
Forming Efficient Agent Groups for Completing Complex
Tasks

Efrat Manisterski 1, Esther David 2

1 Computer Science Department
Bar-Ilan University

Ramat-Gan 52900, Israel

{maniste,sarit}@cs.biu.ac.il

Sarit Kraus 1 and Nicholas R. Jennings 2

2 Electronics and Computer Science
University of Southampton

Southampton SO17 1BJ, UK

{ed,nrj}@ecs.soton.ac.uk

ABSTRACT
In this paper we produce complexity and impossibility re-
sults and develop algorithms for a task allocation problem
that needs to be solved by a group of autonomous agents
working together. In particular, each task is assumed to
be composed of several subtasks and involves an associated
predetermined and known overall payment (set by the task’s
owner) for its completion. However, the division of this pay-
ment among the corresponding contributors is not prede-
fined. Now to accomplish a particular task, all its subtasks
need to be allocated to agents with the necessary capabili-
ties and the agents’ corresponding costs need to fall within
the preset overall task payment. For this scenario, we first
provide a cooperative agent system designer with a practi-
cal solution that achieves an efficient allocation. However,
this solution is not applicable for non-cooperative settings.
Consequently, we go on to provide a detailed analysis where
we prove that certain design goals cannot be achieved if the
agents are self interested. Specifically, we prove that for
the general case, no protocol achieving the efficient solution
can exist that is individually rational and budget balanced.
We show that although efficient protocols may exist in some
settings, these will inevitably be setting-specific.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence —Multiagent systems

General Terms
Algorithms, Design, Economics

Keywords
Complex Task Allocation, Efficient Allocation

1. INTRODUCTION
Many task allocation problems require a number of autonomous
agents to form groups in order to execute complex activities
they can’t perform individually [16]. In this work, we specif-
ically consider the case in which tasks: (1) are composed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

of several subtasks and (2) have predetermined and known
overall payments, set by the tasks’ owners (i.e., a fixed price
contract) [6]. To accomplish a particular task in this case,
all its relevant subtasks need to be completed by agents with
the necessary capabilities, and the agents’ costs need to fall
within the preset task payment. Therefore, in this scenario,
allocated agents are likely to receive payments which are
higher than their reported costs, to meet the requirement
that the overall task payment need to be fully paid out.

This task allocation problem is common in a wide range
of contexts, including both cooperative and non-cooperative
systems. By means of illustration, for the former case con-
sider a large organization composed of several departments,
each with its own set of capabilities. Such organizations
may receive offers to carry out multiple projects with known
payments. In order to accomplish the specific goals of each
project, several departments need to work together. In such
cases, the role of the organization manager is to allocate the
projects to the departments and to decide on the division of
the complete available payments to the contributing depart-
ments, in order to maximize the organization’s efficiency.
Here it is assumed the departments cooperate by revealing
their actual costs and are prepared to execute any given sub-
task within their capabilities. Similar scenarios also occur in
Grid resource allocation problems where a controller faces
demands to allocate an appropriate set of computational re-
sources for the completion of a set of tasks within the fixed
payments constraints of the tasks’ owners. However, in con-
trast to the first example, here the controller neither owns
the computation resources that may be deployed nor does
it have full information about them. Therefore, this must
be a non-cooperative designation. Each such resource has
to explicitly declare which activities it is willing to perform
and its corresponding costs. Only with this information can
the controller make the allocation.

Given the ubiquity of this problem, it is surprising that
it has received no significant attention to date. Specifically,
the main work in this area is due to Kraus et al. [7, 6]
who consider a non-cooperative agent system for execut-
ing such tasks. In particular they provide a protocol that
achieves 80% efficiency, but which does not scale to a large
number of subtasks and agents. In addition, they bench-
mark their protocol’s efficiency against a solution achieved
by a heuristic and not against the the most efficient solution
(which makes their results even more fragile). To rectify
these shortcomings, in this paper we first provide a coop-
erative agent system designer with a practical solution that
achieves the efficient allocation. We do so by developing

an algorithm which is exponential in the number of tasks,
but polynomial in the number of agents and the number of
subtasks. Since in many real world situations, the number
of tasks is relatively small and can be bounded by a small
constant number, the algorithm’s complexity can be consid-
ered polynomial in the size of the input. We also prove that
no polynomial algorithm exists when the number of tasks is
unbounded (unless P=NP). This is therefore the best result
that can be achieved.

Unfortunately, this solution is not applicable for non-
cooperative settings, where more difficulties are raised (e.g.,
uncertainties about agent’s cost, self interested nature). Con-
sequently, in the second part of the paper we analyze what
can and cannot be achieved when we consider self interested
agents. Specifically, for the general problem we prove that
no individually rational and budget balanced protocol can
exist which achieves an efficient solution. However, there are
some non-cooperative settings for which an efficient protocol
does exist. The drawback is that such an efficient protocol
for one such setting is likely to be inefficient for another.
This result can then be used by the designers of agent sys-
tems, who are faced with this task allocation scenario, to
direct them to develop appropriate protocols and strategies
for particular settings of the problem, and to ensure they
know what can and cannot be achieved. Moreover, the per-
formance of any proposed protocol for the non-cooperative
setting can in the future be benchmarked against our solu-
tion for the cooperative case. This will give more accurate
results than benchmarking against heuristics as has been
done in previous work.

The rest of the paper is organized as follows. Section 2
introduces our problem definition. In section 3 a cooperative
setting for the problem is considered for which we develop an
algorithm resulting in an efficient solution. Section 4 focuses
on the non-cooperative setting where we show what can and
cannot be achieved. In section 5 related work is described
and, finally, we conclude in section 6.

