centralized automatic base-station
planning and optimization solution that produces optimal
base-station parameter configurations, based on user-defined
goals for quality, capacity, coverage and budgetary con-
straints. OptiPlanner optimizes a wide range of key net-
work configuration parameters, such as: antenna location,
antenna height, type, tilt, azimuth and power settings. Fur-
thermore, as we have described above, OptiPlanner has a
fast evaluation tool that takes all the aspects of real cellular
networks into account when measuring the performance of
a given network.

Based on this tool, we have developed an agent-based
simulation environment, which integrates both the cellular
network and the negotiation architecture. Our simulations
enable the checking of various methods for the dynamic
adaptation of cellular systems’ parameters. Each time unit
of the simulation simulates a complete negotiation iteration,
in which entities that simulate the base stations negotiate to-
gether over a local change of the specified parameter of the
pilot power. This change will enable global improvement in
the network’s performance.

Experiment Settings
We tested our proposed model on a circular-shaped network
model scenario and a snake-shaped network model scenario.
Figures 2(a) and 2(b) demonstrate the clutter (land cover af-
fecting propagation loss for each base station) and terrain
of the circular and snake shaped models, respectively. The
circular-shaped model scenario consists of 30 base stations
and an average network radius of ten kilometers, while the
snake-shaped model scenario consists of 27 base stations
and an average network radius of seven kilometers. The cel-
lular network itself is a model of a real network deployed
in the suburbs of a large European city. The use of these
two distinct models allows us to examine the efficacy of our
proposed mechanism on different networks with varying de-
grees of impact between the base stations. For example, in
the circular-shaped model scenario, the effect on the base
stations is different: while the stations at the center of the
circle are affected similarly from all sides, those on the ex-
terior show diminished results.

The configuration of each scenario is built using Schema’s
UMTS OptiPlanner tool (Schema 2005). This basic network
configuration includes the propagation model, clutter type
and topographic map. Other parameters are also defined,
using the simulation tool and real data, such as: traffic load,
pilot power and the antenna parameters of the base stations.
Given this data, other parameters for the antenna are defined
or calculated, such as: the 3D pattern of the antenna, its type,
gain, frequency and tilt. The average number of users per
sector and total path loss are calculated based on all these
parameters. These configurations and parameters genuinely
reflect cellular networks, which are deployed throughout the
country. During the negotiation process itself, the base sta-
tions negotiate over the different values for the pilot power
that were set during the configuration process.

The simulations were designed to analyze the efficacy of
the distributed local negotiation, when dynamic changes in
the density of the network and in the distribution of the mo-
bile users occur. Each simulation involved more than 300
iterations and a total of 150 minutes.

During the simulation, changes in the distribution of mo-
bile users were initiated every 15 iterations, and the density
of the mobile users changed every 50 to 80 iterations. The
proposals themselves consisted of changes in the pilot power
of the base stations. The evaluation of each proposal also
involved using Schema’s tool as an evaluation tool, which
takes some of the network parameters into consideration.

The following subsection presents the results of those ex-
periments.



Figure 2: Clutter and terrain of the (a) circular-shaped
model, and the (b) snake-shaped model scenario.

Experiment Results
As stated above, the purpose of the experiments was to
model a dynamic environment of cellular users in an urban
area, and test the response of our local negotiation mecha-
nism to the dynamic changes. Figures 3 and 4 display the
average percentage of mobile users served by our algorithm,
in comparison to the performance obtained in the same net-
work after it was initially optimized by the central optimizer
for the snake-shaped and the circular-shaped models, re-
spectively.

