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Abstract

Symbolic noise detection (SND) has been shown to be highly
effective in the Noisy Iterated Prisoner’s Dilemma, in which
an action can accidentally be changed into a different action.
This paper evaluates this technique in two other 2 × 2 re-
peated games: the Noisy Iterated Chicken Game (ICG) and
the Noisy Iterated Battle of the Sexes (IBS).
We present a generalization of SND that can be wrapped
around any existing strategy. To test its performance, we
organized ICG and IBS tournaments in which we solicited
several dozen strategies from different authors, and we tested
these strategies with and without our SND wrapper. In our
tests, SND identified and corrected noise with 71% accuracy
in the ICG, and 59% accuracy in the IBS. We believe the rea-
son why SND was less effective in the ICG was because of
a tendency for IBS strategies to change more frequently from
one pattern of interactions to another, causing SND to make
a higher number of wrong corrections. This leads us to be-
lieve that SND will be more effective in any game in which
strategies often show a stable behavior.

Introduction
The performance of mutliagent systems often depends on
the robustness of interaction among agents. But errors
can occurs during the interaction, and that could break the
premises the agents make about their interaction. This prob-
lem is compounded by the fact the agents are self-interested
and do not completely trust each other; agents can no longer
trust each other because of the mistakes that the other agents
make, albeit the mistakes is not intentional but accidental.
How to cope with such mistakes is a critical factor in the
maintenance of cooperation among agents.

Our previous work on the study of this issue focus
on a famous normal-form game called the Iterated Pris-
oner’s Dilemma (IPD), which is well known as an abstract
model for studying cooperative behavior between two self-
interested parties. We studied an important variant of the
IPD is the Noisy IPD, in which there is a small probability,
called the noise level, that accidents will occur (Molander
1985). Strategies that do quite well in the ordinary (non-
noisy) IPD may do quite badly in the Noisy IPD (Axelrod
& Dion 1988; Bendor 1987; Bendor, Kramer, & Stout 1991;

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Molander 1985; Mueller 1987; Nowak & Sigmund 1990).
For example, if two players both use the well-known Tit-
For-Tat (TFT) strategy, then an accidental defection may
cause a long series of defections by both players as each
of them punishes the other for his non-intentional defecting.

A technique called symbolic noise detection (SND) has
been shown to be quite effective in coping with noise in the
Noisy IPD (Au & Nau 2007; 2006). The basic idea is to use
a deterministic model of the other player to identify actions
affected by noise during a game. In Category 2 of the 20th
Anniversary IPD competition,1 seven out of nine programs
using symbolic noise detection are among the top ten. They
lost only to a group of programs that work in a conspiracy
to push one program to the top by giving as many points as
possible to this program while sacrificing the performance
of the rest.2

It is natural to ask how helpful SND can be in other kind
of games, and whether there are particular kinds of games
in which it is especially helpful. Studying SND is important
since to the best of our knowledge there is no other general
procedure that can handle noise efficiently in such games.
This paper addresses these questions by studying SND in the
noisy, repeated version of two other 2× 2 games: the Game
of Chicken (Deutsch 1973; Smith 1982) and the Battle of the
Sexes (Luce & Raiffa 1957). The Chicken Game models the
situations in which two self-interested parties compete for a
resource, but if neither of them concedes, both of them could
get none of the resource. A typical example of this type
of game is one that two people drive head-to-head towards
each other at a very high speed, so that the first driver who
swerves is the loser. The Battle of the Sexes models the
situations in which two parties need to coordinate with each
other to accomplish a task, but they favor different actions.
For example, a husband and a wife prefer to go to a football
game and an opera, respectively. However, if they go to

1The results of the competition can be found on the competi-
tion’s homepage at http://www.prisoners-dilemma.com.

2The other two programs in the top nine used a very differ-
ent strategy called the master-and-slaves strategy. The rules of the
competition allowed each participant to submit up to 20 programs,
and some participants submitted 20 programs that operated con-
spirators in which 19 programs (the “slaves”) sacrificed their own
performance in order to feed as many points as possible to the 20th
program (the “master”).



different places, both of them would not be happy.
We choose these games because they model many inter-

esting real-life social situations in which dilemma occurs.
Solutions to these games have practical implications. More-
over, both the Chicken Game and the Battle of the Sexes
relates to IPD by an appropriate scaling of the payoff ma-
trix (Carlsson & Jönsson 2002). Thus, these games facilitate
our studies of how well SND works as the parameters of the
payoff matrix changes.

Our approach for evaluating SND was to organize tour-
naments similar to the past IPD tournaments. We organized
two tournaments called the the Noisy Iterated Chicken Game
(ICG) and the Noisy Iterated Battle of the Sexes (IBS), and
asked students of an AI class to participate. We also de-
vised a wrapper that can be placed on each of the students’
programs. The function of the wrapper is to correct any ob-
served action that is regarded to be affected by noise accord-
ing to the principle of SND. Then we put the wrapper around
students’ programs and repeated the tournaments. Our ob-
jective was to compare the performance of the strategies
(i.e., student’s programs) before and after using the wrap-
per. In particular, we conducted experiments to study the
relationships of three variables: (1) the average score of a
strategy, (2) the difference of the average scores of a strat-
egy before and after using the wrapper, and (3) the accuracy
of correction made by the wrapper.

