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Abstract

Recent progress in peer to peer (P2P) search algorithmsésanted viable structured and un-
structured approaches for full-text search. We posit tiege existing approaches are each best suited
for different types of queries. We present PHIRST, the fiystesm to facilitate effective full-text
search within P2P databases. PHIRST works by effectivebréming between the relative strengths
of these approaches. Similar to structured approachentsafiest publish terms within their stored
documents. However, frequent terms are quickly identifredirzot exhaustively stored, resulting in a
significant reduction in the system’s storage requiremeddtsing query lookup, agents use unstruc-
tured search to compensate for the lack of fully publisheehse Additionally, they explicitly weigh
between the costs involved in structured and unstructuppdoaches, allowing for a significant re-
duction in query costs. Finally, we address how node faslwan be effectively addressed through
storing multiple copies of selected data. We evaluated ffieetaveness of our approach using both
real-world and artificial queries. We found that in most &itons our approach yields near perfect
recall. We discuss the limitations of our system, as well@sible compensatory strategies.

Introduction

Full-text search, or the ability to locate documents baseteans found within docu-
ments, is arguably one of the most essential tasks in amybdistd database [9]. Search
engines such as Google [1] have demonstrated the effeetisesf centralized search.
However, classic solutions also demonstrate the challehdgrge-scale search. For
example, a search on Google for the word, “a”, currentlyrmegwver 15 billion pages
[1]. Though Google’s servers are capable of storing thismitade of storage, this
approach is infeasible for distributed solutions invotymore limited devices.
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In this paper, we address the challenge of implementingéxli search within peer-
to-peer (P2P) network databases. Our motivation is to dstree the feasibility of
implementing a P2P database comprised of resource limitathimes, such as hand-
held devices. Thus, any solution must be keenly aware ofdhefing constraints:
Cost- Many networks, such as cellular networks, have costs adesdovith each mes-
sage. One key goal of the system is to keep communicatiors ¢@mst Hardware
limitations - we assume each device is limited in its amount of storagg.pkoposed
solution must take this limitation into consideratioDistributed - any proposed so-
lution must be distributed equitably. As we assume a netwbrkgents with similar
hardware composition, no one agent can be required to harsgstor communication
requirements grossly beyond that of other machifResilient- our assumption is that
peers are able to connect and disconnect at will from the arktwAs a result, our
system must be able to deal with peer failures, a conceptaifpireferred to as churn
[5, 17].

To date, three basic approaches have been proposed feextulearch within P2P
databases [19]. Structured approaches are based on tei ¢idermation Retrieval
theory [6], and use inverted lists to quickly find query tertdswever, they rely on ex-
pensive publishing and query lookup stages. A second appiraates super-peers, or
nodes that are able to locally interact with a large subsagiehts. While this approach
does significantly reduce publishing costs, it violatesdis&ributed requirement in our
system. Finally, unstructured approaches involve no phlrig, but are unsuccessful
in locating hard to find items [19].

In this paper we present PHIRST, a system Rarer-to-PeetHybrid Restricted
Search forText. This approach has three key contributions. First, FHIRs the
first system capable of performing distributed full-texausd# — something previously
thought to be infeasible [9]. The key to PHIRST’s successsigbility to restrict the
amount of data needed to be published to execute full-tethe Not only does this
ensure that the hardware limitations of agents’ nodes arexueeded, it also better
distributes the system'’s storage. Furthermore, a peeesage data load actually de-
creases as peers with documents are added. Thus, the systemds progressively
more scalable as its size increases. Nonetheless, PHIRSN iable to effectively
process full-text search through a hybrid approach thatréges the advantages of
structured and unstructured search algorithms. PHIRSfi#eld published data is
used to locate hard-to-find items. Unstructured searchad ts find common terms
that were not published. Second, not only does PHIRST ptedeasible approach for
full-text search, but it also processes these searchedawtr cost as well. We also
present full-text query algorithms where nodes explicrtdason based on estimated



search costs about which search approach to use, reducang gosts. Finally, we
present how storing redundant copies of these entries &ectiegély deal with tempo-
rary node failures without the need of any centralized meisima.

To validate the effectiveness of PHIRST, we used a real wagtusd15]. We found
that the hybrid approach we present used significantly kesage to store all inverted
lists than previous approaches where all terms were puaig®, 19]. Next, we used
artificial and real queries to evaluate the system. The @difqueries demonstrated
the strengths and limitations of our system. The unstrecdt@omponent of PHIRST
was extremely successful in finding frequent terms, andttinetsired component was
equally successful in finding any pairs of terms where attleas term was not fre-
quent. In both of these cases, the recall of our system was/alb00%s. The system’s
performance did have less than $0@ecall when terms of 2 or more words of medium
frequency were constructed. We present several compens#tategies for addressing
this limitation in the system. Finally, to evaluate the pi@a impact of this potential
drawback, we studied real queries taken from IMDB’s movitadase [2] and found
PHIRST was in fact effective in answering these queries.

2 Related Work

Classical Information Retrieval (IR) systems use a ceiatdlserver to store inverted
lists of every term in every document within the system [@jeSe lists are “inverted”
in that the server stores lists of the location for each temna, not the term itself. In-
verted lists can store other information, such as the tdouation in the document, the
number of occurrences for that term, etc. Search resulttharereturned by intersect-
ing the inverted lists for all terms in the query. These rssaite then typically ranked
using heuristics such as TF/IDF [7]. For example, if seargtior the terms, “family
movie”, one would first lookup the inverted list of “familyiitersect that file with that
of “movie”, and then order the results before sending theak bathe user.

The goal of a P2P system is to provide results of equal qualttyout the need of a
centralized server with the inverted lists. Potentialyg tlistributed solution may have
advantages such as no single point of failure, lower maamtea costs, and more up-
to-date data. Toward this goal a variety of distributed na@esms have been proposed.

Structures such as Distributed Hash Tables (DHTSs) are ornetovdistribute the
process of storing inverted lists. Many DHT frameworks hbeen presented, such
as Bamboo [17], Chord [13], and Tapestry [20]. A DHT couldrtle used for IR in
two stages: publishing and query lookups. As agents joim#iwork, they need to



update the system'’s inverted lists with their terms. Thdose by every agent sending
a “publish” message to the DHT with the unique terms it cargailn DHT systems,
these messages are routed to the peer with the inverted lkgj(iN) hops, with N being
the total number of agents in the network [13, 17]. Duringrgueokups, an agent
must first identify which peer(s) store the inverted liststfee desired term(s). Again,
this lookup can be done in log(N) hops [13, 17]. Then, the agarst retrieve these
lists and intersect them to find which peer(s) contain alhefterms.

Li et al. [9] present formidable challenges in implementough the publishing and
lookup phases of this approach in large distributed netstoflssuming a word exists
in all documents, its inverted list will be of this length. U%) the storage requirements
for these inverted lists are likely to exceed the hardwaibtiab of agents in these
systems as the number of documents grows. Furthermorangdacye lists will incur
a large communication cost, even potentially exceedingp#melwidth limitation of the
network. Because of these difficulties, they concluded tia@te implementations of
P2P full-text search are simply infeasible.

Several recent developments have been suggested to makeextfulistributed
system viable. One suggestion is to process the structaegdisstarting with the node
storing the term with the fewest peer entries in its invelitgd That node then forwards
its list to the node with the next longest list, where the tefme locally intersected
before being forwarded. This approach can offer significast savings by insuring
that no agent can send an inverted list longer than the onedshy theleastcommon
term [19]. Reynolds and Vahdat also suggest encoding imddigts as Bloom filters
to reduce their size [16]. These filters can also be cachestiiace the frequency these
files must be sent. Finally, they suggest using incremeasallts, where only a partial
set of results are returned allowing search operationdtater finding a fixed number
of results, making search costs proportional to the numbgocuments returned.