2. PROBLEM FORMALIZATION
The general description of our task allocation problem as-
sumes there are M candidate tasks = = {T1, ..., TM}, where

each Ti is composed of several subtasks
{

STi1 , ..., STiki

}
.

The overall payment of a task, p(Ti), is predefined and
known to all and no inter-task payments transfer is allowed.
Moreover, by definition, the task payments need to be fully
paid out for their completion. However, the partitioning of
the task payment among its subtasks is not predetermined,
but will be set as part of the task allocation process. Here a
task is considered to have been completed if all its subtasks
have been executed.

For the completion of these tasks, a set of agents, A =
{A1, ..., AN}, is given. Each of these agents has capabili-
ties to perform multiple subtasks (where some overlapping
among different agents’ capabilities is assumed). Here, we
assume these capabilities to be known to all participating
agents and the controller. However, as the subtasks should
be carried out simultaneously, we assume that each agent
is capable of performing only one subtask at a time.1 Note
that given the dependency on the resource constraints and

1This is for simplicity of exposition and our results can be
easily extended to the case where an agent is capable of
performing any constant number of subtasks at a time.

the reward structures, not all of the tasks may get executed.
In this paper we consider both cooperative and non-

cooperative settings. For both cases we assume a central
controller is responsible for the task allocation. In the co-
operative case we assume the controller has full informa-
tion about the agents’ costs (as the capabilities are known
to all) either because of the system’s characteristics or be-
cause the agents are assumed to report their costs truthfully
(since they have no incentive to manipulate this informa-
tion). In addition, here an agent’s cooperation also signals
its agreement to complete any assigned subtask which it is
capable of performing. Now in the non-cooperative setting,
the agents’ capabilities are still known to all including the
controller, but in this case the controller can only assign
subtasks to those agents that indicated their willingness to
perform them. Therefore, an agent may strategize by choos-
ing which of the subtasks it is willing to undertake and by
manipulating their corresponding declared costs. Note that
in doing so agents may use the information they have about
the other agents’ capabilities and their cost distributions as
we define below.

Formally, a knowledge capability function (ϕ) that is known
to all agents and the controller is assumed, where ϕ(Aj , STil)
equals one if agent Aj is capable of performing subtask STil

and otherwise zero. Using this function, we summarize each
agent’s capabilities by Ψj = {STil |ϕ(Aj , STil) = 1}. Con-
versely, for any subtask STil there is a set of agents capable
of completing it, Ωil = {Aj |ϕ(Aj , STil) = 1}. Moreover,
each agent Aj has a private cost for performing a given sub-
task STil , cj

il
, taken from a common distribution Fil in the

range of
[
θil

, θil

]
.

An allocation Φ is defined as a match between some of the
agents and some of the subtasks,

Φ =
{

(Ai1 , STi1l1
), ..., (Ain , STinln

)
}

. Here ΦT indicates

the set of tasks allocated by Φ (ΦT ⊆ Φ) and an allocation
Φ is feasible, if and only if it satisfies three conditions:
C1 Each agent in Φ is allocated to at most one subtask.

C2 Any task is either fully allocated (one agent per sub-
task) or it is unallocated.

C3 For each task Ti ∈ ΦT , the total cost for the agents to
perform its constituent subtasks does not exceed the
task’s total payment p(Ti).

As discussed in the introduction, we seek to find an ef-
ficient allocation. To this end, we define the value of an
allocation Φ, V (Φ), to be the difference between the to-
tal payments of the allocated tasks and the total cost for
the assigned agents to perform the corresponding subtasks,
V (Φ) =

∑
T∈ΦT

p(T) − ∑
(Aj ,STil

)∈Φ cj
il
. The feasible al-

location with the highest value is considered to be the ef-
ficient allocation Φeff . Consequently, the efficiency of
any proposed allocation Φ is measured relative to Φeff as:

efficiency(Φ) = V (Φ)
V (Φeff)

.

Next we present a formal description of our problem using
an integer program. The variables yi and xj

il
are decision

variables where yi = 1 if task Ti is chosen to be allocated
and otherwise zero, and xj

il
= 1 if agent Aj is chosen to

perform subtask STil and otherwise zero:

Φeff = max
yi,x

j
il

(
M∑

i=1

(yi · p(Ti))−
N∑

j=1

∑

STil
∈Ψj

(xj
il
· cj

il
)) (1)

such that:∑

STil
∈Ψj

(xj
il

) ≤ 1,∀j ∈ 1, ..., N (2)

∑

j∈Ωil

(xj
il

) = yi,∀i ∈ 1, ..., M, and l ∈ 1, ..., ki (3)

xj
il

, yi ∈ {0, 1} ∀i ∈ 1, ..., M,∀l ∈ 1, ..., ki, ∀j ∈ Ωil
(4)

where equations 2 and 3 correspond to C1 and C2, respec-
tively. Note that condition C3 is implicitly achieved by the
definition of Φeff .2

3. THE COOPERATIVE SETTING
In this section, we develop a practical algorithm that can
be used by the system’s controller to achieve an efficient so-
lution in a cooperative setting. Specifically, we analyze the
problem’s complexity, then develop an algorithm to find an
efficient solution, and finally explore the algorithm’s prop-
erties.

3.1 Problem Complexity
The complexity of our task allocation problem is given by
the following lemma:

Lemma 1. Given the task allocation problem defined in
the integer program (1-4), the computational complexity of
finding an efficient solution is NP-hard. Moreover, it is hard
to approximate within a factor of M1−ε.

