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Abstract

Recent progress in peer to peer (P2P) search algorithms has presented viable structured and un-
structured approaches for full-text search. We posit that these existing approaches are each best suited
for different types of queries. We present PHIRST, the first system to facilitate effective full-text
search within P2P databases. PHIRST works by effectively leveraging between the relative strengths
of these approaches. Similar to structured approaches, agents first publish terms within their stored
documents. However, frequent terms are quickly identified and not exhaustively stored, resulting in a
significant reduction in the system’s storage requirements. During query lookup, agents use unstruc-
tured search to compensate for the lack of fully published terms. Additionally, they explicitly weigh
between the costs involved in structured and unstructured approaches, allowing for a significant re-
duction in query costs. Finally, we address how node failures can be effectively addressed through
storing multiple copies of selected data. We evaluated the effectiveness of our approach using both
real-world and artificial queries. We found that in most situations our approach yields near perfect
recall. We discuss the limitations of our system, as well as possible compensatory strategies.

1 Introduction

Full-text search, or the ability to locate documents based on terms found within docu-
ments, is arguably one of the most essential tasks in any distributed database [9]. Search
engines such as Google [1] have demonstrated the effectiveness of centralized search.
However, classic solutions also demonstrate the challengeof large-scale search. For
example, a search on Google for the word, “a”, currently returns over 15 billion pages
[1]. Though Google’s servers are capable of storing this magnitude of storage, this
approach is infeasible for distributed solutions involving more limited devices.
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In this paper, we address the challenge of implementing full-text search within peer-
to-peer (P2P) network databases. Our motivation is to demonstrate the feasibility of
implementing a P2P database comprised of resource limited machines, such as hand-
held devices. Thus, any solution must be keenly aware of the following constraints:
Cost - Many networks, such as cellular networks, have costs associated with each mes-
sage. One key goal of the system is to keep communication costs low. Hardware
limitations - we assume each device is limited in its amount of storage. Any proposed
solution must take this limitation into consideration.Distributed - any proposed so-
lution must be distributed equitably. As we assume a networkof agents with similar
hardware composition, no one agent can be required to have storage or communication
requirements grossly beyond that of other machines.Resilient - our assumption is that
peers are able to connect and disconnect at will from the network. As a result, our
system must be able to deal with peer failures, a concept typically referred to as churn
[5, 17].

To date, three basic approaches have been proposed for full-text search within P2P
databases [19]. Structured approaches are based on the classic Information Retrieval
theory [6], and use inverted lists to quickly find query terms. However, they rely on ex-
pensive publishing and query lookup stages. A second approach creates super-peers, or
nodes that are able to locally interact with a large subset ofagents. While this approach
does significantly reduce publishing costs, it violates thedistributed requirement in our
system. Finally, unstructured approaches involve no publishing, but are unsuccessful
in locating hard to find items [19].

In this paper we present PHIRST, a system forPeer-to-PeerHybrid Restricted
Search forText. This approach has three key contributions. First, PHIRST is the
first system capable of performing distributed full-text search – something previously
thought to be infeasible [9]. The key to PHIRST’s success is its ability to restrict the
amount of data needed to be published to execute full-text search. Not only does this
ensure that the hardware limitations of agents’ nodes are not exceeded, it also better
distributes the system’s storage. Furthermore, a peer’s average data load actually de-
creases as peers with documents are added. Thus, the system becomes progressively
more scalable as its size increases. Nonetheless, PHIRST isstill able to effectively
process full-text search through a hybrid approach that leverages the advantages of
structured and unstructured search algorithms. PHIRST’s limited published data is
used to locate hard-to-find items. Unstructured search is used to find common terms
that were not published. Second, not only does PHIRST present a feasible approach for
full-text search, but it also processes these searches withlower cost as well. We also
present full-text query algorithms where nodes explicitlyreason based on estimated



search costs about which search approach to use, reducing query costs. Finally, we
present how storing redundant copies of these entries can effectively deal with tempo-
rary node failures without the need of any centralized mechanism.

To validate the effectiveness of PHIRST, we used a real web corpus [15]. We found
that the hybrid approach we present used significantly less storage to store all inverted
lists than previous approaches where all terms were published [9, 19]. Next, we used
artificial and real queries to evaluate the system. The artificial queries demonstrated
the strengths and limitations of our system. The unstructured component of PHIRST
was extremely successful in finding frequent terms, and the structured component was
equally successful in finding any pairs of terms where at least one term was not fre-
quent. In both of these cases, the recall of our system was always 100%. The system’s
performance did have less than 100% recall when terms of 2 or more words of medium
frequency were constructed. We present several compensatory strategies for addressing
this limitation in the system. Finally, to evaluate the practical impact of this potential
drawback, we studied real queries taken from IMDB’s movie database [2] and found
PHIRST was in fact effective in answering these queries.

2 Related Work

Classical Information Retrieval (IR) systems use a centralized server to store inverted
lists of every term in every document within the system [6]. These lists are “inverted”
in that the server stores lists of the location for each term,and not the term itself. In-
verted lists can store other information, such as the term’slocation in the document, the
number of occurrences for that term, etc. Search results arethen returned by intersect-
ing the inverted lists for all terms in the query. These results are then typically ranked
using heuristics such as TF/IDF [7]. For example, if searching for the terms, “family
movie”, one would first lookup the inverted list of “family”,intersect that file with that
of “movie”, and then order the results before sending them back to the user.

The goal of a P2P system is to provide results of equal qualitywithout the need of a
centralized server with the inverted lists. Potentially, the distributed solution may have
advantages such as no single point of failure, lower maintenance costs, and more up-
to-date data. Toward this goal a variety of distributed mechanisms have been proposed.

Structures such as Distributed Hash Tables (DHTs) are one way to distribute the
process of storing inverted lists. Many DHT frameworks havebeen presented, such
as Bamboo [17], Chord [13], and Tapestry [20]. A DHT could then be used for IR in
two stages: publishing and query lookups. As agents join thenetwork, they need to



update the system’s inverted lists with their terms. This isdone by every agent sending
a “publish” message to the DHT with the unique terms it contains. In DHT systems,
these messages are routed to the peer with the inverted list in log(N) hops, with N being
the total number of agents in the network [13, 17]. During query lookups, an agent
must first identify which peer(s) store the inverted lists for the desired term(s). Again,
this lookup can be done in log(N) hops [13, 17]. Then, the agent must retrieve these
lists and intersect them to find which peer(s) contain all of the terms.