Unstructured search protocols provide an alternativedhatused within Gnutella
and other P2P networks [4]. These protocols have no pubfsitequirements. To
find a document, the querying node sends its query aroundetveork until a pre-
defined number of results have been found, or a predefined Tihhe(To Live) has
been reached. Assuming the search terms are in fact poglupproach will be
successful after searching a fraction of the network. \Werioptimizations have again
been suggested within this approach. It has been founddhdbm walks are more
effective than simply flooding the network with the queryJ[1EBurthermore, one can
initiate multiple simultaneous “walks” to find items moreickly, or use state-keeping
to prevent “walkers” from revisiting the same nodes [12] spige these optimizations,
unstructured search has been found to be unsuccessfulingirate terms [4].



In super-peer networks, certain agents store a dispropate amount of inverted
list data. Instead of all peers publishing inverted data evaistributed DHT network,
agents send copies of their lists to their assigned supspés agents are assumed
to have direct communication with their super-peers, onky loop is needed to publish
a message, instead of the log(N) paths within DHT systemsnBujuery processing,
an agent forwards its request to its super-peer, who thes thle intersection between
the inverted lists of all super-peers. However, this apgnagaquires that certain nodes
have higher bandwidth and storage capabilities [19] — sbimgtve could not assume
for our system.

Hybrid architectures involve using elements from multipfgroaches. Loo et al.
[10, 11] propose a hybrid approach where a DHT is used withpespeers to locate
infrequent files, and unstructured query flooding is usedrnd iommon files. This
approach is most similar to ours in that we also use a DHT toififrdquent terms and
unstructured search for frequent terms. However, sevesatkferences exist. First,
their approach was a hybrid approach between Gnutellapekra (super-peers) and
unstructured flooding. We present a hybrid approach thageaerically use any form
of structured or unstructured approaches, such as randtks inatead of unstructured
flooding or global DHT’s instead of a super-peer system. B8eco determining if
a file was common or not, they needed to rely on informatiomllgcavailable from
super-peers, and used a variety of heuristics to attemptttapolate this information
for the global network [10]. Since we build PHIRST based ofoagl DHT, we are able
to identify rare-items based on complete information. Bxbgsnost significantly, Loo
et al. [11] only published the files’ names, and not their eant As they considered
full-text search to be infeasible for the reasons previppsésented [9], their system
was limited to performing searches based on the data’s fileenand not on the text
within that data. In contrast, the PHIRST system actuallgobges more scalable as
nodes are added and is thus the first system to facilitatetetefull-text search even
within large P2P databases. Finally, an earlier versiorhisf work was previously
published [18]. In addition to significant updates to thelmiiing and query algorithms
presented in this paper, this version of PHIRST addressasssof churn, something
not addressed in our previous work.

3 PHIRST Overview

First, we present an overview of the PHIRST system, how itdighing and query
algorithms interconnect, and the variables used in themiléAts section describes



how information is published within the Chord DHT [13], PFBR’s publishing al-
gorithm is generally presented in Section 4 so it may be usddniother DHT’s as
well. Similarly, Section 5 presents query algorithms whsdtect the best search al-
gorithm based on the estimated cost of performing the sedgdrithms at the user’s
disposal. The selection algorithm (Algorithm 3) is genlgralritten such that new
search algorithms can be introduced without affecting therahm’s structure. Only
later, in Algorithm 4, we present how these costs are cakedlspecific to the DHT and
unstructured search algorithms we used.

In order to facilitate structured full-text search for iffuent words, inverted file
term data must be stored within structured network overtayh as Chord. Briefly,
Chord uses consistent hash functions to create an m-bitiiéen These identifiers
form a circle modul@™. The node responsible for storing any given term is found by
using a preselected hash function, such as SHA-1, to contpetkash value of that
term. Chord then routes the term to the agent with the Chantifier equal to or the
successor (the next existent node) of that value [13]. Famge, Figure 1 depicts
a simple example with 3 nodes, and an identifier space af)8 Assuming the term
hashes to a value of 6, it needs to be stored on the next nodiwhe circular space,
or on node 0. Assuming the term hashes to 1, it is stored on hode

¢ identifier
® node

key

successor{l) = 1

identifier

successor(6) =0 ﬁ q circle

successor{2) = 3

Figure 1. An example of a Chord ring with m=3. Figure based bor@ paper [13].

The use of a consistent hash function within the Chord algariprovides several
positive qualities. First, it creates important perforimaguarantees, such as a log(N)
average search length to find the node containing a certam teurthermore, nodes
can be easily added (joins) or removed (disjoins) by insgrthem into the circular
space, and re-indexing only a fraction of the pointers nithie system. Finally, the



Table 1: Example of several words (terms within the DHT), Hredr inverted lists.

Term; Addressl| Address?2| Address3| Address4| Address5| Address6| Address?7
a 10.1.1.1| 10.1.1.2 10.1.1.3|] 10.1.1.4| 10.1.1.5| 10.1.1.6/ 10.1.1.7

aardvark| 10.13.132.45
the 10.1.1.1] 10.1.1.2 10.1.1.3] 10.1.1.4| 10.1.1.5| 10.1.1.6/ 10.1.1.7
Z00 10.1.3.4| 10.1.3.44| 10.1.39.12

zygote 10.7.12.45

hash function used by Chord ensures that no agent will reganre than O(log(N))
terms above the average amount stored by other nodes intierkg13], creating an
equitable distribution of terms within the distributed ®a. We refer the reader to the
Chord paper for further details [13].

Inthe PHIRST algorithms, we use the following variable nantecall that N refers
to the number of agents contained within the system. The BRI&gorithms are based
on knowledge of what this value for N is, and maintains a\d&@& ODE_COUNTER
to store this value. We refer to the total number of documentse indexed for the
full-text search as D. Unless otherwise noted, we assuniesttesy node stores one
document, and N = D. However, PHIRST’s algorithms are noteddpnt on this sim-
plification. In PHIRST’s publishing phase, inverted file onfnation must be added
from a new document, Doc, for each of the terms m; out of a total ofnum_terms
terms, found on nodéDgso rcE. This information is sent to nodeD p s to be pub-
lished.IDpgsr can be found by using the successor function within ChorderfRag
back to Figure 1, assuming the teilrarm, hashes directly to the numeric value of one
of the nodes (e.g. 0, 1, or 3)Dpgesr IS assigned to this node. Otherwise, the next
node (the successor) in the circular space becamgs;sr. I Dprsr IS responsible
for storing the inverted file information for this term, aslinas any other term that was
routed to it for storage. It keeps a countéiy RM_COUNTER, of the number of
times the tern¥’erm; is found within the combined database of D documents.

For example, Table 1, provides an example of the invertésifiss five words stored
on one node. Each row in the table represents a word, and Haliléss(es) on the net-
work where documents with that word can be found. Common syadch as “a” and
“the” within the table, will produce much longer invertedts than uncommon words
such as “aardvark” and “zygote”. Due to space restrictibistable only presents up
to the first 7 inverted entries for each word, out of a potémiisnber of D columns.
Because word distribution within documents typically éo¥l Zipf’'s law, some of the
words within documents occur very frequently while manyeothoccur rarely [8]. In
an extreme example, one node may be responsible for stotiregeely common words



such as “the” and “a”, while other nodes are assigned onby/teams.

While DHT’s such as Chord are effective in equitably disitibg terms over the
system’s nodes, they do not enforce equitable distributiothe amount of inverted
file information per node. As such, Chord does balance thebeumwf terms'erm;,
stored per node, but not the amount of data associated veitle tierms. Not only is this
a major challenge in light of the distributed nature of theteyn, but it also prevents
feasible full-text search [9]. The first key contributiontbis paper is how we overcome
these challenges by means of a publishing algorithm thatislithe amount of inverted
file information nodes must store, even for common words. Weotk the size of the
inverted file for terml’erm; as SIZEOF_FILE(Term;), and limit this file's size tal
entries. Details of PHIRST’s publishing algorithms arerfdun Section 4.