Proof. We show this using a reduction from the winner
determination problem in combinatorial auctions. In a win-
ner determination problem, there is a set of n items and a
set of M bids Bj(Sj , pj), where Sj may be any bundle of
items and pj is the price offered for Sj . The goal of winner
determination is to find the subset of bids that maximizes
the revenue with no conflicts (in the sense that the same
item would not be included in more than one bid). Given
an instance of the winner determination problem we present
the items as the agents in our problem (we define a one to
one correspondence, so that any item i is associated with
an agent Ai). Each bid Bj(Sj , pj) is viewed as a task Tj

for which its payment is pj . Tj is composed of |Sj | sub-
tasks, where the agents that are associated with the items
in Sj are the only agents that are capable of performing the
subtasks in Tj . We assume that an agent can perform any
of the subtasks of the task it is associated with. In addi-
tion, we assume that the cost of the agents performing any
subtask is zero. Given this mapping, it is easy to see that
there is a solution to the winner determination problem in
combinatorial auctions that will achieve a certain profit P
for the auctioneer, if and only if an allocation to our task
allocation problem exists in which its value is P. Building
on this, [14] proves that no polynomial time algorithm can
guarantee a bound k ≤ M1−ε for any ε > 0 for the winner
determination problem and thus based on reduction preserv-
ing approximability, our task allocation problem is also hard
to approximate within a factor of M1−ε.

Having shown our task allocation problem is NP hard,
we now go on to present an algorithm which is exponential
solely in the number of tasks, but polynomial in the num-
bers of subtasks and agents. This is a significant improve-
ment over the brute-force algorithm which exhaustively goes

2Assume, by way of contradiction, that an Φeff exists that
doesn’t satisfy C3 (i.e., some tasks exist for which the agent’s
costs exceed the tasks’ payments). Omitting these tasks
from the allocation results in a higher value allocation, which
is a contradiction.

Agents ST11 ST12 ST21 ST22

A1 5 - 5 -
A2 - 5 - 5
A3 30 - 10 -
A4 - 30 - 10

Table 1: Costs and capabilities for example 1

through all possible assignments and searches for the mini-
mum cost one. Such an algorithm is also exponential in the
number of subtasks.

3.2 Finding an Efficient Allocation
Our solution is based on the algorithm for finding the mini-
mum weighted perfect matching in a bipartite graph [1]. Be-
fore describing the algorithm, we first provide an interpreta-
tion of our problem in terms of a bipartite graph G = (V, E).
Each of the agents and subtasks are represented by a vertex
in V , such that a capability of an agent to perform some
subtask is indicated by an edge (in E) between the corre-
sponding vertices. A graph G is considered a bipartite
graph if its vertices, V , can be partitioned into two groups,
V1 and V2, such that no edge in E exists between members
of the same group. In our case, this partition can be viewed
as the agents and the subtasks groups. Given a bipartite
graph G, a perfect matching M ⊂ E is defined to be a
subset of edges that cover all vertices and for which no com-
mon vertex exists for any pair of edges in M . In terms of
our problem, a perfect matching is an assignment of agents
to subtasks such that all the agents and the subtasks in V
are allocated. By representing an agent’s cost to complete
some subtask as a weight of the edge connecting the two
corresponding vertices, we obtain a weighted graph. Thus a
minimum weighted perfect matching is a perfect match-
ing, such that the sum of its edges’ weights is the minimum
(which in our case is an efficient solution if it satisfies the
feasibility conditions). However, in our problem, some of the
tasks may not be completed, as explained in section 2, thus
in order to find the efficient solution one must go through
all the subsets of tasks as we formally describe below.

Given a set of M candidate tasks = = {T1, ..., TM}, we
define the power set of = to be Λ = {λ|λ ⊆ =}). For each
λ in Λ, we construct a bipartite graph Gλ = (V1, V2, E),
where V1 represents all the subtasks, ST , associated with
one of the tasks in λ, and V2 corresponds to the agents in
A (if the number of vertices in V2 is larger than the num-
ber of vertices in V1, the algorithm extends V1 to the size
of V2 by adding |V2| − |V1| vertices that are connected to
all vertices in V2 with a weight of 0). An edge between
ST in V1 and Aj in V2 exists in E if Aj is capable of per-
forming ST and the edge’s weight is Aj ’s cost to perform
ST . Given this construction, the problem of finding the
minimum cost assignment that allocates all tasks in λ
to agents in A is equivalent to the problem of finding the
minimum weighted perfect matching Mλ in Gλ. An ad-
ditional step of the feasibility test is required to validate the
solution. The Algorithm is described in figure 1.

To illustrate the proposed algorithm consider the following
example:

Example 1. Assume there are four agents {A1, A2, A3, A4}
and two tasks, each of which includes two subtasks T1 =
{ST11 , ST12}, T2 = {ST21 , ST22}, where the task payments

1. For each λ in Λ do:

(a) Build a bipartite graph, Gλ = (V1, V2, E).

(b) Find the minimum weighted perfect matching Mλ

in Gλ (if no perfect matching exists go to 1).

(c) Check whether Mλ is a feasible allocation.

(d) If Mλ is feasible, compute its allocation value
V (Mλ), otherwise go to 1.