Li et al. [9] present formidable challenges in implementingboth the publishing and
lookup phases of this approach in large distributed networks. Assuming a word exists
in all documents, its inverted list will be of this length. Thus, the storage requirements
for these inverted lists are likely to exceed the hardware abilities of agents in these
systems as the number of documents grows. Furthermore, sending large lists will incur
a large communication cost, even potentially exceeding thebandwidth limitation of the
network. Because of these difficulties, they concluded thatnaive implementations of
P2P full-text search are simply infeasible.

Several recent developments have been suggested to make a full-text distributed
system viable. One suggestion is to process the structured search starting with the node
storing the term with the fewest peer entries in its invertedlist. That node then forwards
its list to the node with the next longest list, where the terms are locally intersected
before being forwarded. This approach can offer significantcost savings by insuring
that no agent can send an inverted list longer than the one stored by theleastcommon
term [19]. Reynolds and Vahdat also suggest encoding inverted lists as Bloom filters
to reduce their size [16]. These filters can also be cached to reduce the frequency these
files must be sent. Finally, they suggest using incremental results, where only a partial
set of results are returned allowing search operations to halt after finding a fixed number
of results, making search costs proportional to the number of documents returned.

Unstructured search protocols provide an alternative thatare used within Gnutella
and other P2P networks [4]. These protocols have no publishing requirements. To
find a document, the querying node sends its query around the network until a pre-
defined number of results have been found, or a predefined TTL (Time To Live) has
been reached. Assuming the search terms are in fact popular,this approach will be
successful after searching a fraction of the network. Various optimizations have again
been suggested within this approach. It has been found that random walks are more
effective than simply flooding the network with the query [12]. Furthermore, one can
initiate multiple simultaneous “walks” to find items more quickly, or use state-keeping
to prevent “walkers” from revisiting the same nodes [12]. Despite these optimizations,
unstructured search has been found to be unsuccessful in finding rare terms [4].



In super-peer networks, certain agents store a disproportionate amount of inverted
list data. Instead of all peers publishing inverted data over a distributed DHT network,
agents send copies of their lists to their assigned super-peers. As agents are assumed
to have direct communication with their super-peers, only one hop is needed to publish
a message, instead of the log(N) paths within DHT systems. During query processing,
an agent forwards its request to its super-peer, who then takes the intersection between
the inverted lists of all super-peers. However, this approach requires that certain nodes
have higher bandwidth and storage capabilities [19] – something we could not assume
for our system.

Hybrid architectures involve using elements from multipleapproaches. Loo et al.
[10, 11] propose a hybrid approach where a DHT is used within super-peers to locate
infrequent files, and unstructured query flooding is used to find common files. This
approach is most similar to ours in that we also use a DHT to findinfrequent terms and
unstructured search for frequent terms. However, several key differences exist. First,
their approach was a hybrid approach between Gnutella ultrapeers (super-peers) and
unstructured flooding. We present a hybrid approach that cangenerically use any form
of structured or unstructured approaches, such as random walks instead of unstructured
flooding or global DHT’s instead of a super-peer system. Second, in determining if
a file was common or not, they needed to rely on information locally available from
super-peers, and used a variety of heuristics to attempt to extrapolate this information
for the global network [10]. Since we build PHIRST based on a global DHT, we are able
to identify rare-items based on complete information. Possibly most significantly, Loo
et al. [11] only published the files’ names, and not their content. As they considered
full-text search to be infeasible for the reasons previously presented [9], their system
was limited to performing searches based on the data’s file name, and not on the text
within that data. In contrast, the PHIRST system actually becomes more scalable as
nodes are added and is thus the first system to facilitate effective full-text search even
within large P2P databases. Finally, an earlier version of this work was previously
published [18]. In addition to significant updates to the publishing and query algorithms
presented in this paper, this version of PHIRST addresses issues of churn, something
not addressed in our previous work.

3 PHIRST Overview

First, we present an overview of the PHIRST system, how its publishing and query
algorithms interconnect, and the variables used in them. While this section describes



how information is published within the Chord DHT [13], PHIRST’s publishing al-
gorithm is generally presented in Section 4 so it may be used within other DHT’s as
well. Similarly, Section 5 presents query algorithms whichselect the best search al-
gorithm based on the estimated cost of performing the searchalgorithms at the user’s
disposal. The selection algorithm (Algorithm 3) is generally written such that new
search algorithms can be introduced without affecting the algorithm’s structure. Only
later, in Algorithm 4, we present how these costs are calculated specific to the DHT and
unstructured search algorithms we used.

In order to facilitate structured full-text search for infrequent words, inverted file
term data must be stored within structured network overlayssuch as Chord. Briefly,
Chord uses consistent hash functions to create an m-bit identifier. These identifiers
form a circle modulo2m. The node responsible for storing any given term is found by
using a preselected hash function, such as SHA-1, to computethe hash value of that
term. Chord then routes the term to the agent with the Chord identifier equal to or the
successor (the next existent node) of that value [13]. For example, Figure 1 depicts
a simple example with 3 nodes, and an identifier space of 8 (23). Assuming the term
hashes to a value of 6, it needs to be stored on the next node within the circular space,
or on node 0. Assuming the term hashes to 1, it is stored on node1.

Figure 1: An example of a Chord ring with m=3. Figure based on Chord paper [13].

The use of a consistent hash function within the Chord algorithm provides several
positive qualities. First, it creates important performance guarantees, such as a log(N)
average search length to find the node containing a certain term. Furthermore, nodes
can be easily added (joins) or removed (disjoins) by inserting them into the circular
space, and re-indexing only a fraction of the pointers within the system. Finally, the



Table 1: Example of several words (terms within the DHT), andtheir inverted lists.
Termi Address1 Address2 Address3 Address4 Address5 Address6 Address7

a 10.1.1.1 10.1.1.2 10.1.1.3 10.1.1.4 10.1.1.5 10.1.1.6 10.1.1.7
aardvark 10.13.132.45

the 10.1.1.1 10.1.1.2 10.1.1.3 10.1.1.4 10.1.1.5 10.1.1.6 10.1.1.7
zoo 10.1.3.4 10.1.3.44 10.1.39.12

zygote 10.7.12.45

hash function used by Chord ensures that no agent will receive more than O(log(N))
terms above the average amount stored by other nodes in the network [13], creating an
equitable distribution of terms within the distributed system. We refer the reader to the
Chord paper for further details [13].