The contributions of this paper are:

• We provide a general procedure called the Naı̈ve Symbolic
Noise Filter (NSNF) that can be placed around any exist-
ing strategy.

• In our competitions, NSNF was highly accurate in pre-
dicting the other player’s next moves—96% and 93% of
predictions are correct in ICG and IBS, respectively. Not
all of these predictions would prompt NSNF to make cor-
rections; NSNF corrects an observed action only when the
corresponding prediction is different from the observed
action. NSNF also did a decent job in correcting actions
affected by noise—out of all corrections made by NSNF,
71% and 59% of them successfully rectified actions that
have actually affected by noise in ICG and IBS, respec-
tively.

• In both ICG and IBS, NSNF increased the scores of most
programs, and the average increase was higher in ICG
than in IBS. One reason for this is that NSNF often has
a higher accuracy of noise correction in ICG.

• If we look at each strategy individually, the accuracy in
correction does not strongly correlate with the increases
in average scores of the strategies due to the use of NSNF.
Some strategies, especially those in IBS, actually per-
formed worse with NSNF than without it.

• In both games, strong players and weak players behave
quite differently—strong players are more exploitive and
they choose defect frequently during a game. However,
in ICG this exploitive behavior causes the other player to
exhibit a more clear behavior, but in IBS this does not.
We explain this phenomenon via certain characteristics of
decision making process of the strategies and the structure

of the payoff matrix.

Our Hypothesis
Symbolic noise detection is a principle for identifying which
the other player’s actions has been affected by noise, using
a deterministic model of the other player’s behavior learnt
from the current game history. This idea can be summarized
as follows.

• Build a deterministic model of how the other player be-
haves.

• Watch for any deviation from the deterministic behavior
predicted by the model.

• If a deviation occurs, check to see if the inconsistency
persists in the next few iterations:
1. If the inconsistency does not persist, assume the devi-

ation is due to noise.
2. If the inconsistency persists, assume there is a change

in the behavior.

The clarity of behavior in IPD has already been discussed
by Axelrod in his analysis of TFT (Axelrod 1984). In (Au
& Nau 2006), it was argued that clarity of behavior is an im-
portant ingredient of long-term cooperation, and therefore
most IPD agents exhibit deterministic behavior in tourna-
ments. Thus, SND is effective in IPD because deterministic
behavior is abundant in the IPD. However, if we use SND
in other kind of games, the intention for cooperation may
no longer be abundant; perhaps, cooperation may even be a
undesirable behavior in other games. Therefore, an interest-
ing question is to see in what kind of games SND would be
effective.

In general, players in any zero-sum game tend to have lit-
tle clarity in their behavior. For instance, in a game called
RoShamBo (Egnor 2000), the objective is to predict the op-
ponent’s decision, and therefore players tried hard to conceal
their thought patterns. Likewise, it is often hard for chess
players to predict the opponent’s next move with a high de-
gree of certainty that is large enough for SND to be effec-
tive. In some non-zero-sum games, however, deterministic
behaviors is more plentiful. It would be beneficial if we have
a way to predict the amount of clarity in the player’s behav-
ior by just looking at the structure of a game. But this feat is
currently out of our reach.

To summarize, our hypothesis is that symbolic noise de-
tection will be the most effective in games in which the
strategies are likely to exhibit deterministic behavior.

The Noisy ICG Tournament and The Noisy
IBS Tournament

Our tournaments are similar to the Axelrod’s IPD tourna-
ments and the 2005 IPD tournament, except that the payoff
matrices are the following ones:

Chicken Game’s Player 2
Payoff Matrix Cooperate Defect

Cooperate (4, 4) (3, 5)Player 1
Defect (5, 3) (0, 0)



Battle of the Sexes’ Husband
Payoff Matrix Football Opera

Football (1, 2) (0, 0)Wife
Opera (0, 0) (2, 1)

In order to allow a program to play the roles of both husband
and wife in the IBS, we will use the following modified pay-
off matrix in the IBS:

Battle of the Sexes’ Player 2
Modified Payoff Matrix Defect Cooperate

Cooperate (1, 2) (0, 0)Player 1
Defect (0, 0) (2, 1)

At first glance, the modified Battle of the Sexes’ payoff ma-
trix seemed to be different from the usual one. In fact, the
difference is just the labels in the matrices; we can obtain
the modified payoff matrix by labeling Wife as Player 1,
Husband as Player 2, Wife’s Football as Cooperate, Wife’s
Opera as Defect, Husband’s Football as Defect, and Hus-
band’s Opera as Cooperate. According to the modified pay-
off matrix, Defect is always more favorable than Cooperate
for both Player 1 and Player 2. In order for the players to co-
ordinate with each other, the players has to choose different
actions in the modified payoff matrix.