2. Return the most efficient allocation, Mλ, which is a
feasible allocation with the highest value V (Mλ).

Figure 1: Algorithm for finding an efficient alloca-
tion

30
ST

5

432A A A1 A

22211211 ST STST

10

5
530

510

Figure 2: Graph for λ1 = {T1, T2}

are p(T1) = 500 and p(T2) = 12. The agents’ costs and ca-
pabilities are given in Table 1. The power set of the tasks
includes three nonempty sets: λ1 = {T1, T2}, λ2 = {T1} and
λ3 = {T2}. For each of them, the algorithm constructs the
corresponding graph and computes the minimum cost allo-
cation. Figure 2 shows the graph built for λ1 = {T1, T2}.
Here the bold edges indicate the minimum cost allocation
generated by the algorithm
Φeff = {(A1, ST11) , (A2, ST12) , (A3, ST21) , (A4, ST22)} for
λ1 whose value is 482. As this allocation is infeasible (since
the total cost for T2 is 20 whilst T2’s payment is 12) the
algorithm ignores it and continues by considering λ2. The
efficient allocation of this example is to allocate only task T1

to agents A1 and A2 for which the value is 490 (the highest
possible).

According to the algorithm, given a certain subset of tasks,
λ, first, a minimum weighted perfect matching is generated.
Next its feasibility is verified3. Once it fails to satisfy the
feasibility requirement, all other possible allocations of λ
are ignored. It may seem possible that the efficient solution
is not necessarily the minimum perfect matching for some
λ, but, instead, is the minimum of all the feasible weighted
perfect matching. For instance, in example 1, a feasible al-
location exists where
Φ′ = {(A1, ST21) , (A2, ST22) , (A3, ST11) , (A4, ST12)} that
might have been the efficient allocation, but the algorithm
ignores it. However, as we will prove in section 3.3.2, such
a scenario cannot occur.

3Note that for each set of tasks λ ∈ Λ, the algorithm checks
for the allocation that includes all tasks in λ, regardless of
its feasibility, and computes the minimum allocation if such
an allocation exists. However, if we change the algorithm to
forbid infeasible allocations, the problem of checking for the
existence of a feasible allocation that allocates all tasks in
λ will become NP complete (a reduction can be made from
the subset sum problem [2]).

3.3 The Algorithm’s Properties
Here, we consider the time complexity and the correctness
of our algorithm.

3.3.1 Time Complexity
The complexity of step 1 is exponential in the number of
tasks in =, simply because it goes through all the =’s sub-
sets. However, the complexity of the internal steps 1a-1d is
polynomial, as the complexity of the matching problem is
polynomial [1]. Therefore the total complexity of the algo-
rithm is exponential in the number of tasks |=| and polyno-
mial in the numbers of subtasks and agents.

3.3.2 Correctness
Here, we prove that if the set of tasks allocated by an effi-
cient allocation Φ is λ, then for Gλ the algorithm will return
a feasible perfect minimum matching with the same value
as Φ. This implies that the algorithm always returns an
efficient allocation. Note that the algorithm can return an
allocation different from Φ, but since it has the same value
as Φ it is also considered an efficient allocation.

Lemma 2. Assume Φeff is an efficient allocation that al-
locates the set of tasks in λeff . Then the algorithm: (i) finds
the minimum weighted perfect matching Mλeff in graph Gλeff ,
(ii) Mλeff is a feasible allocation, and (iii) Mλeff has the
same value as Φeff ’s value.

Proof. Assume λeff is the set of tasks that are allo-
cated by the efficient allocation Φeff . We begin by proving
that a minimum weighted perfect matching Mλeff exists
for the corresponding graph Gλeff . As Φeff is feasible, by
definition, it satisfies C1 and C2. That is, Φeff defines a
perfect matching for Gλeff which, in turn, means that a
minimum weighted perfect matching exists. Therefore the
algorithm returns Mλeff (in the worst case it will be Φeff).
Next, we prove that Mλeff is a feasible allocation. Assume,
by way of contradiction, that Mλeff is an infeasible alloca-
tion. By definition Mλeff satisfies C1 and C2. This im-
plies that C3 is not satisfied. Let λinfeasible be the set of
tasks in Mλeff that do not satisfy C3 (i.e., λinfeasible ={

Ti|Ti ∈ λeff and
∑

(Aj ,STil
)∈Mλeff

cj
il

> p(Ti)

}
). Now let

λnew be the set of tasks that are allocated by Mλeff that
satisfy C3. That is, λnew = λeff − λinfeasible. As we as-
sume Mλeff is an infeasible allocation, λinfeasible must not
be empty (therefore λeff 6= λnew). Let
Mλnew =

{
(Aj , STil)|(Aj , STil) ∈ Mλeff and Ti ∈ λnew

}
.

Mλnew is a perfect matching for the set λnew. Consequently,
Mλnew is a feasible allocation for λnew and thus, from the
feasibility definition, Mλnew is a feasible allocation for the
entire set of tasks =. In conclusion, at this point, we have
two feasible allocations for =, Φeff and Mλnew . Next, we
will calculate their efficiency values.

V (Φeff) =
∑

T∈λeff
p(T)−∑

(Aj ,STli
)∈Φeff

cj
il

≤ 4 ∑
T∈λeff

P (T)−∑
(Aj ,STli

)∈Mλeff
cj

il
= V (Mλeff)

=
∑

T∈λinfeasible
P (T)−∑

(Aj ,STil
)∈Mλeff

−Mλnew
cj

il
+

∑
T∈λnew

P (T)−∑
(Aj ,STil

)∈Mλnew
cj

il

4As the minimum perfect matching finds the lowest weight
matching but not necessarily a feasible one, the efficiency
value of V (Mλeff) is greater or equal to V (Φeff).

<
∑

T∈λnew
P (T)−∑

(Aj ,STil
)∈Mλnew

cj
il

= V (Mnew).