However, PHIRST must still overcome the problem of how fakt queries can
be properly performed without exhaustively indexing tm&rmation. We define the
guery task as finding a number of results, T, that match aliygtegms, or a total of
num_query_terms terms, within the documents’ text. Capping a query at T tessll
needed within unstructured search, as there is no globalamésm for knowing the to-
tal number of matches [19]. The second key contribution isfplaper is a novel query-
ing algorithm that leverages between structured and uctsiied search algorithms to
effectively find matches despite the limit in the amount dfadeach peer stores. Fur-
thermore, this algorithm selects between different tygesearch approaches based on
estimated cost, reducing the cost of processing queriesailef PHIRST’s query
algorithms are found in Section 5.

Finally, modifications to the above algorithms are necgstaaddress scheduled
and unscheduled disconnects of nodes from the network. EHiRcorporates a sys-
tem for handling scheduled disconnects through an ordeglghanism for unpublish-
ing inverted file information. It also contains replicatewarted file information for
handling unscheduled node disconnects. Details of thgeeitims are found in Sec-
tion 6.

4 The Publishing Algorithms

First, once any agent joins the network, regardless of vdnatthas any documents
to publish, it must update the variableODE_COUNTER. We will see that this
value is needed by the query algorithms described belows d&m be done through
an UPDATENODE_COUNTER function to send a request to the node responsible fo
storing this counter to update it by one. For simplicityustassume this global counter



Is stored on the first agent Dy, or I Dyope counter = ID1. Thus, we assume all
nodes perform the command, UPDATNEODE_ COUNTER({ D;, 1) upon joining the
network. We will explore variations of this assumption ircen 6 where we assume
that multiple copies of this counter are necessary if nota&s must be presumed and
nodel/ D, may not be available.

Next, every time an agent wishes to add a document to the netiwanust publish
the words in these documents as described in Algorithms Rambte that there are
two parts to this procedure. Algorithm 1 determines the geimthe document, Doc,
that must be published, and where to send these terms in tHen@tivork. Algorithm
2, takes place on the receiving end, where nof® rsr decides what information
should be stored from node) oy rcE.

Algorithm 1 Publishing Algorithm (Document Doc)—Initiati ng Agent
1: Terms < Preprocessed words in Doc
2: num_terms <= LENGTH(Terms)
3: for i =Termq to Termuum_terms dO

4: IDppst < FindAddreSS(DSOURCE)

5

6

ADD_TERM(TG’FTTLZ, IDSOURCE; ]DDEST)
: end for

In Algorithm 1, nodel Dsop ro g first generates a set @ierms it wishes to publish
(line 1). Similar to other studies [19] we assume that thenagesprocesses its doc-
ument to remove extraneous information such as HTML tagsdaipdicate instances
of terms. Stemming, or reducing each word to its root formalg done as it has
been observed to improve the accuracy of the search [19]théunore, as we de-
tail in the Experimental Results Section (Section 7), steamgralso further reduces the
amount of information needed to be published and storedinénd we initialize the
num_terms variable to the number of unique terms to be published. Theigiung
agent,/ Dsourcr, then sends every terri,erm;, to be stored in an inverted list on
peerl Dprgsr (lines 3—6). This information will be used to create or uedaterted
files on the destination node. This node is identified via thrcfion FindAddress in
line 4 which can use Chord’s previous described consistestt function [13] or similar
DHT implementation.

Next, the publishing algorithm consists of a second staggicted by Algorithm 2,
where agent Dprsr, responsible for storing inverted list information, musbgess
this data. PHIRST enforces an equitable term distributypnelguiring nodes to store
a maximum ofd entries in the inverted file for a given term. As lines 1-3 dé th
algorithm detail, assuming this is the first time this terns leeen found in all D
documents, agemDpggr creates a new inverted file with this term (line 2) and a



Algorithm 2 ADD _TERM (T erm;, I Dsovrck, I Dprst)—Receiving Agent
1. if SIZE.OF FILE(T erm;) =0then
2.  CREATEFILE(Term;, IDsovrcE)
3: CREATETERM_COUNTER(erm;)
else ifSIZE.OF_FILE(Term;) < d then
5 UPDATF_FILE(TeTmZ, ]DSOURCE)
6: UPDATE.TERM_COUNTER( erm;, 1)
7: else
8
9

A

UPDATE. TERM_COUNTER( erm;, 1)
. end if

new term counter (line 3). Assuming this is an existing terithviewer thand en-
tries, the location of Dsoyreor is added to the existing inverted file (line 5) and the
counter forTERM _COUNTUER; is incremented (line 6). Otherwiséd, instances
of that term exist and the location of the term is not addechinverted file, but
TERM _COUNTER,;is still incremented (line 8). This counter information isedl
by the query algorithms to determine the global frequendhisfterm.

Previous works require all term instances be published tlansl the length of the
inverted files stored on nodes can grow unchecked. Becaubmiveach node so that
it only stores a maximumd possible term instances, the storage requirements of the
system are greatly reduced. Referring back to Table 1, leissame the worst case,
and all D documents in the system contain all terms and theizdhiableT erms in
Algorithm 1 will be the same for every Doc ifv. Previous works require creating
a maximum of D entries in the inverted lists represented entéle, while PHIRST
requires only a maximum aof entries. Thus, in the worst case, PHIRST’s storage
requirement becomesg num_terms instead ofD* num_terms. As we setd << D,
we found these savings to be quite significant.

Theoretically, additional information about each term rbaypublished, such as the
position of the term or how many instances of the term exigtsinvthe document and
this and similar information may be aggregated into a ratiithe term to be published.
This information may be especially important when more tth@amstances of the term
exist. The receiving agentDrs7, could then decide whicti term instances to store
by continuously sorting scores of the terms it has, and ramiimg only those with the
highestd rating. In a similar vein, if more thai instances ofl'erm; exist, it may be
advantageous to store the most reecedbcuments, especially if turnover exists within
nodes.

The performance guarantees of DHT's, such as Chord, ensat¢he publishing
algorithm runs at a fairly low cost. Because each ndde;o rcr, Needs log(N) hops



to find the agent/Dpgsr, responsible for storing the term’s inverted list, the ftota
number of messages needed to publish a document is ofO(dern _termsx*log(N))
wherenum_terms is the number of unique terms in that document. Note that the
publishing algorithm described herein sends all termsn eliese that in fact do not
need publishing because they already containstances. For future work, we hope
to study how nodes may be able to reduce this amount by knowiagvance which
terms already have terms.

5 The Query Algorithms

The query algorithms are called once any agent wishes taucbadlistributed full-text
search. As Algorithm 3 describes, this process operategiistages. First, we retrieve
the global frequencies of all search terms (line 2) and dbig¢ians from least to most
frequent (line 3). This value can be calculated by lookinghg¥requency of every term
from the agent storing terMerm,. Referring back to Algorithm 2 note that the peer
storingT’erm; has a counter with this value even if more thamstances of this term
occurred. The frequency of every term is divided by the va&li@DE_COUNTER
which can give an estimate as to how many nodes must be visitédd this term
through an unstructured search. Finding these valuesresjomne lookup of the value
of NODE_COUNTUER (which we previously assumed to be stored on adént),
as well as a lookup of the frequencies of each term from thetagjering termil’'erm,;.
Referring back to Algorithm 2 (line 8) observe that the péernsg7erm, has a counter
with this value even if more thathinstances of this term occurred.