In the PHIRST algorithms, we use the following variable names. Recall that N refers
to the number of agents contained within the system. The PHIRST algorithms are based
on knowledge of what this value for N is, and maintains a variableNODE COUNTER

to store this value. We refer to the total number of documentsto be indexed for the
full-text search as D. Unless otherwise noted, we assume that every node stores one
document, and N = D. However, PHIRST’s algorithms are not dependent on this sim-
plification. In PHIRST’s publishing phase, inverted file information must be added
from a new document, Doc, for each of the termsTermi out of a total ofnum terms

terms, found on nodeIDSOURCE. This information is sent to nodeIDDEST to be pub-
lished.IDDEST can be found by using the successor function within Chord. Referring
back to Figure 1, assuming the termTermi hashes directly to the numeric value of one
of the nodes (e.g. 0, 1, or 3),IDDEST is assigned to this node. Otherwise, the next
node (the successor) in the circular space becomesIDDEST . IDDEST is responsible
for storing the inverted file information for this term, as well as any other term that was
routed to it for storage. It keeps a counter,TERM COUNTER, of the number of
times the termTermi is found within the combined database of D documents.

For example, Table 1, provides an example of the inverted lists for five words stored
on one node. Each row in the table represents a word, and the IPaddress(es) on the net-
work where documents with that word can be found. Common words, such as “a” and
“the” within the table, will produce much longer inverted lists than uncommon words
such as “aardvark” and “zygote”. Due to space restrictions this table only presents up
to the first 7 inverted entries for each word, out of a potential number of D columns.
Because word distribution within documents typically follow Zipf’s law, some of the
words within documents occur very frequently while many others occur rarely [8]. In
an extreme example, one node may be responsible for storing extremely common words



such as “the” and “a”, while other nodes are assigned only rare terms.
While DHT’s such as Chord are effective in equitably distributing terms over the

system’s nodes, they do not enforce equitable distributionof the amount of inverted
file information per node. As such, Chord does balance the number of terms,Termi,
stored per node, but not the amount of data associated with these terms. Not only is this
a major challenge in light of the distributed nature of the system, but it also prevents
feasible full-text search [9]. The first key contribution ofthis paper is how we overcome
these challenges by means of a publishing algorithm that limits the amount of inverted
file information nodes must store, even for common words. We denote the size of the
inverted file for termTermi as SIZEOF FILE(Termi), and limit this file’s size tod
entries. Details of PHIRST’s publishing algorithms are found in Section 4.

However, PHIRST must still overcome the problem of how full-text queries can
be properly performed without exhaustively indexing this information. We define the
query task as finding a number of results, T, that match all query terms, or a total of
num query terms terms, within the documents’ text. Capping a query at T results is
needed within unstructured search, as there is no global mechanism for knowing the to-
tal number of matches [19]. The second key contribution of this paper is a novel query-
ing algorithm that leverages between structured and unstructured search algorithms to
effectively find matches despite the limit in the amount of data each peer stores. Fur-
thermore, this algorithm selects between different types of search approaches based on
estimated cost, reducing the cost of processing queries. Details of PHIRST’s query
algorithms are found in Section 5.

Finally, modifications to the above algorithms are necessary to address scheduled
and unscheduled disconnects of nodes from the network. PHIRST incorporates a sys-
tem for handling scheduled disconnects through an orderly mechanism for unpublish-
ing inverted file information. It also contains replicated inverted file information for
handling unscheduled node disconnects. Details of these algorithms are found in Sec-
tion 6.

4 The Publishing Algorithms

First, once any agent joins the network, regardless of whether it has any documents
to publish, it must update the variableNODE COUNTER. We will see that this
value is needed by the query algorithms described below. This can be done through
an UPDATENODE COUNTER function to send a request to the node responsible for
storing this counter to update it by one. For simplicity, letus assume this global counter



is stored on the first agent,ID1, or IDNODE COUNTER = ID1. Thus, we assume all
nodes perform the command, UPDATENODE COUNTER(ID1, 1) upon joining the
network. We will explore variations of this assumption in Section 6 where we assume
that multiple copies of this counter are necessary if node failures must be presumed and
nodeID1 may not be available.

Next, every time an agent wishes to add a document to the network, it must publish
the words in these documents as described in Algorithms 1 and2. Note that there are
two parts to this procedure. Algorithm 1 determines the terms in the document, Doc,
that must be published, and where to send these terms in the DHT network. Algorithm
2, takes place on the receiving end, where nodeIDDEST decides what information
should be stored from nodeIDSOURCE.

Algorithm 1 Publishing Algorithm (Document Doc)–Initiati ng Agent
1: Terms ⇐ Preprocessed words in Doc
2: num terms ⇐ LENGTH(Terms)
3: for i = Term1 to Termnum terms do
4: IDDEST ⇐ FindAddress(IDSOURCE)
5: ADD TERM(Termi, IDSOURCE, IDDEST )
6: end for

In Algorithm 1, nodeIDSOURCE first generates a set ofTerms it wishes to publish
(line 1). Similar to other studies [19] we assume that the agent preprocesses its doc-
ument to remove extraneous information such as HTML tags andduplicate instances
of terms. Stemming, or reducing each word to its root form, isalso done as it has
been observed to improve the accuracy of the search [19]. Furthermore, as we de-
tail in the Experimental Results Section (Section 7), stemming also further reduces the
amount of information needed to be published and stored. In line 2 we initialize the
num terms variable to the number of unique terms to be published. The publishing
agent,IDSOURCE, then sends every term,Termi, to be stored in an inverted list on
peerIDDEST (lines 3–6). This information will be used to create or update inverted
files on the destination node. This node is identified via the function FindAddress in
line 4 which can use Chord’s previous described consistent hash function [13] or similar
DHT implementation.