A game consists of a finite sequence of iterations. In each
iteration, two players, namely Player 1 and Player 2, play an
ordinary Chicken Game or the Battle of the Sexes. At the
beginning of a game, each player knows nothing about the
other player, and does not know how many iterations he will
play. In each iteration, each player chooses a move, which is
either cooperate (C) or defect (D). A move is also called an
action. After both players choose a move, noise may occur
and alter the moves—changing ‘Cooperate’ to ‘Defect’, or
‘Defect’ to ‘Cooperate’. If noise occurs and changes a move,
the other player would see the altered move, not the move
originally chosen by the player.

To distinguish the moves chosen by the players from the
moves eventually seen by the other players, we call the for-
mer the decisions and the latter the physical actions. Sup-
pose the decisions of Player 1 and Player 2 in an iteration are
a and b, respectively. Then the decision pair of this iteration
is a pair of decisions (a, b), and the interaction pair is a pair
of physical actions (a′, b′), where, (1) a′ = {C, D} \ a if a
has been affected by noise, or a′ = a if otherwise, and (2)
b′ = {C, D} \ b if b has been affected by noise, or b′ = b if
otherwise.

Noise has the following characteristics.

• The noise level, the probability that noise occurs and af-
fects a move, is 10%. Each action has an equal probability
of being affected by noise, and the occurrences of noise
are independent of each other.

• If Player 1 chooses cooperate but noise changes his action
to defect, then (1) Player 2 sees that Player 1’s action is
defect, and does not know that Player 1 originally chooses
cooperate; and (2) Player 1 also does not know that his ac-
tion has been affected by noise—after Player 1 chooses
cooperate there is no way for Player 1 to tell whether
his action has been affected by noise. In short, Player 1
knows a and b′, and Player 2 knows a′ and b; Player 1

does not know a′ and b, and Player 2 does not know a and
b′.

• The payoff of an iteration is determined by the interaction
pair (a′, b′), not the decision pair (a, b). But this payoff
is not announced to the players, and the players cannot
compute the payoff since Player 1 does not know a′ and
Player 2 does not know b′.

The score of a player in a game is the sum of the payoff he
accumulated in all the iterations of the game.

Naı̈ve Symbolic Noise Filter
Our next step is to supplement the collected strategies with
symbolic noise detection. Our approach is to develop a pro-
cedure called Symbolic Noise Filter (SNF) that can be placed
around any existing strategy to filter the input (the observed
action of the other player) to a strategy using SND. The ben-
efit of this approach is that SNF, once implemented, is read-
ily applicable to all strategies. On the other hand, this is
helpful to our study because the noise filter of all strategies
are the same, and it is easier to compare their performance
than the custom-made noise filters.

Our study will use a simplified version of SND called
Naı̈ve Symbolic Noise Detection (NSND), which is like SND
but does not defer judgment about whether a derivation is
due to noise or not—it immediately regards a derivation is
due to noise when a derivation is detected. This is different
from the full-strength SND proposed in (Au & Nau 2006),
which utilizes the information before and after a derivation
to improve the accuracy of noise detection. The benefit of
NSND over the full-strength version of SND is that its im-
plementation is much simpler than SND’s—there is no need
to remember when derivation occurs and adjust the underly-
ing move generator when a change of behavior is detected.
Of course, the drawback is that the accuracy of NSND can
be lower than SND’s. But this deficiency is outweighed by
its simplicity, which is important for our wrapper-approach
to SND.

SNF based on NSND is called Naı̈ve Symbolic Noise
Filter (NSNF). Figure 1 illustrates the architecture of
NSNF, and Figure 2 outlines the pseudo-code of our im-
plementation of NSNF. Before we discuss the NSNF pro-
cedure, let us give the definitions of various terms. A
history H of length k is a sequence of action pairs
of all iterations up to and including iteration k. We
write H = 〈(a1, b1), (a2, b2), . . . , (ak, bk)〉. A strat-
egy is a mapping M : H → {C, D}, where H =
〈(C, C), (C, D), (D,C), (D,D)〉∗ is the set of all possible
histories. A condition Cond : H → {True, False} is a
mapping from histories to boolean values. For any action
a and b, we define Conda,b to be a condition such that
Conda,b(H) = True if and only if either (1) k ≥ 1, ak = a
and bk = b, (where k = |H|), or (2) k = 0 and a = b = C.
In other words, Conda,b(H) is true when the last action pair
of H is (a, b). A deterministic rule is Cond → b, where
Cond is a condition and b is an action.

The NSNF procedure in Figure 2 has two input pa-
rameters: a strategy M and a positive integer promo-
tion threshold. The strategy M takes a history as its input
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Figure 1: Naı̈ve Symbolic Noise Filter (NSNF).

and generate an action a. The promotion threshold is to con-
trol the likelihood of picking up a deterministic behavior. In-
creasing the promotion threshold reduces the chance that the
function isDerivation mistakes a random behavior as a de-
terministic behavior, but ignores certain genuine determinis-
tic behavior. In our tournaments, the promotion threshold is
3.

The procedure has two variables about the current game
histories: the recorded history Hrecorded and the filtered his-
tory Hfiltered. The recorded history Hrecorded is a sequence
of action pairs, each of them is the decision a of the strategy
M and the other player’s physical action b′ in an iteration.
The filtered history Hfiltered is like Hrecorded, except that
the other player’s physical actions in Hfiltered have been
“corrected” if the procedure decides that the physical ac-
tions have been affected by noise. The history seem by the
strategy M is Hfiltered rather than Hrecorded (Line 4 in Fig-
ure 2).