Note that the expected frequency of terms is not necessgial to their actual
frequency. For example, while the words “new” and “york” miag relatively rare,
the frequency of “new york” is likely to be higher than the guat of both individual
terms. Thus, this naive approach may not be true for the lbabnabination of terms, a
factor that may bias the algorithm towards using the wrorgdeapproach, especially
in borderline cases. This point is further discussed betwyarding Algorithm 4.

Once the frequencies of all terms are known, the algoritren teasons about which
algorithm to select. This process iteratively calls thedaf function which we define
below (Algorithm 4). If unstructured search is deemed lesslg, all terms are immedi-
ately searched for simultaneously (lines 7—12). This tyfearch can either terminate
because T matches have been found or the search space hagiheastively searched.
If structured search is deemed less costly, that term’st@sdist is requested, and the
search space is intersected with the inverted list of the teem (the function List in



Algorithm 3 Hybrid Query Algorithm (T, Query; ... Querynum_query_terms)
1: space<= oo {Used for initialization to all P2P nodgs
2: FrequencyArray < Query; . .. QUErYnum_query_terms
{FrequencyArray is an unsorted array of query terjns
3: Q_Array < Sorted Query Terms Least to most Frequent
{Q_Array is the sorted array of query tergns
4. for Query; = Q_Array[1] to Q_Array[num_query terms| do
5.  Frequency= Product(Frequency@rrayli] ... FrequencyArray[num.query.terms])
6: Tradeoff« Calculate-Tradeoff(spac@uery; ... Querynum_query_terms,» Frequency)
7. if Tradeoff> Othen
8
9

Found<« 0
while (Found< T) AND (NOT Exhausted(spaceflp
10: Found<« Found + Search-Unstruct(spacgyery; . . . Querynum_query_terms)
11: end while
12: break
13: else
14: space«< List(Query;) N space
15: if 1=Querynum_query_terms then
16: if LENGTH(space)> T then
17: return first T list entrie§Or NULL }
18: else
19: return all list entries
20: end if
21: end if
22:  endif
23: end for

line 14 returns the inverted list for the term). Assuming va@dnreached the last term
(lines 15-21) we return the first T matches found after athgehave been successfully
intersected. Once the structured search identifies tharfdvan T matches have been
found (line 16) it returns all list entries (line 17). NoteatHine 17 also presents the
option that failure or NULL is returned if less than T resuiisre found.

This algorithm has several key features. First, the seamtegs is begun starting
with the least frequent term. This is done following pres@@pproaches [19] to save
on communication costs when using structured search. BEamessive peer receives
the previously intersected list, and locally intersecis thformation with that of its
term (line 14). As a result of this process the intersectstd become progressively
smaller (or in the worst case remain the same length) and thenmum information
any peer can send is bounded by SIZE_FILE(Term,). Second, one might question
why agents do not immediately return the entire inverteddighe terms they store,
instead of first returning the term’s frequency. Retrieviragjuency information incurs



a cost since we must find the frequency information for evenntl’erm,; out of a
total of num_query_terms search query terms, and must also retrieve the value for the
variable NODE_COUNTER. Thus, the cost overhead of finding this information is
num_query_terms*log(N) + 1 as the frequency of each teffierm,; can be found in
the DHT in log(N), and we assume th&tODFE_COUNTER is found on/D; and
consequently can be directly assessed in one hop. Howhigepaper asserts that the
information gained from this frequency information, sushb@unding search costs to
the size of the least frequent term, outweighs the seards aoslved in processing
the query in two stages. Finally, as the search goal is tonrétuesults, the last node
within a structured search does not need to return its @ntiegted list. Instead, it only
needs to send the first T results. Accordingly, the maxinracttired search cost will
be of order um _query_terms-1) * SIZE_OF_FILE(T'ermy) + T.

Arguably the most important feature of this algorithm isatslity to switch between
structured and unstructured search midway through proaetise query terms. Even if
structured search is used for the first term(s), the algoritaratively calls the tradeoff
algorithm (Algorithm 4) after each term. Once the algorithates that an unstructured
search is cheaper, it immediately uses this search to finceadhining terms. For
example, assume a multi-word query contains several conamdmincommon words.
The algorithm may first take the intersection of the invelistd for all infrequent words
to create a lisif. The algorithm may then switch to an unstructured seardhinvit to
find the remaining common words.

Similarly, note that this approach lacks a TTL (Time To Live) its unstructured
search that exist in other unstructured approaches [19h38eme unstructured search
is to be used only when the expected cost of using an unstadctearch is low (see
algorithm 4 below). We expect this to occur when the unstmact search will terminate
quickly, such as when: (i) the search terms are very commam the onset or (ii)
an unstructured search is used to find the remaining comnmots tafter a structured
search generated an inverted listfalerms.

We now address the search specific mechanism needed tofydehtch search
algorithm will have the higher expected cost. This traddeffiends on T, or the number
of search terms desired, the costs specific for the diffeéypets of search options within
the query algorithm, and or the maximal number of inverted list entries published for
each term. Algorithm 4 details this process as follows:

First, the algorithm calculates the expected cost of comagian unstructured search.
The expected number of documents that will be visited in atruntured search before
finding T resultsis: T/ Frequency (line 1), where Frequesdheé product of frequency
of all terms. We can compare this value to that of using a 8trad search, whose cost



Algorithm 4 Calculate-Tradeoff (T, space,Term; ... Termyum_query_terms, Frequency )

1: Expect-Visit<= T / Frequency{Number of nodes Unstructured search will likely vjsit
- if Cy*(Expect-Visit) < Cs *(Sending(query-termsthen
RETURN 1{pure unstructured seargh
else ifSIZE.OF FILE(T'erm;) < dthen
RETURN -1{pure structured search for this tefm
else
space«< List(Term;) N space
RETURN 1{Use unstructured afterwargs
end if

Rown
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is also known, and is proportional to the length of the ireerists that need to be
sent. We assume there is some c6$t,associated with conducting an unstructured
search on one peer. We also assume that some&gastassociated with sending one
entry from the inverted list (line 2). Recall that the initraaximal structured search
cost is bounded by¢'s * ((num_query_terms-1) * SIZE_OF_FILE(Term;) + T) (see
the previous description of Algorithm 3). The cost of the tamstured search can be
calculated a€’y; * T / Frequency. The ability to compare the expected cost ofgus
both searches allows the algorithm to best decide how tcepidines 2-5).

For many cases, a clear choice exists with reference to veliaich algorithm would
be best to use. Let us assume that= Cs = 1, and that all documents have been in-
dexed, ow is greater than or equal to the total number of documentsaisystem (D).
When searching for common words, or Frequency is near 1,dkieat using the un-
structured search is likely to be near T, as these wordskaaly lio be found on the first
several nodes searched. Processing the same query wittustaisearch will be more
costly, as the inverted files’ size is nearly equal to the nemalb documents and we as-
sume T is much smaller thap. For example, assum@ODE_COUNTER = 10000,

T is 10, each node stores 2 documents on average (D = 1000@@0&0) and two
terms are searched for with TERRIOUNTER(('erm,) = TERM_COUNTER({ erms)
=5000 (Frequency =0.5*0.50r 0.25) . Using unstructuredteaill find 10 results in
approximately 40 node visits, while structured searchnedjuire sending inverted files
with 5000 terms. Note that in extreme examples, Frequengytiaa@ven much greater
than 1, such as in the trivial case where only one node exstsgontains multiple
documents with all terms. Conversely, for infrequent tereay with one term occur-
ring only 1 time, the cost of an unstructured search will berld aumber much larger
than T, as all nodes must be searched before realizing Ttsesuld not be found.
However, the structured search will only cost a maximumof_query_terms-1 *
SIZE_.OF_FILE(T'erm,) + T, which is here bound by SIZDF_FILE(Term;) being



only 1. Finally, structured search is also the clear choareglieries involving one
term. Note that in these cases, no inverted lists need torigisemn _query_terms-
1=0), and only the first T terms are returned. The cost of usigjructured search will
be greater than this amount (except for the exceptionalwheee the frequency of the
term(s) is 1.0 or higher).