To conclude, we prove that V (Φeff) < V (Mnew), which
contradicts the fact that Φeff is the allocation with the
maximum efficiency value. Therefore the efficiency value of
V (Mλeff) is equal to V (Φeff). Previously we proved that
Mλeff is a feasible allocation. That is, the value V (Mλeff)
cannot be greater than V (Φeff) since Φeff is the efficient
allocation. On the other hand, V (Mλeff) cannot be less
than V (Φeff) as both allocate all tasks in λeff and Mλeff

is the minimum matching cost .

Up to this point, we have dealt with a cooperative set-
ting. Unfortunately, however, the algorithm developed for
this setting cannot be simply applied to the non-cooperative
case for the following reasons: (1) the controller in a non-
cooperative setting cannot assign a subtask to an agent that
has not indicated its willingness to take on the activity and
(2) the agents in a non-cooperative case may manipulate
their reported costs in order to increase their individual ben-
efit. Moreover, while in a cooperative setting the division of
a task’s payment does not have any impact on the allocation
outcome, in the non-cooperative case the payment division
may well play an important role (as it directly affects the
agents’ behavior). Therefore, as part of any proposed proto-
col, a rule by which the task’s payment is divided among the
contributing agents needs to be designed. As a consequence,
no guarantees about the proposed algorithm’s efficiency ex-
ist when applied to the non-cooperative settings. Thus next
we examine the non-cooperative setting in terms of desider-
ata, impossibility results, and potential solutions.

4. THE NON-COOPERATIVE SETTING
In a non-cooperative system, agents have the freedom to de-
cide which subtasks they wish to carry out and which costs
to report (since the controller has no information on the
agents’ actual costs). Thus the controller can only allocate
the subtasks based on the agents’ requests. Therefore, in
order to achieve an efficient solution, the simple approach
of asking agents to report their private information (as as-
sumed by the algorithm for the cooperative case) needs to
be replaced by a more sophisticated protocol. That proto-
col should still seek to maximize the overall efficiency, while
taking into consideration that each individual agent may
strategise (on the subset of its capabilities and their costs to
report) in order to maximize its own utility.

In most task allocation scenarios, the strategy space for
a buyer considers values that are lower than its actual val-
uation. Similarly, the strategy space for a seller considers
values that are higher than its cost. In our case, the agents
are selling their services to perform some subtasks. Given
this, one might think that as part of our agents’ strate-
gies in the task allocation problem we need to consider only
those costs that are higher than their actual costs. In con-
trast, however, we show that this is not the case in our set-
ting and an agent designer needs to consider values that are
both higher and lower than the actual agents’ costs5. Con-
sequently, given that in non-cooperative settings the agents

5As an illustration, consider the task allocation described
in Example 1 with a protocol, that given the agents’ decla-
ration, calculates the efficient solution (using the algorithm
presented in figure 1) and distributes the surplus of each
task equally among its contributing agents. In this case,
A3 is incentivised to declare a cost lower than the real one

may make strategy-based declarations, we would like to de-
velop protocols for which dominant strategies (i.e., the best
strategy for an agent regardless of the strategies chosen by
other players), or at least Bayesian Nash equilibria [11] exist
to free agents from the need to strategize.

In particular, we would like to find one general protocol
for which agents will have equilibrium strategies (for the
strongest concept possible) that achieves the efficient so-
lution for all instances of our problem and, in addition, will
satisfy the following desirable properties. First, as we have
self interested agents, a primary desiderata of any proposed
protocol is to be individually rational (i.e., the expected
revenue for each agent from participating should be higher
than or equal to the revenue achieved by not participating).
This is essential to guarantee that no agent loses by partici-
pating in the allocation process. Second, the protocol should
also be budget balanced to match the definition of our task
allocation problem (i.e., any task’s payment should be fully
paid out to its contributing agents and no transfer is allowed
between tasks). The motivation for such a requirement is
the fact that the preset overall payment is known and that
it has been allocated solely for the completion of the task.
Third, we would like our protocol to be undiscriminating
(i.e. it should not discriminate among the agents by utiliz-
ing the knowledge of the agents’ capabilities. In this model
the protocol is required to give the same expected payment
to any two agents with the same declared capabilities and
the same costs, regardless of the difference in their actual
capabilities). Such a requirement is vital to ensure that the
maximum number of agents are willing to engage in the pool
of providers.

For the analysis that follows, we consider two classes of
environment: one in which the agents may strategize about
their costs and another in which they cannot. We term the
latter a real cost environment and we consider it a means
of factoring out any issues that follow from the informa-
tion uncertainty, rather than the self-interested nature of
the agents.

4.1 No Efficient, Individually Rational, and
Budget Balanced Mechanism Exists

Here we prove that no protocol can exist that is efficient,
individually rational and budget balanced, for which there is
a dominant strategy or at least a Bayesian Nash equilibrium.

To prove this, we use a reduction to the bilateral trading
problem. In the bilateral trading problem, a single buyer
wants to buy a single item from a single seller. Both the
seller and the buyer have private values for the item vs and
vb, respectively. Both values are independently drawn from
the same uniform distribution between 0 and 1. In such
problems there are cases in which trading is possible (vs ≤
vb), but due to the buyer’s and seller’s strategies, trading
might not be achieved. Myerson and Satterthwaite prove
that for this problem no efficient protocol exists which is
individually rational and budget balanced even in a Bayesian
Nash equilibrium [10].

Lemma 3. Given the general task allocation problem de-
fined in the integer program (1-4) even for only one task
|=| = 1, no efficient protocol exists that is individually ra-

for subtask ST11 (for which p(T1) = 500); by doing this it
increases its chance to win this subtask.

tional, and budget balanced, even in a Bayesian Nash equi-
librium.