This implementation of NSNF is simpler than the imple-
mentation of the Derived Belief Strategy (DBS) in (Au &
Nau 2006), because it does not explicitly maintain the oppo-
nent model (i.e., the hypothesized policy in DBS) but de-
duces the deterministic rules on demand. The procedure
simply searches backward on the current recorded history
to locate a deterministic rule Condaj ,b′

j
→ bnext, where

(aj , b
′
j) is the second to the last action pair of the current

recorded history (Line 13 to Line 23). If NSNF finds such a
rule, NSNF will make a prediction based on bnext. If b′j+1,
the last observed physical action of the other player, is the
same as bnext, no derivation is observed; otherwise, NSNF
observes a derivation and regards b′j+1 has been affected by
noise. Then it corrects b′j+1 using the invert function, which
returns C if b′j+1 = D and returns D if b′j+1 = C.

As an example, suppose both Player 1 (P1) and Player 2
(P2) uses a strategy called Tit-For-Tat (TFT), which starts
with Cooperate and then repeats the other player’s action in
the previous iteration. If both P1 and P2 do not use the Naı̈ve
Symbolic Noise Filter, a possible history can be:

Iteration: 1 2 3 4 5 6 7 8 9 10
Physical Actions of P1: C C C D C D C D D D
Physical Actions of P2: C C C C D C D D D D

Here, the underlined characters refer to the physical actions
that have been affected by noise. We can see that in the
fourth iteration, the decision of P1 was originally C, but was
changed to D due to noise. Then this triggered the retalia-
tion of P2 and started a long sequence of mutual defection

Naı̈veSymbolicNoiseFilter(Strategy, promotion threshold)
1. Hrecorded ← ∅ // the recorded history
2. Hfiltered ← ∅ // the filtered history
3. Loop until the end of the game
4. a← Strategy(Hfiltered)
5. Output a and get the other player’s physical action b′

6. Hrecorded ← 〈Hrecorded, (a, b′)〉
7. If isDerivation(Hrecorded) = True, then
8. Hfiltered ← 〈Hfiltered, (a, invert(b′))〉
9. Else
10. Hfiltered ← 〈Hrecorded, (a, b′)〉
Function isDerivation(Hrecorded)
11. Let Hrecorded be 〈(a1, b

′
1), (a2, b

′
2), . . . , (ak+1, b

′
k+1)〉

12. Cond← Condak,b′
k

; count← 0

13. For j = k − 1 DownTo 1
14. If Cond(aj , b

′
j) = True, then

15. If count = 0, then
16. bnext ← b′

j+1 ; count← count + 1
17. Else
18. If b′

j+1 = bnext, then
19. count← count + 1
20. If count ≥ promotion threshold, then
21. If bnext = b′

k+1, return False, else return True
22. Else
23. Return False

Figure 2: The pseudo-code of the Naive Symbolic Noise Fil-
ter. The function invert(b′) returns C if b′ = D and returns
D if b′ = C.

between the two players. The situation worsened when noise
occurred again in the eighth iteration.

But if Player 2 uses Naı̈ve Symbolic Noise Filter, the
above history would become:

Iteration: 1 2 3 4 5 6 7 8 9 10
Physical Actions of P1: C C C D C C C C D C
Physical Actions of P2: C C C C C C C D C C

At the end of the third iteration, NSNF can readily iden-
tify the deterministic rule CondC,C → C, because
the rule is true in the first three iterations and we set
promotion threshold = 2. In the fourth iteration, NSNF
saw a derivation from the rule, causing P2 to correctly con-
sider D in the fourth iteration as being affected by noise.
Therefore, P2 did not retaliate in the fifth iteration. In the
ninth iteration, P1 retaliates for the defection it observes in
the eighth iteration since P1 does not use NSNF. But P2 did
not defect in the tenth iteration, because the deterministic
rule CondC,C → C had held repeatedly since the fifth iter-
ation.

In this example, NSNF prevented mutual defection in two
different occasions, helping both players to maintain coop-
eration. Furthermore, NSNF can be effective even if only
one player is using it.

Tournament Setup
We have asked students of an advanced-level AI class to
participate in two tournaments: the Noisy ICG tournament
and the Noisy IBS tournament. There are 37 students in



the class, and all of them have submitted programs to both
tournaments. We told students that the noise level is 10%
and the number of iterations of each game is at least 50.
Thus, students do not know the exact number of iterations,
which is 300. The ICG tournament is held first. Before the
IBS tournament, students were informed about the ranking
of their programs in the ICG tournament. This information
should not affect the IBS tournaments since the tournaments
are different. In each tournament, students were given ap-
proximately 2 weeks to complete their programs.

First, we conducted experiments by repeating the ICG
tournament (without NSNF) 1000 times as follows. Let
PICG be the set of all programs for ICG. For any pair
Pi, Pj ∈ PICG of programs, Pi has a chance to play with
Pj in a tournament. Notice that Pj can be Pi itself. The
average score of Pi is the average of the scores of Pi in the
37000 ICG games in which Pi participated. We also col-
lected statistics about Pi such as the number of defection,
etc.