Next, the publishing algorithm consists of a second stage, depicted by Algorithm 2,
where agentIDDEST , responsible for storing inverted list information, must process
this data. PHIRST enforces an equitable term distribution by requiring nodes to store
a maximum ofd entries in the inverted file for a given term. As lines 1–3 of the
algorithm detail, assuming this is the first time this term has been found in all D
documents, agentIDDEST creates a new inverted file with this term (line 2) and a



Algorithm 2 ADD TERM ( Termi, IDSOURCE, IDDEST )–Receiving Agent
1: if SIZE OF FILE(Termi) =0 then
2: CREATE FILE(Termi, IDSOURCE)
3: CREATE TERM COUNTER(Termi)
4: else ifSIZE OF FILE(Termi) < d then
5: UPDATE FILE(Termi, IDSOURCE)
6: UPDATE TERM COUNTER(Termi, 1)
7: else
8: UPDATE TERM COUNTER(Termi, 1)
9: end if

new term counter (line 3). Assuming this is an existing term with fewer thand en-
tries, the location ofIDSOURCE is added to the existing inverted file (line 5) and the
counter forTERM COUNTERi is incremented (line 6). Otherwise,d instances
of that term exist and the location of the term is not added to the inverted file, but
TERM COUNTERi is still incremented (line 8). This counter information is used
by the query algorithms to determine the global frequency ofthis term.

Previous works require all term instances be published, andthus the length of the
inverted files stored on nodes can grow unchecked. Because welimit each node so that
it only stores a maximumd possible term instances, the storage requirements of the
system are greatly reduced. Referring back to Table 1, let usassume the worst case,
and all D documents in the system contain all terms and thus the variableTerms in
Algorithm 1 will be the same for every Doc inD. Previous works require creating
a maximum of D entries in the inverted lists represented in the table, while PHIRST
requires only a maximum ofd entries. Thus, in the worst case, PHIRST’s storage
requirement becomesd*num terms instead ofD*num terms. As we setd << D,
we found these savings to be quite significant.

Theoretically, additional information about each term maybe published, such as the
position of the term or how many instances of the term exists within the document and
this and similar information may be aggregated into a ratingof the term to be published.
This information may be especially important when more thand instances of the term
exist. The receiving agent,IDDEST , could then decide whichd term instances to store
by continuously sorting scores of the terms it has, and maintaining only those with the
highestd rating. In a similar vein, if more thand instances ofTermi exist, it may be
advantageous to store the most recentd documents, especially if turnover exists within
nodes.

The performance guarantees of DHT’s, such as Chord, ensure that the publishing
algorithm runs at a fairly low cost. Because each node,IDSOURCE, needs log(N) hops



to find the agent,IDDEST , responsible for storing the term’s inverted list, the total
number of messages needed to publish a document is of orderO(num terms∗log(N))

wherenum terms is the number of unique terms in that document. Note that the
publishing algorithm described herein sends all terms, even those that in fact do not
need publishing because they already containd instances. For future work, we hope
to study how nodes may be able to reduce this amount by knowingin advance which
terms already haved terms.

5 The Query Algorithms

The query algorithms are called once any agent wishes to conduct a distributed full-text
search. As Algorithm 3 describes, this process operates in two stages. First, we retrieve
the global frequencies of all search terms (line 2) and sort all terms from least to most
frequent (line 3). This value can be calculated by looking upthe frequency of every term
from the agent storing termTermi. Referring back to Algorithm 2 note that the peer
storingTermi has a counter with this value even if more thand instances of this term
occurred. The frequency of every term is divided by the valueNODE COUNTER

which can give an estimate as to how many nodes must be visitedto find this term
through an unstructured search. Finding these values requires one lookup of the value
of NODE COUNTER (which we previously assumed to be stored on agentID1),
as well as a lookup of the frequencies of each term from the agent storing termTermi.
Referring back to Algorithm 2 (line 8) observe that the peer storingTermi has a counter
with this value even if more thand instances of this term occurred.

Note that the expected frequency of terms is not necessarilyequal to their actual
frequency. For example, while the words “new” and “york” maybe relatively rare,
the frequency of “new york” is likely to be higher than the product of both individual
terms. Thus, this naive approach may not be true for the actual combination of terms, a
factor that may bias the algorithm towards using the wrong search approach, especially
in borderline cases. This point is further discussed below regarding Algorithm 4.

Once the frequencies of all terms are known, the algorithm then reasons about which
algorithm to select. This process iteratively calls the tradeoff function which we define
below (Algorithm 4). If unstructured search is deemed less costly, all terms are immedi-
ately searched for simultaneously (lines 7–12). This type of search can either terminate
because T matches have been found or the search space has beenexhaustively searched.
If structured search is deemed less costly, that term’s inverted list is requested, and the
search space is intersected with the inverted list of the newterm (the function List in



Algorithm 3 Hybrid Query Algorithm (T, Query1 . . . Querynum query terms)
1: space⇐∞ {Used for initialization to all P2P nodes}
2: FrequencyArray ⇐ Query1 . . . Querynum query terms

{FrequencyArray is an unsorted array of query terms}
3: Q Array ⇐ Sorted Query Terms Least to most Frequent

{Q Array is the sorted array of query terms}
4: for Queryi = Q Array[1] to Q Array[num query terms] do
5: Frequency⇐ Product(FrequencyArray[i] . . . FrequencyArray[num query terms])
6: Tradeoff⇐ Calculate-Tradeoff(space,Queryi . . . Querynum query terms, Frequency)
7: if Tradeoff> 0 then
8: Found⇐ 0
9: while (Found< T) AND (NOT Exhausted(space))do

10: Found⇐ Found + Search-Unstruct(space,Queryi . . . Querynum query terms)
11: end while
12: break
13: else
14: space⇐ List(Queryi) ∩ space
15: if i=Querynum query terms then
16: if LENGTH(space)> T then
17: return first T list entries{Or NULL}
18: else
19: return all list entries
20: end if
21: end if
22: end if
23: end for

line 14 returns the inverted list for the term). Assuming we have reached the last term
(lines 15–21) we return the first T matches found after all terms have been successfully
intersected. Once the structured search identifies that fewer than T matches have been
found (line 16) it returns all list entries (line 17). Note that line 17 also presents the
option that failure or NULL is returned if less than T resultswere found.

This algorithm has several key features. First, the search process is begun starting
with the least frequent term. This is done following previous approaches [19] to save
on communication costs when using structured search. Each successive peer receives
the previously intersected list, and locally intersects this information with that of its
term (line 14). As a result of this process the intersected lists become progressively
smaller (or in the worst case remain the same length) and the maximum information
any peer can send is bounded by SIZEOF FILE(Term1). Second, one might question
why agents do not immediately return the entire inverted list of the terms they store,
instead of first returning the term’s frequency. Retrievingfrequency information incurs



a cost since we must find the frequency information for every term Termi out of a
total ofnum query terms search query terms, and must also retrieve the value for the
variableNODE COUNTER. Thus, the cost overhead of finding this information is
num query terms*log(N) + 1 as the frequency of each termTermi can be found in
the DHT in log(N), and we assume thatNODE COUNTER is found onID1 and
consequently can be directly assessed in one hop. However, this paper asserts that the
information gained from this frequency information, such as bounding search costs to
the size of the least frequent term, outweighs the search costs involved in processing
the query in two stages. Finally, as the search goal is to return T results, the last node
within a structured search does not need to return its entireinverted list. Instead, it only
needs to send the first T results. Accordingly, the maximal structured search cost will
be of order (num query terms-1) * SIZE OF FILE(Term1) + T.