Proof. Assume, by way of contradiction, that there is an
efficient, budget balanced and individually rational protocol
PRtask for our task allocation problem. We can then use
PRtask in order to design a protocol PRBiTrading that solves
the bilateral trading problem.

Given an instance of the bilateral trading problem, the
protocol PRBiTrading is defined as follows:

• Both the seller and the buyer bid their values for the
item bs and bb, to the controller, respectively.

• The controller builds the following instance Itask of
our task allocation problem that considers two agents,
{A1, A2}, and one task including two subtasks, T1 =
{ST11 , ST12} where p(T1) = 1. The agents’ costs for
both subtasks are uniformly distributed over [0, 1]. Agent
A1 is capable of performing only subtask ST11 and its
cost is bs. Agent A2 is capable of performing only
subtask ST12 and its cost is 1− bb.

• Run PRtask to solve the instance of our task allocation
problem Itask.

• If T1 is allocated and the payments p1 and p2 are made
to A1 and A2 respectively, (since the fixed payment
constraint is p1 = 1 − p2) the seller sells the item to
the buyer and the buyer pays p1 to the seller, otherwise
no trade occurs.

Since we assume that PRtask is efficient, budget balanced
and individually rational, PRBiTrading is as well. This is
a contradiction to Myerson and Satterthwaite’s work which
proved that there is no efficient, individually rational and
budget balanced protocol that exists for the bilateral trading
problem which is in Bayesian Nash equilibrium [10].

Hence, as the property of being strategy proof (i.e. truth
telling is a dominant strategy) is a strictly stronger concept
than the Bayesian Nash equilibrium, from Lemma 3 we can
conclude that no efficient, individually rational and budget
balanced protocol which is strategy proof exists for our gen-
eral problem.

In the next section, we consider real cost environments,
removing the agents’ ability to falsely report their costs for
their own benefit and demonstrate that there is still no effi-
cient protocol meeting our requirements.

4.2 No Efficient Protocol Exists for Real Cost
Environments

There are some situations in which the real costs of the
agents may be verified. One example is a scenario where
service providers do not directly receive payment for the
costs of their raw materials, but payments are given against
original receipts. Notice that in this case, in addition to
the cost reimbursement, the agents expect a supplementary
payment from the surplus of the task overall payments, and
this is their motivation for participating in the allocation.

In such cases an agent’s strategy reduces to one dimension:
its willingness to perform certain subtasks (it no longer in-
corporates the subtask cost dimension). Therefore, a truth
telling agent in this case is one that declares all the subtasks
it is able to perform. If in this scenario an agent is forced

Agents ST11 ST12 ST21 ST22

A1 1 1 - -
A2 1 1 - -
A3 1 1 2 -
A4 - - - 3

Table 2: Agents’ capabilities and costs of example
4.2

to declare all the subtasks it can perform, we are reduced to
the problem which is solved in section 2. However, we wish
to consider the case where the agent is free to choose the
subtasks it declares.

Against this background, we will now go on to prove that
even for real cost environments, no protocol achieving the
efficient solution can exist that is individually rational and
budget balanced (except where the allocation problem con-
sists of a single task).

Lemma 4. Given the general task allocation problem de-
fined in the integer program (1-4) and assuming there are
at least two tasks, no protocol achieving the efficient solu-
tion can exist for real cost environments that is individually
rational and budget balanced, not even in a Bayesian Nash
equilibrium.6

Proof. We demonstrate that there is no general proto-
col by exhibiting a particular setting for which no protocol
can exist. Assume there are four agents {A1, A2, A3, A4}
and two tasks, each of which includes two subtasks T1 =
{ST11 , ST12}, T2 = {ST21 , ST22}, where the task payments
are p(T1) = 100 and p(T2) = 8. The costs of subtasks ST11

and ST12 are 1 for all agents, and the costs for ST21 and
ST22 are uniformly taken from [1,4]. The specific agents’
costs and capabilities are given in table 2.

By the revelation principle[11] it is sufficient to prove that
no efficient protocol exists where an agent’s best strategy is
to agree to perform all the subtasks it is able to perform and
declare its real costs assuming all other agents will do the
same. If agent A3 declares its willingness to perform all the
subtasks it is capable of performing {ST11 , ST12 , ST21}, it
will be assigned to ST21 and its utility will be less than 8 (as
any payment can not exceed the task payment). However, if
A3 agrees to perform only {ST11 , ST12}, it becomes similar
to A1 and A2

7. Consequently, its expected utility is 98
3

(as
the expected payment for agents with identical costs and
the same declared subtasks should be the same). Therefore,
for every protocol, A3 won’t declare subtask ST21 , resulting

6Note that this lemma cannot be derived from lemma 3 since
here we assume a real cost environment (whilst in lemma 3
the agents can lie about their costs). On the other hand,
lemma 3 cannot also be derived from this lemma (since there
we proved that no desired solution can be achieved for one
task and, for real cost environments a desired solution does
exist for one task).
7Note that since A3 knows the other agents’ capabilities and
subtask’s costs distribution it knows both A1 and A2’s costs
and capabilities (the costs of ST11 and ST12 are equal to 1
for all agents). By assuming that all other agents declare all
their subtasks, A3 knows that by agreeing to perform only
subtasks {ST11 , ST12} and declaring the costs of 1, it agrees
to perform the same subtasks and declare the same costs as
A1 and A2. Therefore the protocol should yield A3 the same
expected payment.

in an inefficient allocation as only one of the tasks can be
allocated.

However, in contrast to our results in section 4.1, next we
prove that in the case where there is only one task to allo-
cate, an efficient protocol exists for real cost environments.