There are two reasons why the most challenging cases ingoieges with terms
of medium frequency. First, as previously mentioned at #ggrining of Section 4, the
expected frequency of terms is not necessarily equal to #utual frequency. As a
result, the PHIRST approach is most likely to deviate fromdptimal choice in these
types of cases, especially when the valdgsi(Expect-Visit) andCs *(Sending(query-
terms)) are similar. A second challenge results from thetfet we only publish up td
instances of a given term. In cases where inverted listsudykegted without limitation,
e.g.d equals D, the second algorithm contains only two possiblecmaes — either the
expected cost is larger for a structured search, or it is Hokever, our assumption
is that hardware limitations prevent storing this large benmof terms, and must be
set much lower than D. Consequently, situations will ariseeng we wouldike to
use inverted lists, but as these files have incomplete iadtbés approach will fail in
finding results in position d+ While other options may be possible, in these cases
our algorithm (in lines 6-8) takes thikterms from the inverted lists, and conducts an
unstructured search for all remaining terms. In generalfoued this approach to be
effective as long as k d, or the relationship, k d << D exists. We further explore
the impact of this limitation in the results section (7).

6 Dealing with Network Churn

The publishing and query algorithms address full-text de#sues related to storage
hardware limitations, methods for equitably distributingerted lists, and search cost
minimization. As we study real-world P2P databases, théesysnust additionally
address temporary and permanent peer failures. This sgatavides a solution for
this issue, known as churn, which is suitable for a distadigystem.

6.1 The Churn Challenge

Churn can be defined as the turnover rate of nodes in the spstm given time period
[5]. Based on previous work [5], we define churn (C) as follo@s/en a sequence of
changes in the set of N peer nodes being available and uablgiletU; be the set of
in-use nodes after thi#h change, witl/, as the initial set. Churn is the sum over each



event of thefraction of the system that has changed its state in that event, normalized
by run time t:

1 U,_ U,
cC == 3 [Ui-1 © Uil
t events N

Y

wheres is the symmetric set difference.

Within many real-world networks, most churn events arelyike be caused by
temporary changes of status where nodes are momentarily setvice, but will even-
tually return to operation. For example, a user might tufinef phone while sleeping,
attending meetings, or going on vacations. We would expese types of networks
to have a rather high churn rate due to these types of eventsssArequent type of
churn is likely when a node decides to permanently changsatss, perhaps because
a device breaks or when a user switches cellular carriersengdves a new number.
While these events do not occur frequently, the node’s mé&tion will be permanently
lost if the device’s data is not replicated.

Unstructured networks are not impacted by churn as longeaituttuation of nodes’
states still leaves the entire network with full conne¢yiyé]. As this method has no
publishing or required routing of lookup information, itugaffected by even very high
churn rates. This has led some to claim that unstructurevdonks$ are most appropriate
in these types of environments [4].

A variety of strategies have been proposed for dealing witlric in structured en-
vironments [5] to allow for continued connectivity once adedails. One classic ap-
proach is toreactively fix the overlay network once a failure is detected. A second
approach is tgeriodically check if nodes have failed. This can be done through con-
stantly sampling neighbor nodes, and then preemptivellacen failed nodes before
they cause a lookup failure. In environments with low chesrels the reactive methods
perform better as they have no inherent communication @aethHowever, in environ-
ments with even moderate churn levels, periodic methodeqmersignificantly better
[17].

It is important to differentiate between maintaining thegectivity of live nodes
within the base DHT network, and the ability to find the dateestored in the network.
Periodic approaches are better at handling churn, or finoougs that are still partic-
ipating in the network. However, our system must additiynadaintain lost nodes’
published inverted list information, something DHT'’s tyaily cannot do (refer back
to the end of Section 3). We now present a solution for thisiehge.



6.2 Addressing Churn in a P2P Application

First, we present Algorithms 5 and 6 to deal with planned $ypedisconnects, or
when nodd Dsop ree can orderly remove the inverted listinformation it has pshed.
While we recognize that planned disconnects will not regmeall churn events within
a real system, this algorithm utilizes key elements of PHIR&e then generalize this
approach for dealing with unplanned churn events.

Algorithm 5 Unpublishing Algorithm (Document Doc)—Initia ting Agent
1. Terms< Preprocessed words in Doc
: for i =Termq to Termaum._terms dO
IDprst < FindAddress('erm;)
REMOVE_TERM(TG’FTTLZ, IDSOURCE; IDDEST)
end for
: SUCCESSOR= FIND_SUCCESSORI(Dsoi rcE)
. for 7 =File; to Filexun_rrres do
COPY(F'ile;, SUCCESSOR)
end for
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Algorithms 5 and 6 address the actions a peBxoy rcr must perform before a
planned disconnect (in Algorithm 5), and thoBB prsr must perform in removing
I Dsource’s terms (Algorithm 6). Note the strong similarity betweées$e unpublish-
ing algorithms, and the previously described publishimgpathms (Algorithms 1 and
2). In both cases, Similarly, the function REMOVEERM in line 4 of Algorithm 5 and
UPDATE_.TERM_COUNTER in line 4 of Algorithm 6 closely parallel the ADDERM
function in line 5 of Algorithm 1 and the UPDATHEERM_COUNTER functions in
lines 6 and 8 of Algorithm 2. The purpose of the function REMOVERM is to
remove the entry of the disconnecting pesovrce, from the inverted list stored
on peerl Dprsr. Note that these unpublishing algorithms also contain regveew
types of actions. In lines 6-9 of Algorithm 5Dsoircr mMust copy the inverted lists
it currently stores (out of a total of NUNFILES inverted lists) to a new node. To
do this, first we find the successor node within the overlayvoek (line 6) of Al-
gorithm 5. DHT networks such as Chord [13] provide the im@amation for the
FIND_SUCCESSOR function referred to. Then, every one of the tadefiles cur-
rently stored o/ Dsoyrcr (Which number NUMFILES) are transferred over to the
successor node. From this point onward, this node will haeerésponsibility of re-
sponding to queries for any of the terms contained in thesstied files. In Algorithm
6, peerl Dpgpsr removeslerm; if it had stored this value in its inverted file for this
term (within the maximum ofl terms it had stored). This check is done through the
EXISTS function in line 1. Finally, after the peéiDsoyrcr has performed Algo-



rithm 5 for all documents it had stored, or if a disconnectiugle never had stored
any documents, it must update the variable NOOBUNTER of the global number
of documents. However, here this value must be reduceddghrparforming the func-
tion, UPDATENODE_COUNTER(]DNODE_COUNTER, -1) instead the function call
UPDATE.NODE_.COUNTER(DyopE_counTER, 1) USed upon joining the network.

Algorithm 6 REMOVE _TERM(Term;, I Dsource, I Dprst)—Receiving Agent
1: if EXISTS(TeTmZ, ]DSOURCE) then
2: UNSTORET@’/’MZ, ]DSOURCE)
3: endif
4: UPDATE_.TERM_COUNTER((erm;, -1)

However, our assumption is that most churn effects reswoifh fremporary and un-
planned failures where the failing node will not issue thmpublish command. In
order to address this point, we present a solution wheretewdist data is replicated
to handle failures.

While the DHT’s pointers need to be immediately updated wecaf a node fail-
ure, however temporary, that node’s data does not need toectif a set of backup
copies exist. PHIRST relies on this set of backups with tiseii@ption that the node’s
failure was temporary, and it will soon function again in tretwork. This saves com-
munication costs in copying inverted list data, assumimd tlode does soon rejoin the
network.