Arguably the most important feature of this algorithm is itsability to switch between
structured and unstructured search midway through processing the query terms. Even if
structured search is used for the first term(s), the algorithm iteratively calls the tradeoff
algorithm (Algorithm 4) after each term. Once the algorithmnotes that an unstructured
search is cheaper, it immediately uses this search to find allremaining terms. For
example, assume a multi-word query contains several commonand uncommon words.
The algorithm may first take the intersection of the invertedlists for all infrequent words
to create a listf . The algorithm may then switch to an unstructured search within f to
find the remaining common words.

Similarly, note that this approach lacks a TTL (Time To Live)for its unstructured
search that exist in other unstructured approaches [19]. Weassume unstructured search
is to be used only when the expected cost of using an unstructured search is low (see
algorithm 4 below). We expect this to occur when the unstructured search will terminate
quickly, such as when: (i) the search terms are very common from the onset or (ii)
an unstructured search is used to find the remaining common terms after a structured
search generated an inverted list off terms.

We now address the search specific mechanism needed to identify which search
algorithm will have the higher expected cost. This tradeoffdepends on T, or the number
of search terms desired, the costs specific for the differenttypes of search options within
the query algorithm, andd or the maximal number of inverted list entries published for
each term. Algorithm 4 details this process as follows:

First, the algorithm calculates the expected cost of conducting an unstructured search.
The expected number of documents that will be visited in an unstructured search before
finding T results is: T / Frequency (line 1), where Frequency is the product of frequency
of all terms. We can compare this value to that of using a structured search, whose cost



Algorithm 4 Calculate-Tradeoff (T, space,Termi . . . T ermnum query terms, Frequency )
1: Expect-Visit⇐ T / Frequency{Number of nodes Unstructured search will likely visit}
2: if CU*(Expect-Visit)< CS *(Sending(query-terms))then
3: RETURN 1{pure unstructured search}
4: else ifSIZE OF FILE(Termi) < d then
5: RETURN -1{pure structured search for this term}
6: else
7: space⇐ List(Termi) ∩ space
8: RETURN 1{Use unstructured afterwards}
9: end if

is also known, and is proportional to the length of the inverted lists that need to be
sent. We assume there is some cost,CU associated with conducting an unstructured
search on one peer. We also assume that some costCS is associated with sending one
entry from the inverted list (line 2). Recall that the initial maximal structured search
cost is bounded byCS * ((num query terms-1) * SIZE OF FILE(Term1) + T) (see
the previous description of Algorithm 3). The cost of the unstructured search can be
calculated asCU * T / Frequency. The ability to compare the expected cost of using
both searches allows the algorithm to best decide how to proceed (lines 2–5).

For many cases, a clear choice exists with reference to whichsearch algorithm would
be best to use. Let us assume thatCU = CS = 1, and that all documents have been in-
dexed, ord is greater than or equal to the total number of documents in the system (D).
When searching for common words, or Frequency is near 1, the cost of using the un-
structured search is likely to be near T, as these words are likely to be found on the first
several nodes searched. Processing the same query with structured search will be more
costly, as the inverted files’ size is nearly equal to the number of documents and we as-
sume T is much smaller thanD. For example, assumeNODE COUNTER = 10000,
T is 10, each node stores 2 documents on average (D = 10000*2 or20000) and two
terms are searched for with TERMCOUNTER(Term1) = TERM COUNTER(Term2)
= 5000 (Frequency = 0.5 * 0.5 or 0.25) . Using unstructured search will find 10 results in
approximately 40 node visits, while structured search willrequire sending inverted files
with 5000 terms. Note that in extreme examples, Frequency may be even much greater
than 1, such as in the trivial case where only one node exists,but contains multiple
documents with all terms. Conversely, for infrequent terms, say with one term occur-
ring only 1 time, the cost of an unstructured search will be N or a number much larger
than T, as all nodes must be searched before realizing T results could not be found.
However, the structured search will only cost a maximum ofnum query terms-1 *
SIZE OF FILE(Term1) + T, which is here bound by SIZEOF FILE(Term1) being



only 1. Finally, structured search is also the clear choice for queries involving one
term. Note that in these cases, no inverted lists need to be sent (num query terms-
1=0), and only the first T terms are returned. The cost of usingunstructured search will
be greater than this amount (except for the exceptional casewhere the frequency of the
term(s) is 1.0 or higher).

There are two reasons why the most challenging cases involvequeries with terms
of medium frequency. First, as previously mentioned at the beginning of Section 4, the
expected frequency of terms is not necessarily equal to their actual frequency. As a
result, the PHIRST approach is most likely to deviate from the optimal choice in these
types of cases, especially when the values,CU*(Expect-Visit) andCS *(Sending(query-
terms)) are similar. A second challenge results from the fact that we only publish up tod
instances of a given term. In cases where inverted lists are published without limitation,
e.g.d equals D, the second algorithm contains only two possible outcomes – either the
expected cost is larger for a structured search, or it is not.However, our assumption
is that hardware limitations prevent storing this large number of terms, andd must be
set much lower than D. Consequently, situations will arise where we wouldlike to
use inverted lists, but as these files have incomplete indices, this approach will fail in
finding results in position d+ǫ. While other options may be possible, in these cases
our algorithm (in lines 6–8) takes thed terms from the inverted lists, and conducts an
unstructured search for all remaining terms. In general, wefound this approach to be
effective as long as T< d, or the relationship, T< d << D exists. We further explore
the impact of this limitation in the results section (7).

6 Dealing with Network Churn

The publishing and query algorithms address full-text search issues related to storage
hardware limitations, methods for equitably distributinginverted lists, and search cost
minimization. As we study real-world P2P databases, the system must additionally
address temporary and permanent peer failures. This section provides a solution for
this issue, known as churn, which is suitable for a distributed system.