Lemma 5. Given a real cost environment, an efficient
protocol exists for the task allocation problem defined in the
integer program (1-4) where there is only one task.

Proof. Consider a protocol in which each agent is re-
quested to declare the subtasks it is interested in and its
costs for them. Based on this information, the controller
calculates the efficient allocation using the perfect minimum
weighted matching algorithm (section 3). According to this
efficient allocation, the protocol pays the cost of each allo-
cated agent and an extra equal share of the surplus from the
task payment. Given this protocol and the fact that there
is only one task to allocate, it is easy to see that a dominant
strategy exists where each agent is motivated to declare all
the subtasks it is able to perform with their real costs (as
we assume the real cost environment). By assuming that
all agents use this dominant strategy, we can deduce that
this protocol inevitably derives the real efficient solution as
it does in the full information case.

So far, we have shown that no single efficient protocol
exists for the general case that achieves the desirable prop-
erties. However, there are settings for which such efficient
protocols exist. The next section explores these settings.

4.3 Only Setting-Specific Efficient Protocols
Exist

In order to show that efficient solutions can be generated
for specific settings, but the ensuing solutions are specific
to these settings, we consider two reasonably common envi-
ronments. Specifically, we consider a Different Capabilities
Setting (DCS) in which the agents have different capabili-
ties and all the tasks are associated with the same overall
payment, and a Different Task Payment Setting (DTPS) in
which all agents are capable of performing all the subtasks
and the tasks are associated with different payments. Then,
for each setting, we provide an efficient protocol, and prove
that this protocol is not efficient for the other one. In both
settings we consider that the number of subtasks is equal to
the number of agents and that each task includes K subtasks
(the same number for all the tasks). Finally, we assume the
agents’ cost for any subtask is equal to c.

Given these settings, we consider two protocols: (1) the se-
quential protocol SEQP and (2) the simultaneous protocol
SIMP . According to both protocols, the task’s payments
are divided equally among the contributing agents. Then
as it is assumed that each agent’s cost to perform any of
the candidate subtasks is c, each agent has to declare which
subtasks it wants to perform but not their costs.

In detail, Protocol SIMP allocates all tasks simultane-
ously. Therefore, each agent has to declare at once all the
subtasks (of all the tasks) it wants to perform. Based on
these declarations, the protocol finds the most efficient allo-
cation (using the algorithm described in figure 1). In con-
trast, the SEQP protocol allocates the tasks sequentially
according to a decreasing order of the tasks’ payments (a
random order is used to break ties). In each round the con-
troller announces a task, Ti, and the agents declare which

of its subtasks they wish to perform. Based on these dec-
larations, in each round, the SEQP protocol finds the most
efficient allocation for the considered task. Next we show
that for each setting, only one of the protocols achieves an
efficient solution.

We begin by considering the efficient protocol for the DCS
setting. In this case all subtasks’ payments are equal; thus
any agent is indifferent to which subtask it is allocated. Ac-
cordingly, under the SIMP protocol, a rational agent will
declare all the subtasks it can perform. Moreover, as the
SIMP protocol searches for the overall efficient allocation,
based on the reported capabilities, it achieves the same re-
sult as in the cooperative system case. However, using SEQP
in this setting does not achieve an efficient solution. This is
because the allocation is made separately for each task in a
greedy manner (i.e. finding the most efficient allocation for
a given task at a time while ignoring the rest of the tasks).
For example, consider the case where two agents, A1 and
A2, are capable of performing subtask ST of task T , while

A1 is the only agent capable of performing subtask ST
′

of

task T
′
. For this case, if the allocation is made simultane-

ously for all tasks, A1 will be allocated to ST
′

and A2 will
be allocated to ST so that both tasks may be completed.
However, for SEQP protocol, T can be allocated first (as a
random order is used to break ties). Therefore in this case,

A1 may be chosen to perform ST and consequently, T
′
won’t

be allocated.
For the DTPS setting, SEQP achieves an efficient solu-

tion. This is because when it allocates a certain task, it is
the currently most attractive one (as all tasks with higher
payments have already been allocated). Thus, each agent
is motivated to declare all subtasks of the announced tasks.
As all agents are capable of performing any of the tasks,
the concern that some particular agent will be needed for
a later allocation does not exist. By contrast, in this case
SIMP does not achieve an efficient solution. This is because
there may be a case where some subtasks may not be de-
clared by any agent. To understand why SIMP fails in this
setting, consider the case of an agent that declares all the
subtasks. This agent might be assigned to the lowest pay-
ment subtask, while the highest payment one is allocated
to another agent who declared only the subtasks with the
highest payments.

In conclusion, we have demonstrated that in the non-
cooperative case, there is no general protocol which fulfils
all our desiderata. Moreover we have proved that there ex-
ist settings for which protocols can be developed. How-
ever, each such settings requires individual treatment and
a tailored protocol. Consequently, any further attempt to
develop a protocol for this task allocation problem in the
non-cooperative setting, will have to commence by clearly
defining the setting in which it is to operate.

5. RELATED WORK
Task allocation and coalition formation in multi-agent envi-
ronments have been widely studied in recent years. However,
to date most of the works including classical solutions for
coalition formation (such as Shaply value and Kernal [5, 4])
assume complete information about the agents is available
and that they are self interested. Therefore these solutions
are not applicable to our cooperative and non-cooperative
settings, where, respectively, cooperative agents and incom-
plete information are assumed.