Second, for each Pi ∈ PICG, we augmented Pi with
NSNF and denote the augmented program by P̂i. Then for
each Pj ∈ PICG, we set P̂i to be Player 1 and play against
Pj for 1000 times. Notice that Pj can be Pi itself (but with-
out NSNF). The average score of P̂i is the average of the
scores of Pi in the 37000 ICG games in which Player 1 is
P̂i. We also collected statistics about P̂i and its NSNF such
as the average number of iterations in which NSNF correctly
predicted the occurrence of noise in a game, etc.

The IBS tournaments were also conducted in the same
way.

Experimental Analysis of NSNF
Our analysis is divided into three sections. The first section
presents some basic statistics about the tournaments. Our
focus is on three dependent variables: (1) the average scores,
(2) the increases in average scores due to NSNF, and (3) the
accuracy of correction of NSNF. The second section tries
to explain the relationships of these variables by measuring
the frequency of change of decisions and the frequency of
defects made by strategies. The third section compares the
distribution of decision pairs in ICG and IBS.

Basic Statistics
In this paper, average scores are normalized—a normalized
average score is equal to the average score divided by the
maximum possible scores of a game (1500 in ICG and 600 in
IBS). This allows us to put data from different tournaments
in the same graph.

Average scores Figure 3 shows the normalized average
scores of the strategies, with and without using NSNF, in
ICG and IBS. The normalized average scores are ordered
according to the ranks of the strategies in the original (with-
out NSNF) tournaments. This shows that the differences of
the normalized average scores of the best strategy and the
worst strategy are small: 0.144 for ICG and 0.262 for IBS.
Therefore, a small change in the average score would have a
decisive effect to the rank of a strategy. On average, an in-
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Figure 3: Normalized average scores.

Table 1: The overall normalized average scores (the aver-
age of the normalized average scores of all strategies in Fig-
ure 3.)

Without NSNF With NSNF Difference
ICG 0.7407 0.7475 0.0068
IBS 0.4834 0.4869 0.0035

crease of 0.0039 and 0.0071 in the normalized average score
can change the rank of a program in ICG and IBS, respec-
tively.

Table 1 presents the overall normalized average scores,
the averages of the normalized scores of all strategies in a
tournament. This result shows that NSNF does increase the
overall normalized average scores of both ICG and IBS, and
the increase for ICG is larger than the increase for IBS.

We computed the the increase in normalized average
scores of a strategy due to NSNF by subtracting the nor-
malized average score of a strategy without NSNF from the
normalized average score of a strategy with NSNF, using
the data in Figure 3. Then we present how the increases in
normalized average scores relates to the normalized average
scores in Figure 4. The relationship for ICG is quite differ-
ent from the relationship for IBS. In ICG, there is no ob-
vious relationship between the increases in normalized aver-
age scores and the normalized average. However, in IBS, the
increases in normalized average scores decrease as the nor-
malized average scores increase. In addition, some strate-
gies do not have an increase but a decrease in the normalized
average scores. This is essentially true for strategies in IBS,
especially those that originally have a high average score.

Accuracy of correction We measured various statistics
about the accuracy of NSNF, and the results is summarized
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Figure 4: Increases in normalized average scores due to
NSNF versus normalized average scores. Notice that 11
points are clustered at (0.7, 0.00).

Table 2: Accuracy of Predictions and Corrections of NSNF.
ICG IBS

Avg. no. of actions affected by
noise

30.00 30.01

Avg. no. of predictions made (np) 188.86 172.86
Avg. no. of derivations detected 25.43 27.14
Avg. no. of corrections made 25.43 27.14
Avg. no. of false negatives (n−f ) 0.82 1.23
Avg. no. of false positives (n+

f ) 7.36 11.08
Avg. no. of true negatives (n−t ) 162.61 144.49
Avg. no. of true positives (n+

t ) 18.06 16.06
Accuracy of predictions 95.67% 92.88%
Accuracy of corrections 71.04% 59.19%
Effective no. of correction 10.70 4.98

in Table 2. In this table, a true positive is referred to a situ-
ation in which NSNF correctly predicts that an action is af-
fected by noise. A true negative is a situation in which NSNF
correctly predicts that an action is not affected by noise.
False positives and false negatives are situations in which
NSNF make wrong predictions (noise occurs and noise does
not occur, respectively). The accuracy of prediction, which
is equal to (n+

t +n−t )/np, is a measure of the likelihood that
NSNF makes correct prediction. This is different from the
accuracy of correction, which is equal to n+

t /(n+
t +n+

f ) and
is a measure of the likelihood that NSNF makes correct pre-
diction about the occurrence of noise. The effective number
of correction is equal to n+

t − n+
f .

Let us discuss the accuracy of NSNF in ICG first. In each
iteration, NSNF predicts the next move of the other player
by searching backward to see whether a deterministic behav-
ior pertaining to the current condition of the current iteration
can be picked up. Thus, a prediction is made only if an ap-
propriate deterministic behavior is found. In ICG, NSNF
were able to pick up deterministic behavior and made pre-
dictions in 188.86 out of 300 iterations; this is an interesting
result, because this shows that there is a significant amount
of deterministic behavior in ICG (and in IBS too).