6.1 The Churn Challenge

Churn can be defined as the turnover rate of nodes in the systemover a given time period
[5]. Based on previous work [5], we define churn (C) as follows: Given a sequence of
changes in the set of N peer nodes being available and unavailable, letUi be the set of
in-use nodes after theith change, withU0 as the initial set. Churn is the sum over each



event of thefraction of the system that has changed its state in that event, normalized
by run time t:

C =
1

t
·

∑

eventsi

|Ui−1 ⊖ Ui|

N
,

where⊖ is the symmetric set difference.
Within many real-world networks, most churn events are likely to be caused by

temporary changes of status where nodes are momentarily notin service, but will even-
tually return to operation. For example, a user might turn off her phone while sleeping,
attending meetings, or going on vacations. We would expect these types of networks
to have a rather high churn rate due to these types of events. Aless frequent type of
churn is likely when a node decides to permanently change itsstatus, perhaps because
a device breaks or when a user switches cellular carriers andreceives a new number.
While these events do not occur frequently, the node’s information will be permanently
lost if the device’s data is not replicated.

Unstructured networks are not impacted by churn as long as the fluctuation of nodes’
states still leaves the entire network with full connectivity [4]. As this method has no
publishing or required routing of lookup information, it isunaffected by even very high
churn rates. This has led some to claim that unstructured networks are most appropriate
in these types of environments [4].

A variety of strategies have been proposed for dealing with churn in structured en-
vironments [5] to allow for continued connectivity once a node fails. One classic ap-
proach is toreactively fix the overlay network once a failure is detected. A second
approach is toperiodically check if nodes have failed. This can be done through con-
stantly sampling neighbor nodes, and then preemptively replacing failed nodes before
they cause a lookup failure. In environments with low churn levels the reactive methods
perform better as they have no inherent communication overhead. However, in environ-
ments with even moderate churn levels, periodic methods perform significantly better
[17].

It is important to differentiate between maintaining the connectivity of live nodes
within the base DHT network, and the ability to find the data once stored in the network.
Periodic approaches are better at handling churn, or findingnodes that are still partic-
ipating in the network. However, our system must additionally maintain lost nodes’
published inverted list information, something DHT’s typically cannot do (refer back
to the end of Section 3). We now present a solution for this challenge.



6.2 Addressing Churn in a P2P Application

First, we present Algorithms 5 and 6 to deal with planned types of disconnects, or
when nodeIDSOURCE can orderly remove the inverted list information it has published.
While we recognize that planned disconnects will not represent all churn events within
a real system, this algorithm utilizes key elements of PHIRST. We then generalize this
approach for dealing with unplanned churn events.

Algorithm 5 Unpublishing Algorithm (Document Doc)–Initia ting Agent
1: Terms⇐ Preprocessed words in Doc
2: for i = Term1 to Termnum terms do
3: IDDEST ⇐ FindAddress(Termi)
4: REMOVE TERM(Termi, IDSOURCE, IDDEST )
5: end for
6: SUCCESSOR⇐ FIND SUCCESSOR(IDSOURCE)
7: for j = File1 to FileNUM FILES do
8: COPY(Filej , SUCCESSOR)
9: end for

Algorithms 5 and 6 address the actions a peerIDSOURCE must perform before a
planned disconnect (in Algorithm 5), and thoseIDDEST must perform in removing
IDSOURCE ’s terms (Algorithm 6). Note the strong similarity between these unpublish-
ing algorithms, and the previously described publishing algorithms (Algorithms 1 and
2). In both cases, Similarly, the function REMOVETERM in line 4 of Algorithm 5 and
UPDATE TERM COUNTER in line 4 of Algorithm 6 closely parallel the ADDTERM
function in line 5 of Algorithm 1 and the UPDATETERM COUNTER functions in
lines 6 and 8 of Algorithm 2. The purpose of the function REMOVE TERM is to
remove the entry of the disconnecting peer,IDSOURCE, from the inverted list stored
on peerIDDEST . Note that these unpublishing algorithms also contain several new
types of actions. In lines 6–9 of Algorithm 5,IDSOURCE must copy the inverted lists
it currently stores (out of a total of NUMFILES inverted lists) to a new node. To
do this, first we find the successor node within the overlay network (line 6) of Al-
gorithm 5. DHT networks such as Chord [13] provide the implementation for the
FIND SUCCESSOR function referred to. Then, every one of the inverted files cur-
rently stored onIDSOURCE (which number NUMFILES) are transferred over to the
successor node. From this point onward, this node will have the responsibility of re-
sponding to queries for any of the terms contained in these inverted files. In Algorithm
6, peerIDDEST removesTermi if it had stored this value in its inverted file for this
term (within the maximum ofd terms it had stored). This check is done through the
EXISTS function in line 1. Finally, after the peerIDSOURCE has performed Algo-



rithm 5 for all documents it had stored, or if a disconnectingnode never had stored
any documents, it must update the variable NODECOUNTER of the global number
of documents. However, here this value must be reduced through performing the func-
tion, UPDATE NODE COUNTER(IDNODE COUNTER, -1) instead the function call
UPDATE NODE COUNTER(IDNODE COUNTER, 1) used upon joining the network.

Algorithm 6 REMOVE TERM( Termi, IDSOURCE, IDDEST )–Receiving Agent
1: if EXISTS(Termi, IDSOURCE) then
2: UNSTORE(Termi, IDSOURCE)
3: end if
4: UPDATE TERM COUNTER(Termi, -1)

However, our assumption is that most churn effects result from temporary and un-
planned failures where the failing node will not issue this unpublish command. In
order to address this point, we present a solution where inverted list data is replicated
to handle failures.

While the DHT’s pointers need to be immediately updated in case of a node fail-
ure, however temporary, that node’s data does not need to be copied if a set of backup
copies exist. PHIRST relies on this set of backups with the assumption that the node’s
failure was temporary, and it will soon function again in thenetwork. This saves com-
munication costs in copying inverted list data, assuming that node does soon rejoin the
network.

These data replicas can be easily created during the publishing stage. We modify
the publishing algorithm (Algorithm 1) to send its data tok peers instead of just one.
We refer to the k copies of a group of R redundant nodes,R1, . . ., Rk, where all nodes
receive the same publishing data. Note that DHT’s such as Chord [13] can enable
this functionality by sending a publishing message to the normal hashed peerIDDEST

within the Chord ring, and the nextk − 1 peers as well or,IDDEST , IDDEST + 1,
... IDDEST + k - 1. This is one approach to allow nodes to easily find the k copies.
Consequently, line 5 of Algorithm 1 which stated: ADDTERM(Termi, IDSOURCE,
IDDEST ) should be modified to become lines 5-7 of Algorithm 7.