In a cellular network in the suburbs of a large city of the
type considered here, the typical density of mobile users
is 2, and consists of approximately 1,200 to 1,500 mobile
users. Schema’s optimization tool was used to perform an
optimization based on this density. Given this optimization,
the system can serve, on average, 90% of the users. How-
ever, even though the average is 90%, there are usually small
variations in the users’ numbers and location. So, for a given
scenario, the current static cellular system may perform be-
low average. These variations are modeled via what we re-
fer to as a seed change. Each seed yields a different spe-
cific setting of density 2. Our negotiating agents adjust to
these small changes by negotiating over readjustments of the
power pilot of the different BSs they represent. In Figures
3 and 4, this scenario is modeled, for example, in iterations
1-50. The seed change is marked by red squares. The blue
line, which specifies the percentage of users served by the
cellular system using our negotiating system, is above the
pink one, which represents the percentage of users served

Figure 3: 27 base stations, snake-shaped model Results.

by the current static system.
Even though the cellular infrastructure in the suburbs of

the big city was built to serve users of density 2, there are
situations in which the density is changed, e.g., due to un-
usual events. We first considered a scenario in which the
density is doubled and is 4, with approximately 3000 users.
In such a situation, it is clear that the infrastructure will not
be able to serve 90% of the users in this situation, as cap-
tured in iterations 51-130 in Figures 3 and 4. If no change
is made to the power pilot (as is the situation in current sta-
tic cellular systems) the percentage of users that are served
is about 80%, as indicated by the pink line in the figures.
However, if our negotiating system is applied, the percent-
age increases in less than 20 iterations, which is equivalent
to less than 15 minutes in the simulation, to 84%. Also, in
this scenario the specific number of users and their location
changes over time, and this is modeled again by the seed
change. The results show that our negotiating system is ca-
pable of adapting quickly and successfully to these changes.
Even when the resources become scarce, the dynamic na-
ture of our model allows rapid adaptation and enables fast
recovery in the percentage of served mobiles.

Once the density is back to normal, that is, density 2 (see
iteration 130 in the figures), the current static system imme-
diately returns to the previous average of 90%. Our negoti-
ating system adapts quickly to this change too and adapts the
power pilot to the original situation - all this without any out-
side intervention. However, as opposed to the static system,
our negotiation system will keep on adapting to the changes
in the number of users and their changing locations. These
results indicate that even when the state of resources in the
network becomes abundant once again, our algorithm works
well enough and again serves almost the same percentage of
served mobiles, as if there had been no change in resources
in the first place.

In addition, we also considered a situation in which the



Figure 4: 30 base stations, circular-shaped model results.

density is changed to 10, with approximately 5,000 users.
This can be viewed in iterations 181-260 in Figure 3. The re-
sults show that the static system can serve on average about
62% of the mobile users, whereas our negotiating system
can reach the level of 70%. Again, when the density returns
to 2, our negotiating system quickly readjusts to this change
and returns to serve 90% of the mobile users quickly.

Conclusions
This paper demonstrates the promise embodied in integrat-
ing a distributed local negotiation mechanism for cellular
network simulations, which can affect the real-time adapta-
tion of deployed cellular networks. We have shown the ap-
plicability of our proposed method in two distinct scenarios,
which bolsters our confidence with regard to its efficacy re-
garding general scenarios. Obviously, the introduction of ef-
ficient heuristics to produce the negotiated offers themselves
will significantly improve the performance of the mecha-
nism. This is also true for the incorporation of changes ap-
plied to a set of parameters as part of each local negotiation,
thus significantly increasing the magnitude of improvement
in next generation networks.

Our innovative approach in the integration of simulation
environments for cellular networks with an agent-oriented
paradigm will allow future test-bedding for other purposes,
far beyond the negotiation protocol.

Future work on this field includes the introduction of clus-
ters and intra-cluster negotiation, as well as the investigation
of the nature of the committed offers in order to gain a better
understanding of the dynamics of the network. As noted, our
algorithm can be extended to multi-attribute negotiations,
and heuristics can be employed to take more than one pa-
rameter into account. Our negotiation protocol initiated a
change in the pilot power between two base stations. When
investigating the results, it seemed that better performance
was achieved when the sum of differences between the pi-
lot power before and after the change, for the negotiation
agents, was positive. This issue requires further in-depth in-

vestigation and could improve our results.
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