These data replicas can be easily created during the purglisktage. We modify
the publishing algorithm (Algorithm 1) to send its datakipeers instead of just one.
We refer to the k copies of a group of R redundant nodgs, . ., R;, where all nodes
receive the same publishing data. Note that DHT’s such asdCl @] can enable
this functionality by sending a publishing message to thenab hashed pedrDprsr
within the Chord ring, and the next — 1 peers as well ot/ Dpgsr, IDpgsr + 1,
... IDppst + k- 1. This is one approach to allow nodes to easily find the (ke
Consequently, line 5 of Algorithm 1 which stated: ADERM(T erm;, I DsovrcE,

I Dprsr) should be modified to become lines 5-7 of Algorithm 7.

For example, assunie=2, or two copies of each inverted list are stored. Referring
back to Figure 1, all inverted lists that would normally beretl only on node O, are
now stored on nodes 0 and 1, inverted lists for 1 are stored&refc. A temporary
failure of node 1 will be handled by its successor, namelyer@dvhich also stored the
same inverted list data. Join actions remain similar toghm®viously presented for
DHT’s with the exception that here a joining node must alsabegated with the data
currently being stored on the redundant noégs. . ., R;. that it is now joining. After



Algorithm 7 Modification Publishing Algorithm for Churn (Do cument Doc)—Initiating Agent
1: Terms < Preprocessed words in Doc

2: num_terms <= LENGTH(Terms)

3: for i =Termy to Termyum_terms dO

4 IDprst < FindAddress{Dsou rcr)
5. for a=0tokdo
6
7
8

ADD_TERM(TeTmZ, ]DSOURCEu IDDEST + CL)
end for
: end for

this data is stored, the last node of the redundant/ggtqan erase this data.

In a dynamic system, this approach will need to address twiadal issues. First,
care must be taken to address churn changes within the gfokipeslundant nodes
after they are formed. For example, assume a new documenblsiped, but node
R, is temporarily unavailable. The data should still be puigi on the remaining-1
nodes which now have the most updated version of the invéidtsd Once noder,
becomes available again, it must receive the updated ifiton Second, we assume
that most nodes become unavailable only temporarily, ansl @ahfailure of a node, H,
should not be a reason to immediately find a new node to répltbe data. However,
after a certain time period, M, it must be assumed that nodaHfact left the system,
and a new node must be found to sténeodes.

Algorithm 8 Replicating Data Under Churn (Node H)
1: Start< Randomize start time
. for Time = Start to M step ldo
if Up(H) then
Lock(H)
Update(H)
return
end if
end for
. Replace(HY Assume Node C has left the netwdrk
: UPDATENODE_ COUNTER( DnopEe_counTERs -1)
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Algorithm 8 outlines these two steps. The precondition fos tlgorithm is that
a group ofk nodes has already published the application data (invéidex) as per
Algorithm 7, and these nodes are aware of the others’ existeliVithin Chord this
can be done through predecessor and successor pointeos thAdsalgorithm is called
once the redundant node set notices that a member of thersstwsorking (node H).
We assume this is done by periodically sampling, which hasipusly been shown
to be effective [17]. Next, we assume the remaining nodek waiat data has been



published after node H failed, and can thus update node Hibheeomes available.

Based on these preconditions, the algorithm operateslas/folOnce a failure has
been detected, the remaining nodes monitor the down nodetédal time period of M
(line 2 of the algorithm). Each node checks if the failed noglimes operation every
L time units. Note that each node randomizes its start tinme (l). Consequently
two or more nodes do not unnecessarily monitor node H duhagame time period.
Assuming a node has found that H has resumed functioningpdétes node H with
the information it missed and the algorithm terminateg@iB—7). Immediately before
performing this Update process, this node places a lock dmei4), so no other node
can update it simultaneously. This type of concurrency rabmhechanism is often
used within databases [3]. Note that as part of the Updateepsy this node should
also notify the other nodes in the replication sét,,(. . ., R.), that there is no need to
update node H with this information as well. Finally, if thiga@rithm reaches line 9,
we assume node H is permanently down. As Chord operates byhg&ga successor
nodes for information, this replacement node must be takem the next node not
currently in the setR,, ..., Rx), or nodeR;.,. Additionally, we must reduce the
variable NODE_COU NT E R which stores the number of nodes in the system. This
is done in line 9 of the algorithm.

However, comparing this approach to Algorithms 5 and 6 revi¥eo challenges.
In Algorithm 5 a disconnecting node is assumed to be ableit@ate an orderly dis-
connect, enabling a proper removal of all of its entries fribim inverted lists. How-
ever, as the failures in this case are unpredictable, thisoispossible with Algo-
rithm 8. Furthermore, in line 10 of Algorithm 8 and throughadlie paper we refer
to IDyope counTER @S the peer responsible for storing information about thed to
number of nodes in the system. For simplicity, we had assuhisaounter is stored
on the first agent, of D, (see the beginning of Section 4). However, this assumption
must be changed to account for possible churn effects ompéas One solution is to
replicate this value k times to deal with churn, and refef ®vopr counTer as this
set of peers.

The value for k is a tunable parameter that must be set with ¢d&s we deal with
hardware with limited storage and assume communicationsgy; care must be taken
to refrain from sending unnecessary data. However, sufticdata replicas must be
present to make the probability that Alpbeers will simultaneously fail extremely small.

Fortunately, the average system churn is typically a knowm&asurable quantity,
and can be used to set the valu&oAssuming an average churn rate of p exists within
the system, the probability the query algorithm will not fiad inverted list given k
redundant copies ig*. For example, assume an average churn rate of 0.5,%rds0



the nodes will be unavailable in any given time period. Thabpbility all five nodes
will be down simultaneously i8.5°, or 0.03, and the probability at least one will still
function is 1-Probability(Failuréll), or 0.97. As the next section details, computing
these probabilities are an effective guideline for setking

7 Experimental Results

In this section we present the experimental results usedlidate the effectiveness of
the algorithms in this paper. As our research goal was tokcid2HIRST is appro-
priate for medium sized newsgroups, we chose a corpus of Z#)0novie websites
to conduct our experiments [15]. The results from the puablig experiments demon-
strate that PHIRST actually becomes more feasible as mangnalents and agents are
added to the network. We also created two types of query erpats. In one group we
created artificial queries based on the frequencies of worts experiment demon-
strated the theoretical strengths and weaknesses of PHIRSIso studied real movie
gueries based on the Internet Movie Database [2]. Theseimgrgs demonstrated that
any weakness in PHIRST is likely to be insignificant in hamgllieal queries.

7.1 Publishing Experiments

Recall that the publishing algorithm is based on storing aimam of d entries in
a given term’s inverted list. We simulated the publishinggarss to study how this
parameter affected the average number of stored invertead®with and without term
stemming. Figure 2 displays the average number of inveetead (Y-axis) in groups of
50, 250, 500, 1000 and 2000 agents (X-axis). We assumedviiat @gent published
1 document taken from the movie corpus [15]. In the top grapdhused the Paice
stemming algorithm [14] on each term before storing it. Th&dm graph published
each term without stemming. In both graphs we also ran theghitg algorithm with
d=25 and 75.

Several interesting results can be seen from this grapht, IBin average stemming
saved approximately 50 words per document. This is becdesersng lumps similar
words, reducing the number of unique words occurring peudwnt. Second, note the
publishing algorithm has progressively larger storagenggvas the number of nodes
grows. Assumingi/=D, all terms will be stored, and no publishing gain will be re-
alized by using the PHIRST approach. However, assuniirggkept fixed, the more
documents that are added, the gap betwéand D grows. This results in progres-
sively more words exceeding thkthreshold, and additional entries of these words no
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Figure 2: A Comparison of the publishing requirements of puiblishing versus publishing limited to
d=T75.

longer need to be stored. As a result, the publishing alyorihbecomesnore scalable
the more nodes that are added, making full-text searchldieasven in very large P2P
databases.