For example, assumek=2, or two copies of each inverted list are stored. Referring
back to Figure 1, all inverted lists that would normally be stored only on node 0, are
now stored on nodes 0 and 1, inverted lists for 1 are stored on 1,3, etc. A temporary
failure of node 1 will be handled by its successor, namely node 3, which also stored the
same inverted list data. Join actions remain similar to those previously presented for
DHT’s with the exception that here a joining node must also beupdated with the data
currently being stored on the redundant nodesR1, . . ., Rk that it is now joining. After



Algorithm 7 Modification Publishing Algorithm for Churn (Do cument Doc)–Initiating Agent
1: Terms ⇐ Preprocessed words in Doc
2: num terms ⇐ LENGTH(Terms)
3: for i = Term1 to Termnum terms do
4: IDDEST ⇐ FindAddress(IDSOURCE)
5: for a = 0 to kdo
6: ADD TERM(Termi, IDSOURCE, IDDEST + a)
7: end for
8: end for

this data is stored, the last node of the redundant set (Rk) can erase this data.
In a dynamic system, this approach will need to address two additional issues. First,

care must be taken to address churn changes within the group of k redundant nodes
after they are formed. For example, assume a new document is published, but node
R1 is temporarily unavailable. The data should still be published on the remainingk-1
nodes which now have the most updated version of the invertedlists. Once nodeR1

becomes available again, it must receive the updated information. Second, we assume
that most nodes become unavailable only temporarily, and thus a failure of a node, H,
should not be a reason to immediately find a new node to replicate the data. However,
after a certain time period, M, it must be assumed that node H has in fact left the system,
and a new node must be found to storek nodes.

Algorithm 8 Replicating Data Under Churn (Node H)
1: Start⇐ Randomize start time
2: for Time = Start to M step Ldo
3: if Up(H) then
4: Lock(H)
5: Update(H)
6: return
7: end if
8: end for
9: Replace(H){Assume Node C has left the network}

10: UPDATE NODE COUNTER(IDNODE COUNTER, -1)

Algorithm 8 outlines these two steps. The precondition for this algorithm is that
a group ofk nodes has already published the application data (invertedlists) as per
Algorithm 7, and these nodes are aware of the others’ existence. Within Chord this
can be done through predecessor and successor pointers. Also, this algorithm is called
once the redundant node set notices that a member of the set isnot working (node H).
We assume this is done by periodically sampling, which has previously been shown
to be effective [17]. Next, we assume the remaining nodes mark what data has been



published after node H failed, and can thus update node H onceit becomes available.
Based on these preconditions, the algorithm operates as follows. Once a failure has

been detected, the remaining nodes monitor the down node fora total time period of M
(line 2 of the algorithm). Each node checks if the failed noderesumes operation every
L time units. Note that each node randomizes its start time (line 1). Consequently
two or more nodes do not unnecessarily monitor node H during the same time period.
Assuming a node has found that H has resumed functioning, it updates node H with
the information it missed and the algorithm terminates (lines 3–7). Immediately before
performing this Update process, this node places a lock on H (line 4), so no other node
can update it simultaneously. This type of concurrency control mechanism is often
used within databases [3]. Note that as part of the Update process, this node should
also notify the other nodes in the replication set, (R1, . . ., Rk), that there is no need to
update node H with this information as well. Finally, if the algorithm reaches line 9,
we assume node H is permanently down. As Chord operates by searching successor
nodes for information, this replacement node must be taken from the next node not
currently in the set (R1, . . ., Rk), or nodeRk+1. Additionally, we must reduce the
variableNODE COUNTER which stores the number of nodes in the system. This
is done in line 9 of the algorithm.

However, comparing this approach to Algorithms 5 and 6 reveals two challenges.
In Algorithm 5 a disconnecting node is assumed to be able to initiate an orderly dis-
connect, enabling a proper removal of all of its entries fromthe inverted lists. How-
ever, as the failures in this case are unpredictable, this isnot possible with Algo-
rithm 8. Furthermore, in line 10 of Algorithm 8 and throughout the paper we refer
to IDNODE COUNTER as the peer responsible for storing information about the total
number of nodes in the system. For simplicity, we had assumedthis counter is stored
on the first agent, orID1 (see the beginning of Section 4). However, this assumption
must be changed to account for possible churn effects on thispeer. One solution is to
replicate this value k times to deal with churn, and refer toIDNODE COUNTER as this
set of peers.

The value for k is a tunable parameter that must be set with care. As we deal with
hardware with limited storage and assume communication is costly, care must be taken
to refrain from sending unnecessary data. However, sufficient data replicas must be
present to make the probability that allk peers will simultaneously fail extremely small.

Fortunately, the average system churn is typically a known or measurable quantity,
and can be used to set the value ofk. Assuming an average churn rate of p exists within
the system, the probability the query algorithm will not findan inverted list given k
redundant copies ispk. For example, assume an average churn rate of 0.5, or 50% of



the nodes will be unavailable in any given time period. The probability all five nodes
will be down simultaneously is0.55, or 0.03, and the probability at least one will still
function is 1-Probability(FailureAll), or 0.97. As the next section details, computing
these probabilities are an effective guideline for settingk.

7 Experimental Results

In this section we present the experimental results used to validate the effectiveness of
the algorithms in this paper. As our research goal was to check if PHIRST is appro-
priate for medium sized newsgroups, we chose a corpus of 2000real movie websites
to conduct our experiments [15]. The results from the publishing experiments demon-
strate that PHIRST actually becomes more feasible as more documents and agents are
added to the network. We also created two types of query experiments. In one group we
created artificial queries based on the frequencies of words. This experiment demon-
strated the theoretical strengths and weaknesses of PHIRST. We also studied real movie
queries based on the Internet Movie Database [2]. These experiments demonstrated that
any weakness in PHIRST is likely to be insignificant in handling real queries.

7.1 Publishing Experiments

Recall that the publishing algorithm is based on storing a maximum of d entries in
a given term’s inverted list. We simulated the publishing process to study how this
parameter affected the average number of stored inverted entries with and without term
stemming. Figure 2 displays the average number of inverted terms (Y-axis) in groups of
50, 250, 500, 1000 and 2000 agents (X-axis). We assumed that every agent published
1 document taken from the movie corpus [15]. In the top graph,we used the Paice
stemming algorithm [14] on each term before storing it. The bottom graph published
each term without stemming. In both graphs we also ran the publishing algorithm with
d=25 and 75.