Our statistics showed that most of these 188.86 predic-
tions were correct—the accuracy of prediction is as high as
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Figure 5: Accuracy of correction versus normalized average
scores

95.67%. Only 4.33% of these predictions were false posi-
tives (predicting there is noise when there is no noise) and
false negatives (predicting there is no noise when there is
noise). This indicates that the deterministic model of the
other player’s behavior has a high predictive power indeed.

Nonetheless, the usefulness of these deterministic behav-
iors depends on whether they can be used to detect noise.
Thus, our concern is how often NSNF corrects actions that
have actually affected by noise. On average, out of 25.43
corrections made by NSNF, 18.06 of them were correct (i.e.,
they are true positives). Therefore, the accuracy of correc-
tions is 71.04%. This is a decent accuracy; at least, it shows
that NSNF were not making random correction: if we com-
pare our result to the accuracy of a random noise filter, which
randomly select 25 actions out of 300 observed actions and
correct them and hence only about 2.5 of these corrections
are correct (i.e., the accuracy is only 10%), the accuracy of
NSNF is much higher.

On the other hand, NSNF made about 28.96% wrong cor-
rections, changing about 7.36 actions when they should have
not been changed. The result of these wrong corrections is
similar to the introduction of noise into the observed actions
(though the introduction is not random). According to this
view, the effective number of correction is 10.70.

In IBS, NSNF’s prediction is also highly accurate: it is
as high as 92.88%. However, the number of true positives
among these predictions is slight smaller than that in ICG,
resulting in an 59.19% accuracy of correction. The effective
number of correction is 4.98 only, which is less than half of
the effective number of correction in ICG.

Accuracy of correction vs Average Scores Figure 5
presents how the average scores relate to the accuracy of
correction. Surprisingly, a positive linear correlation is ob-
served in ICG, but a negative linear correlation is observed
in IBS (after excluding a few outliners due to some weak
strategies in IBS). Moreover, most strategies in ICG have a
higher accuracy than all of the strategies in IBS.

But how the accuracy of correction relates to the increases
in average scores? In Figure 6, we found no obvious rela-
tionship between these two variables. Even worse, around
half of the strategies in IBS do not have an increase in their
average scores no matter what their accuracy of correction
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Figure 6: Increases in normalized average scores versus ac-
curacy of correction
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Figure 7: Frequency of choosing defect versus normalized
average scores.

are. But one thing we observe in both ICG and IBS is
that none of the strategies with a low accuracy of correction
(when compared to other strategies in the same tournament)
has a higher-than-average increase in their normalized aver-
age scores. This is why the slopes of the lines in Figures 6
are positive.

Explanations via Characteristics of Decisions
Making Process
This section offers explanations on (1) the relationship be-
tween the average scores and the accuracy of correction, and
(2) the relationship between the average scores and the in-
creases in average scores. From these, we can deduce the
relationship between the accuracy of correction and the in-
creases in average scores.

Our explanations are based on two dependent variables
concerning decisions made by players: (1) the frequency of
choosing defect (Figure 7), and (2) the frequency of change
of the player’s own decisions—from cooperate to defect, or
vice versa—between two consecutive iterations (Figure 8).

Average scores vs accuracy of correction We observe
that the accuracy of correction increases with average scores
in ICG in Figure 5. At the same time, we observe that the
frequency of choosing defect increases with average scores
in Figure 7. We believe this is not a coincidence; in fact,
we can see that they are naturally linked together by look-
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Figure 8: Frequency of changes of the player’s own deci-
sions versus normalized average scores.

ing at the structure of the Chicken Game’s payoff matrix—if
a player chooses defect, the other player is much better off
choosing cooperate (and earning 3 points) rather than defect
in order to avoid mutual defection that gives 0 point; but if
a player chooses cooperate, the choice of the other player
would make little difference to the other player’s payoff (4
points for choosing cooperate, and 5 points for choosing de-
fect). Thus, if a player manages to choose defect frequently,
the other player’s behavior would become more determinis-
tic, because he often chooses cooperate. The linear correla-
tion in both Figure 5 and Figure 7 seems to strongly support
our explanation.

We also observe a gentle decrease in the accuracy of cor-
rection as the average scores increase in IBS in Figure 5. At
the same time, we observe that the frequency of choosing
defect increases with the average scores in IBS in Figure 7.
These figures suggest that strategies that defects frequently
have a slight lower accuracy of correction than those that co-
operate frequently. Our explanation for this is based on the
following observations. First, the cost of mutual defection
is small according to the payoff matrix—the player loses 1
point only if he chooses defect instead of cooperate in re-
sponse to defect. This cost is much lower than the cost in
ICG, which is 3 points. Hence, the other players in IBS are
more willing to choose defect in response to defect. See
the caption of Table 4 for evidence of this point. Second,
weak players (who have low average scores) tend to be those
who want to play fairly—having the same cumulative pay-
off as the other player’s. By contrast, strong players (who
have high average scores) tend to be exploitive—they of-
ten defect. Data in Figure 7 and Figure 8 seem to support
this description of the characters of strong and weak play-
ers. When playing with strong players, weak players would
often change their decisions frequently (as they are willing
to defect in response to defect) as they struggle for fairness,
causing a lower accuracy of the strong players’ prediction
of their behavior. But from a weak players’ viewpoint, the
strong player’s behavior is very clear.
Average scores vs increases in average scores In Fig-
ure 4, we observe that there is no obvious relationship be-
tween the average scores and the increases of average scores
due to NSNF in ICG, but a negative correlation is observed