However, the coalition formation work by Li and Zhang
does consider a cooperative setting for a task allocation
problem that is similar to ours [8]. However, the authors
assume that the agents may use all their resources simul-
taneously (i.e using one resource type doesn’t prevent the
agent from using its other available resource types). This
contradicts our assumption that agents have finite capabil-
ities and can perform only a constant number of subtasks
simultaneously. Thus their results cannot be applied to our
problem. Other works on coalition formation in a coopera-
tive setting are [15, 3] in which the authors looked for the
optimal coalition structure. However, in their works they
considered environments in which only one value is asso-
ciated with each coalition. This contrasts with our case,
where a coalition may have different values for each task it
can perform depending on the subtask allocation.

In our algorithm for the cooperative setting we use match-
ing in order to find an efficient solution, similar to other
works like [13] that use matching in order to solve various
allocation and assignment problems. However none of these
works have the same constraints as we have (e.g., constraints
C1-C3 in section 2) . Therefore their solutions are inappli-
cable to our case. The only work that considers the same
problem constraints as ours is [6, 7]. However, as explained
in section 1, they use heuristics (e.g., hill climbing), while
we find the exact efficient solution.

Another related research area is the cost sharing mecha-
nism problem [9]. According to this work, incomplete in-
formation, and, typically, a fixed known cost per coalition
(similar to our task’s payment) is assumed. But, in contrast
to our work, they consider a much simpler structure of the
problem. Specifically, the allocator is responsible for form-
ing only one coalition, while in our case the allocator faces
the more complex decision as of which group of agents to
assign a certain task to and how to allocate the subtasks to
its coalition members.

Our problem also has similarities to a combinatorial mar-
ket problem [12]. Each subtask can be treated as an item,
each task as a bundle of complementary items, and each
agent as a seller with substitutable valuations, since an agent
can perform only one sub-task simultaneously (see section
2). However, in the combinatorial market the payment for
each bundle is determined by the auction. By contrast, in
our problem the payment for each task is predefined and
known. In addition, in most work on combinatorial mar-
kets the surplus of the overall buyers’ values and the overall
sellers’ values is divided among all participants. This is not
appropriate in our model, where the task payment is divided
only among the agents that perform the task.

6. CONCLUSIONS
In this paper we have considered a complex task allocation
problem that needs to be solved by a group of autonomous
agents working together. Given the ubiquity of this problem,
it is surprising that to date it has not received significant
attention. To rectify this omission, we consider both coop-
erative and non-cooperative settings of the problem. For the
former setting we provide a practical algorithm for finding
an efficient solution. The time complexity of this algorithm
is polynomial in case the number of tasks is bounded by
a small constant number (which is often the case in real
world situations). In contrast, for the non-cooperative set-
ting we prove that no general protocol achieving the effi-

cient solution exists for our problem that satisfies our de-
sired properties. However, we show that there exist some
non-cooperative settings scenarios for which an efficient pro-
tocol does exist. Unfortunately, each such setting requires
the design of a bespoke protocol, since the solution for one
setting is likely to be inappropriate for another. In so doing,
this study hopes to assist system designers confronting this
problem to understand what can and cannot be achieved.

7. ACKNOWLEDGMENTS
This research was partially funded by the DIF-DTC project

(8.6) on Agent-Based Control. This work was also supported
in part by NSF No. IIS0208608 and ISF 1211. Kraus is
also aliated with UMIACS. In memory of Matat Rosenfeld-
Adler.

8. REFERENCES
[1] D. Avis and C. Lai. The probabilistic analysis of a

heuristic for the assignment problem. SIAM J.
Comput., 17(4):732–741, 1988.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. MIT Press, 1990.

[3] V. Dang and N. Jennings. Generating coalition
structures with finite bound from the optimal
guarantees. In AAMAS’04, pages 564–571, 2004.

[4] J. Kahan and A. Rapoport. Theories of coalition
formation. Lawrence Erlbaum Associates, 1984.

[5] S. Kraus and O. Shehory. Feasible formation of
coalitions among autonomous agents in non-super
additive environments. Computational Intelligence,
15(3):218–251, 1999.

[6] S. Kraus, O. Shehory, and G. Taase. Coalition
formation with uncertain heterogeneous information.
In AAMAS03, pages 1–8, 2003.

[7] S. Kraus, O. Shehory, and G. Taase. The advantages
of compromising in coalition formation with
incomplete information. In AAMAS04, pages 588–595,
2004.

[8] H. Lau and L. Zhang. Task allocation via multi-agent
coalition formation: taxonomy, algorithms and
complexity. In ICTAI’03, pages 346–350, 2003.

[9] H. Moulin and S. Shenker. Strategyproof sharing of
submodular costs:budget balance versus efficiency.
Economic Theory, 18(3):511–533, 2001.

[10] R. B. Myerson and M. A. Satterthwaite. Efficient
mechanisms for bilateral trading. Economic Theory,
29(3):265–281, 1983.

[11] D. Parkes. Mechanism design chapter 2 in phd
dissertation. 2001.

[12] A. Pekec and M. H. Rothkopf. Combinatorial auction
design. Management Science, 49(11):1485–1503, 2003.

[13] M. Penn and M. Tennenholtz. Constrained
multi-object auctions and b-matching. Information
Processing Letters, 75(1–2):29–34, July 2000.

[14] T. Sandholm. An algorithm for optimal winner
determination in combinatorial auctions. Artificial
Intelligence, 135:1–54, 2002.

[15] S. Sen and P. S. Dutta. Searching for optimal coalition
structures. In ICMAS00, pages 287–292, 2000.

[16] O. Shehory and S. Kraus. Methods for task allocation
via agent coalition formation. Artificial Intelligence,
101(1-2):165–200, 1998.