Finally, in this experiment we assumed each node had 1 dauutmeublish. We
also ran this approach with more dense (e.g. 2 document®de) or more sparse (e.g.
1 document every 2 nodes) network assumptions. As one wapkte the number of
terms each node stores is proportional to the total numhasoadés. For example, Table
2 shows the sparse assumption of 1 document published foy ®ve nodes. These
values are identical to those in Figure 2 multiplied by adaci 0.5.

We also found a Zipfian distribution of terms with a long tailiofrequent terms
(see Figure 3). Similar distributions have been found in Bgflems for items such
as file frequency [10, 11] and term frequency [8]. The stoissyeng results we found



Table 2: Average number of inverted list entries if 1 docuhweas published for every 2 peers.
Number of Nodes 50 250 500 1000 2000
Fully Published| 150.43| 151.51| 153.13| 153.1265| 157.8343
d=25| 138.84| 93.106| 72.17 53.97| 40.605

d=75| 150.43| 127.14| 105.72 84.38 67.035

were from words with frequencies greater thamr the terms towards the head of this
distribution.
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Figure 3: Distribution of terms by rank order within movierpas documents.

7.2 Query Experiments

We first conducted query experiments based on artificialigsi@hosen according to
term frequency. Figure 3 displays the rank order of all wavidkin the 2000 document
corpus (a total of approximately 22000 words) based on thelsidrequencies. We
considered words of high frequency if they appeared i 80 more of the documents.
There were 200 words in this category. Note that high frequevords are not just
“stop” words like “the”, “and”, or “a”, but can be specific tbe corpus. For example,
these words included movie specific terms such as “charatpday”, and “plot”. At
the other extreme, we defined low frequency words as thoseaaimg 50 times or less
(frequency 2.% or less). The large majority of terms were within this catggdue
to the long tail of the term distribution. Finally, we assuhmedium frequency words
were those between the above extremes.

We created paired terms (2 terms) of all permutations ofetlvasegories. This in-
volved words, both with high frequency (HH), both with lonefuency (LL), both



Table 3: A Comparison of the cost levels of SS, US, TTL, andfl methods in LL, LM, LH, MM,

MH, and HH artificial queries. Results for the case whére= Cs = 1.

SS us TTL=100 | PHIRST
LL 1466 | 2000000; 100000 1466
LM | 2206 | 2000000 100000 2142
LH 3177 | 1987754 100000 2010
MM | 20732 | 1865474 99953 13256
MH | 60188 | 234211 | 95624 18075
HH | 871986 19746 20077 19995

with medium frequency (MM), low high combinations (LH), lowedium combina-
tions (LM), and medium high combinations (MH). Note that threler of the words
does not have an impact on the query algorithms since thestarmfirst sorted by
these algorithms based on their frequency. For examplelothenedium category
(LM) is consequently equivalent to the medium low one (ML).

Next, we generated 1000 artificial queries from each caje§ée studied how many
results were returned from each of 4 search algorithms. Tiuet8red Search5§ al-
gorithm published all terms and sent these indices betwgenta as needed during
gueries. The Unstructured SearthS) algorithm used no publishing and used a ran-
dom walk approach to find query results. In the used impleat®mt, a random node
was selected to begin the random walk, and assumed a fullyected graph allow-
ing free passage between nodes. The TTL=100 algorithm b&eskbime unstructured
search, but terminated after visiting 100 agents. Findilg,hybrid PHIRST approach
implemented the publishing and query algorithms describeithis paper. In these
experiments we used a valued75 in the PHIRST method.

Table 3 displays the average number of nodes visited (in dlse of unstructured
search) and / or the inverted list entries sent (for strectusearch) for finding 20
matches from each query (T=20). For simplicity, we assurhetl the costs of vis-
iting nodes through unstructured search, and sendingtewdst entries are equal, or
Cy = Cjs. As expected, we found that the Structured Search (SS) st expensive
method for finding common terms; where the Unstructured Be@dS) is the most
effective. Conversely, SS is the most effective in finding i@&rms. As one might ex-
pect, the hybrid PHIRST approach operates similarly to Sfding rare terms (LL)
and US in finding common items (HH). This indicates the susoéghis approach in
selecting the best search algorithm. Note that in middlegmaies (for example MH)
this approach incurred significantly lower costs than thea88& US algorithms it is
based upon. PHIRST saves costs by only sending a maximuheitries even when
structured search is deemed necessary. Furthermore pinisaeh switches between



the SS and US methods as needed, saving additional costs.tiNdtthese results do
not include the costs associated with looking up terms’desgry information. Recall
from section 5 that these costs are boundeadioy:_query_terms*log(N) + 1 where
num_query_terms is the number of query terms (in this case 2) and N is 2000 (or
log(N) is approximately 11). However, actual Chord implenta¢ions have found that
the actual cost is often much lower and is dependant on thelactplementation of
the DHT network [19]. Consequently, we do not include thistado the results.

We also studied the impact of the number of documents per ([@mdeiment density)
on these costs. The unstructured search (US) is most affegtie density of the doc-
uments. For example, assuming each agent stores 2 docuitent®st of using this
search algorithm will be half. Conversely, sparse netwonk&e unstructured search
less appealing. This tradeoff does come to light within thstuctured element of the
Hybrid algorithm 4 in lines 1 and 2. However, unless extremm&nges in the document
density occur (e.g. every node contains a large percentaipe a@locuments), differ-
ences in the search costs are so large that this parametdikislyito have any impact
on which algorithm should be used in categories such as LL, amd LH. The struc-
tured approach is completely unaffected by document deresid thus the Hybrid’s
structured component is uninfluenced as well.

The results in Table 4 display the combined number of quesulte (recall) re-
turned from each search algorithm with the maximal reswdtshere to 5 (T=5) and
1000 queries. This result underlies the potential strengtitl weakness of the PHIRST
method. Despite the lower costs of PHIRST, this approachowasall equally effective
in returning the query results. When word combinations ireguent, the unstructured
search component of the PHIRST method still found the regtiius MH was still suc-
cessful). At the other extreme, assuming the word frequeheyy term was less than
d, at least one term was fully indexed. In these cases, coen@etll was also guaran-
teed if structured search was used on the indexed term(syvied by the unstructured
search to find all remaining terms. In addition, all term&takom the L category were
in less than! documents (as L values had 50 or fewer instances whikb), resulting
in full recall for all of these categories (LL, LM, and LH). Asedicted in Section 5, the
guery algorithms did experience minor difficulties in fingliseries of terms of medium
frequency. Note that the PHIRST method did return slighglydr results in the MM
cases (870 versus 874).

We found that this limitation was negligible in answeringlrevorld queries oncé
was significantly higher than T. To verify this finding we usad 1000 most popular
real movie keywords taken from the Internet Movie Databasstrieved on October

L(http:/Iwww.imdb.com/Search/keywords)



Table 4: A Comparison of the combined recall levels of SS, U], and PHIRST methods in 1000 LL,

LM, LH, MM, MH, and HH atrtificial queries.

SS | US | TTL=100 | PHIRST
LL 3 3 0 3
LM | 68 68 2 68
LH | 1167| 1167 47 1167
MM | 874 | 874 93 870
MH | 4626 | 4626| 1180 4626
HH | 5000| 5000 4997 5000

Table 5: A Comparison of the combined recall levels of SS, UH,, and PHIRST methods with

reference to different numbers of results (T) and 1000 gseri

SS US| TTL=100 | PHIRST

T=5 4592| 4592 2138 4587
T=20 15598| 15598 3712 15252
T=50 30347 30347 4534| 28154
T=2000| 105649| 105649 5254| 35087

25, 2006. These queries were typically between 1 and 4 wandarf 1.94).