in IBS. A common feature of the data for ICG and the data
for IBS in Figure 4 is that strong players often have a lower
increase in average scores than other players. One reason for
this is that strong players defect frequently according to Fig-
ure 7. More importantly, they defect no matter which move
the other player chooses. Thus, strong players are less sen-
sitive to noise because they often choose detect no matter
what. Therefore, noise would cause less damage to these
players than those that change their decisions frequently.
NSNF would be less beneficial to strong players, as strong
players do not behave much differently even after the cor-
rection of noise. On the other hand, some weak players rely
on the establishment of certain interaction patterns with the
other player. This process is prone to noise, and thus NSNF
can help these players a lot.

Distribution of Decision Pairs
We would like to further investigate the general effect of
NSNF in different kind of games by looking at the distri-
bution of different decision pairs as shown in Table 3.

Traditionally, researchers use Nash equilibrium and its ex-
tensions to study repeated games; for example, they use Folk
Theorems and their variants to answer questions pertaining
repeated games (Osborne & Rubinstein 1994). These theo-
rems, however, do not offer any prediction about the distri-
bution of strategies in a tournament. Many interesting phe-
nomena have been observed in simulations, but cannot yet
be explained completely by contemporary theories. A fa-
mous example is the emergence of cooperation in IPD (Ax-
elrod 1984): about 31% of the interaction pairs in the Cate-
gory 2 of 2005 IPD competition are (C, C) when there is no
master-and-slaves strategy (Table 3). The similar emergence
of cooperation was observed in our ICG tournaments—the
most-frequent decision pairs turns out to be (C, C), rather
than the two pure Nash equilibria of the Chicken Game
((C, D) and (D,C)). In IBS, however, the interaction pairs
of strategies are often in two pure Nash equilibria of the Bat-
tle of the Sexes ((C, D) and (D,C)). But (D,D) is also a
high-frequent decision pairs in IBS. We call (C, C) in ICG
and (D,D) in IBS the emergent decision pairs, since they
have a high frequency of occurrence, but they are not the
pure Nash equilibria of the corresponding one-shot games.

NSNF affects the distribution of decisions pairs. In ICG,
NSNF leads to a 5.75% increase of (D,C), most of them are
converted from (C, C). In IBS, NSNF causes an 3.22% in-
crease of (C, D), most of them are converted from (D,D).
A striking similarity of these effects is that there is a de-
crease in the frequency of the emergent decision pairs—
(C, C) in ICG and (D,D) in IBS. In future, we are inter-
ested to study whether this also occurs in the Noisy IPD and
other kind of games as well.

We also look at the pattern of how often one decision pair
changes to another in consecutive iterations. The numbers
in Table 4 are computed by dividing the average number of
the consecutive iterations that one decision pair change to
another by 299, the total number of consecutive iterations
in a game. Thus, the sum of all 16 numbers in a matrix is
equal to 100%. Notice that the other players in IBS are much
more willing to choose defect in response to defects; there is

Table 3: Distributions of different decision pairs. The IPD’s
data are collected from Category 2 of the 2005 IPD compe-
tition. “All but M&S” means all 105 programs that did not
use master-and-slaves strategies, and “all” means all 165
programs in the competition. Note that the numbers for IPD
are not the number of decision pairs but interaction pairs.

ICG (C, C) (C, D) (D,C) (D,D)
Without NSNF 38.26% 29.84% 29.83% 2.06%
With NSNF 33.35% 28.87% 35.58% 2.20%
Difference -4.90% -0.97% 5.75% 0.14%

IBS (C, C) (C, D) (D,C) (D,D)
Without NSNF 5.06% 35.91% 35.94% 23.09%
With NSNF 4.94% 39.13% 35.06% 20.87%
Difference -0.11% 3.22% -0.88% -2.22%

IPD (C, C) (C, D) (D,C) (D,D)
all 13% 16% 16% 55%
all but M&S 31% 19% 19% 31%

Table 5: The sum of the diagonal entries in Table 4.

Without NSNF With NSNF Difference
ICG 82.18% 82.75% 0.57%
IBS 72.36% 74.71% 2.35%

a 12.9% = (0.39 + 4.26)/(1.52 + 0.39 + 29.77 + 4.26) of
chance of choosing defect when the previous decision pair
is (D,C), as opposed to 2.97% = (0.18 + 0.70)/(3.47 +
0.18 + 25.48 + 0.70) of chance in ICG.