Table 5 shows a comparison of the number of results found fh@se queries with
the SS, US, and TTL=100 methods, and the PHIRST method wiftd dnd variable
values for T. The results from the SS and US algorithms remtdsaseline algorithms
that found the maximal number of results (¥0€ecall) for the 1000 queries. For exam-
ple, with T=5, a total of 4592 combined hits were found givieese queries. Both the
TTL=100 and PHIRST algorithms did not guarantee ZQ@call, albeit with markedly
lower search costs. Note that the PHIRST algorithm foundined results (99.8%
of the results found by the complete US and SS algorithmsyvamdy 5 results were
requested (T=5). PHIRST held up fairly well even when 20 imas$c(T=20) were re-
quired with 97.78; of all matches found. The recall of the PHIRST approach dedpp
with T (92.77% at T=50, and only 33.28 at T=D). This confirms the claim that in
real queries the recall of the PHIRST approach would be n&ad for T << d (e.g.,
T=5), but would perform poorly once ¥> d (e.g., T=D). In comparison, the TTL=100
algorithm performed much worse, even in the case of T=5 willz 2138 total results
found.

Table 6 displays the search costs for executing these realkeguvithin the 4 algo-
rithms described in this paper assumifig = Cyy = 1, and each agent stores only one
document. We again found that the PHIRST approach had signify lower search
costs than all three of the other approaches. Again, obskeat¢he advantage of the
PHIRST approach was most evident wherxdl. If T=5, the PHIRST approach in-



SS US| TTL=100 | PHIRST
T=5 57680| 591841 86578| 12006
T=20 68696| 1181515 97735| 24976
T=50 83435| 1567039 99269 38744
T=2000| 158737| 2000000 100000| 68610

Table 6: A Comparison of the cost levels of SS, US, TTL, andR$ methods with reference to
different numbers of results (T).

Table 7: A Comparison of the impact of redundant nodes onubéghing load, query results, and search
cost within the Hybrid method with d=75 and T=20 when nodkifairesults in search termination.

Replicated Nodes (k) Publishing Load Query Results Search Costs
1 134.07 6756 6015
5 670.35 14692 24308
15 2011.05 15272 24919

curred a cost of nearly 1/5 the cost of the next best metholl (&8 a high recall of
99.89%). If T=20, its cost, nevertheless, was nearly 1/3 that ofrtbet best method
(SS) (still with a high recall of 97.78). If T=D, the cost advantage of the PHIRST ap-
proach was under 1/2 of the next best method (TTL=100) (tta&llrevas only 33.2%).

7.3 Churn Experiments

Recall that the PHIRST approach to handling churn requivask copies of each in-
verted list must be stored. We conducted experiments stgdlge relationship between
the value of k, the system'’s publishing requirements intangdhese k copies, and the
search costs related to executing queries. The goal wasievaat least 95 percent of
the query results when confronted with churn compared tadbelts achieved when
no churn existed while minimizing publishing and searcht€os

We simulated conditions with k set at 1, 5, and 15 and stucied impact on
the publishing storage and query results of the Hybrid dlgor and set/=75 for the
publishing algorithm. We revisited the real-world queriesm the previous dataset,
again assumed 2000 nodes published a total of 2000 docynaewitstudied the case
where the goal was to return 20 matches (T), and a scenahawiry high churn rate
of 0.5. To simulate churn, we created random snapshots aitmdator where half of
the nodes were chosen at random to have failed with unifostnilblution. In the first
set of experiments we assumed that when the entire set of ésnwdre “down” the
guery would fail. The results from this experiment are pnése in Table 7.

As these results indicate, there is a clear tradeoff betvma@mg additional nodes
within Kk, their storage requirements, and the query res@ltting k=1 had the lowest



Table 8: A Comparison of the impact of redundant nodes onighibly load, query results, and search
costs of the Hybrid method where d=75 and T=20 when noderé&aiksults in an unstructured search.

Replicated Nodes (k) Publishing Load Query Results Search Costs
1 134.07 15428 566477
5 670.35 15259 59994
15 2011.05 15277 35544

publishing load, but also meant that each term had no répticzopies. Note that this
value of 134.07 is identical to the result found in the toptioor of Figure 2 for the
data point where the Number of Nodes is 2000. Keeping additicopies of inverted
term data increased the published load per node propotgéilgnAs a result, one could
publish one redundant dataset (k=2) in PHIRST and still ireceheaper publishing
cost than naively publishing all terms (PHIRST k=2 encorede publishing load cost
of 268.14 compared to the naive publishing load of 315.61 sed¢-igure 2). While
setting k=15 resulted in the highest average published ibatlowed the algorithm to
find all possible results (see query results in Table 7). imekperiment, we assumed
a query would fail if a structured search was desired, buinthde with the inverted
list(s) had failed. As a result, note that the numbers inhirel tolumn (search costs in
Table 7) increase as k increases. In the case of k=1, thehskadlexd many times, thus
resulting in significantly lower search costs in conjunetiath the lower query results.
As predicted mathematically (see end of Section 6), sekirigresults in an effective
tradeoff between achieving over @5ecall from the inverted lists (96 of the results
from k=15) while still keeping the publishing load relatiydéow (1/3 of the publishing
load of k=15).

Next, we repeated the above experiment, but assumed thatséimuctured search
would be used if the node with the inverted list failed. Thessults are presented in
Table 8. Note that the publishing costs (column 2 in Tabler8)identical to those
depicted in Table 7. However, as opposed to the results iteT&bhere the query
results remained fairly constant. Nonetheless, note th#tis experiment the search
cost for k=15 was the lowest since the entire k set of nodesrrfaited, and thus ran-
dom search was never used. Conversely, setting k=1 resnltétbn using the random
search, which here caused the highest search cost. Alsdl,feroations existed in
the query results, with performance slightly decreasingiasreased. First, as each ex-
periment randomly decided which nodes should falil, sligiiéences existed between
trials. Additionally, when a node’s inverted list was uniésdale, as often occurred when
k=1, a full unstructured search was used. Despite the higitleosts, this approach
did infrequently find results that the PHIRST hybrid apploamuld have missed as



structured search had been desired, but not enough entidelsden indexed to return
the full 20 results. Referring back to row 2 of Table 5 (resolt T=20) we see that the
full structured search (SS) found 15598 matches in the atgnv experiment without
churn, as opposed to 15252 found by PHIRST. However, notethieae differences
represent less than 1% of the highest query result valuen\kk&). Finally, here
k=5 again provided a good tradeoff between publishing ¢gsisry results, and search
costs.

Based on these results we concluded that the PHIRST appveaeckuccessful in
reducing the publishing load, even in systems with a ver lstgurn rate.

8 Conclusions

In this work we have presented PHIRST, the first system cepaftéxecuting distrib-
uted P2P full-text search. PHIRST contains novel publglalgorithms that ensure
that no agent will be required to store more thiaentries in its inverted list of a given
term. This allows PHIRST’s publishing algorithms to pdiyiandex all words in the
corpus and still keep the storage costs allocated equitdbdye importantly, this ap-
proach also makes PHIRST highly scalable since the averagera of the inverted file
information actually decreases as the number of agents anahtents in the system
increases. We have also presented query algorithms tleat e best search approach
based on global frequencies of all words in the corpus. Talgseithms allow PHIRST
to choose the best method based on estimated costs. PHIRSTinstructured search
to effectively compensate for the lack of inverted lists efnis published and struc-
tured search to locate rare terms. Finally, we have shownRH@RST can handle
issues related to both scheduled and unscheduled node=failu
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