From Table 4, we see that there is a large number of
changes to and from the emergent decision pairs in both
tournaments. More precisely, in ICG, most changes of deci-
sion pairs starts from (C, C) or ends at (C, C), whereas in
IBS, most changes of decision pairs starts from (D,D) or
ends at (D,D). Perhaps this has something to do with the
underlying mechanism that causes the emergence of these
decision pairs. However, the flow in and out of these deci-
sion pairs drop after we augmented strategies with NSNF.

Table 5 shows how often strategies remain in the same de-
cision pairs in consecutive iterations. First, strategies in ICG
more often remain in the same decision pair than strategies
in IBS. Perhaps this explains why the accuracy of correction
is higher in ICG than in IBS (Figure 5). Second, strategies
in both ICG and IBS are more likely to remain in the same
decision pairs after using NSNF. This stabilizing effect may
have caused the increases in the overall average scores as
shown in Table 1.

Related Work
The question of how to deal with noise in multi-agent sys-
tems is important, because mistakes in the interaction can
cause mistrust and destroy cooperative relationships among
agents. Early studies of the effect of noise focused on
how Tit-For-Tat (TFT) performs in IPD in the presence of
noise. TFT is known to be vulnerable to noise (Axelrod &



Table 4: Frequency of change of decision pairs.

To To
From From

30.89% 3.56% 3.56% 0.26% 26.45% 3.22% 3.44% 0.24%
3.47% 25.48% 0.18% 0.70% 3.13% 24.87% 0.19% 0.68%
3.47% 0.18% 25.48% 0.70% 3.37% 0.18% 31.12% 0.91%
0.46% 0.63% 0.63% 0.33% 0.42% 0.61% 0.87% 0.31%

To To
From From

0.56% 1.17% 1.17% 2.15% 0.60% 1.46% 1.02% 1.87%
1.52% 29.75% 0.39% 4.26% 1.64% 33.63% 0.39% 3.47%
1.52% 0.39% 29.77% 4.26% 1.43% 0.41% 29.14% 4.07%
1.46% 4.67% 4.67% 12.28% 1.27% 3.71% 4.57% 11.33%
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Dion 1988; Bendor 1987; Bendor, Kramer, & Stout 1991;
Molander 1985; Mueller 1987; Nowak & Sigmund 1990;
Wu & Axelrod 1995). Researchers have proposed bet-
ter strategies for noisy environments such as Tit-For-Two-
Tats, Generous Tit-For-Tat (Nowak & Sigmund 1992),
Contrite TFT (Sugden 1986; Wu & Axelrod 1995), and
Pavlov (Kraines & Kraines 1989; 1993; 1995; Nowak & Sig-
mund 1993). But these strategies are not general methods
that can be used to deal with noise in a wide variety of sit-
uations. The success of the Derived Belief Strategy (DBS),
based on symbolic noise detection, in the 2005 IPD competi-
tion has demonstrated that an opponent model can be used to
detect and isolate noise in the Noisy IPD (Au & Nau 2007;
2006). This paper has proposed a general SND-based
approach—the Naı̈ve Symbolic Noise Filter—that is appli-
cable to not only DBS but also any strategy in 2×2 repeated
games.

There is little work on the Noisy ICG and the Noisy IBS,
and therefore the questions about how to cope with noise in
these games are still open.

Summary
The robustness of interactions is an important issue in multi-
agent systems, but mistakes due to noise can interfere with
the interactions among agents and decrease the performance
of the agents. Symbolic noise detection (SND) is the only
known general method for handling noise efficiently in
games like the Noisy IPD. The purpose of this paper has
been to investigate what kinds of features of a game may
cause SND to work well or work poorly.

For our investigation, we have evaluated SND in two other
games: the Noisy Iterated Chicken Game (ICG) and the
Noisy Iterated Battle of the Sexes (IBS), using a simplified
version of SND called Naı̈ve Symbolic Noise Filter (NSNF).
We found that NSNF was highly accurate in predicting the
other player’s next moves (96% and 93% of predictions were
correct in ICG and IBS, respectively) and did a decent job in
correcting actions affected by noise (71% and 59% of cor-
rections were correct in ICG and IBS, respectively).

Moreover, the overall average scores (the average of the
scores of all strategies) increase after using NSNF in both
ICG and IBS. Also, the increase in ICG is larger than in IBS.
Since most strategies in ICG have a higher accuracy of noise
correction than strategies in IBS, this seems to support our
hypothesis that symbolic noise detection will be more effec-
tive in games in which strategies often exhibit deterministic
behavior.

However, if we look at each strategy individually, the
results are mixed: the accuracy of noise correction does
not strongly correlate with the increases in average scores.
Some strategies, especially those in IBS, perform worse than
before after using NSNF.

To explain these results, we have explored the relation-
ships between (1) the average scores, (2) the increases
of average scores due to NSNF, and (3) the accuracy of
noise correction of NSNF. We found that strong players and
weak players behave quite differently—strong players are
more exploitive, having a clear behavior of choosing defect.
While this is true for both games, this exploitive behavior
has different effect to the clarity of the other players’ behav-
ior in different games. In ICG this causes the other player
to exhibit a more clear behavior, but in IBS this does not.
We have offered explanations to this phenomenon via the
observed characteristics of decision making process of the
strategies and the structure of the payoff matrix.
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