Several interesting results can be seen from this graph. First, on average stemming
saved approximately 50 words per document. This is because stemming lumps similar
words, reducing the number of unique words occurring per document. Second, note the
publishing algorithm has progressively larger storage savings as the number of nodes
grows. Assumingd=D, all terms will be stored, and no publishing gain will be re-
alized by using the PHIRST approach. However, assumingd is kept fixed, the more
documents that are added, the gap betweend and D grows. This results in progres-
sively more words exceeding thed threshold, and additional entries of these words no



Figure 2: A Comparison of the publishing requirements of full publishing versus publishing limited to
d=75.

longer need to be stored. As a result, the publishing algorithm becomesmore scalable
the more nodes that are added, making full-text search feasible even in very large P2P
databases.

Finally, in this experiment we assumed each node had 1 document to publish. We
also ran this approach with more dense (e.g. 2 documents per node) or more sparse (e.g.
1 document every 2 nodes) network assumptions. As one would expect, the number of
terms each node stores is proportional to the total number ofnodes. For example, Table
2 shows the sparse assumption of 1 document published for every two nodes. These
values are identical to those in Figure 2 multiplied by a factor of 0.5.

We also found a Zipfian distribution of terms with a long tail of infrequent terms
(see Figure 3). Similar distributions have been found in P2Psystems for items such
as file frequency [10, 11] and term frequency [8]. The storagesaving results we found



Table 2: Average number of inverted list entries if 1 document was published for every 2 peers.
Number of Nodes 50 250 500 1000 2000

Fully Published 150.43 151.51 153.13 153.1265 157.8343
d=25 138.84 93.106 72.17 53.97 40.605
d=75 150.43 127.14 105.72 84.38 67.035

were from words with frequencies greater thand, or the terms towards the head of this
distribution.

Figure 3: Distribution of terms by rank order within movie corpus documents.

7.2 Query Experiments

We first conducted query experiments based on artificial queries chosen according to
term frequency. Figure 3 displays the rank order of all wordswithin the 2000 document
corpus (a total of approximately 22000 words) based on the words’ frequencies. We
considered words of high frequency if they appeared in 30% or more of the documents.
There were 200 words in this category. Note that high frequency words are not just
“stop” words like “the”, “and”, or “a”, but can be specific to the corpus. For example,
these words included movie specific terms such as “character”, “play”, and “plot”. At
the other extreme, we defined low frequency words as those appearing 50 times or less
(frequency 2.5% or less). The large majority of terms were within this category due
to the long tail of the term distribution. Finally, we assumed medium frequency words
were those between the above extremes.

We created paired terms (2 terms) of all permutations of these categories. This in-
volved words, both with high frequency (HH), both with low frequency (LL), both



Table 3: A Comparison of the cost levels of SS, US, TTL, and PHIRST methods in LL, LM, LH, MM,
MH, and HH artificial queries. Results for the case whereCU = CS = 1.

SS US TTL=100 PHIRST
LL 1466 2000000 100000 1466
LM 2206 2000000 100000 2142
LH 3177 1987754 100000 2010
MM 20732 1865474 99953 13256
MH 60188 234211 95624 18075
HH 871986 19746 20077 19995

with medium frequency (MM), low high combinations (LH), lowmedium combina-
tions (LM), and medium high combinations (MH). Note that theorder of the words
does not have an impact on the query algorithms since the terms are first sorted by
these algorithms based on their frequency. For example, thelow medium category
(LM) is consequently equivalent to the medium low one (ML).

Next, we generated 1000 artificial queries from each category. We studied how many
results were returned from each of 4 search algorithms. The Structured Search (SS) al-
gorithm published all terms and sent these indices between agents as needed during
queries. The Unstructured Search (US) algorithm used no publishing and used a ran-
dom walk approach to find query results. In the used implementation, a random node
was selected to begin the random walk, and assumed a fully connected graph allow-
ing free passage between nodes. The TTL=100 algorithm used the same unstructured
search, but terminated after visiting 100 agents. Finally,the hybrid PHIRST approach
implemented the publishing and query algorithms describedin this paper. In these
experiments we used a value ofd=75 in the PHIRST method.

Table 3 displays the average number of nodes visited (in the case of unstructured
search) and / or the inverted list entries sent (for structured search) for finding 20
matches from each query (T=20). For simplicity, we assumed that the costs of vis-
iting nodes through unstructured search, and sending inverted list entries are equal, or
CU = CS. As expected, we found that the Structured Search (SS) is themost expensive
method for finding common terms; where the Unstructured Search (US) is the most
effective. Conversely, SS is the most effective in finding rare terms. As one might ex-
pect, the hybrid PHIRST approach operates similarly to SS infinding rare terms (LL)
and US in finding common items (HH). This indicates the success of this approach in
selecting the best search algorithm. Note that in middle categories (for example MH)
this approach incurred significantly lower costs than the SSand US algorithms it is
based upon. PHIRST saves costs by only sending a maximum ofd entries even when
structured search is deemed necessary. Furthermore, this approach switches between



the SS and US methods as needed, saving additional costs. Note that these results do
not include the costs associated with looking up terms’ frequency information. Recall
from section 5 that these costs are bounded bynum query terms*log(N) + 1 where
num query terms is the number of query terms (in this case 2) and N is 2000 (or
log(N) is approximately 11). However, actual Chord implementations have found that
the actual cost is often much lower and is dependant on the actual implementation of
the DHT network [19]. Consequently, we do not include this cost in the results.

We also studied the impact of the number of documents per node(document density)
on these costs. The unstructured search (US) is most affected by the density of the doc-
uments. For example, assuming each agent stores 2 documents, the cost of using this
search algorithm will be half. Conversely, sparse networksmake unstructured search
less appealing. This tradeoff does come to light within the unstructured element of the
Hybrid algorithm 4 in lines 1 and 2. However, unless extreme changes in the document
density occur (e.g. every node contains a large percentage of the documents), differ-
ences in the search costs are so large that this parameter is unlikely to have any impact
on which algorithm should be used in categories such as LL, LM, and LH. The struc-
tured approach is completely unaffected by document density, and thus the Hybrid’s
structured component is uninfluenced as well.

The results in Table 4 display the combined number of query results (recall) re-
turned from each search algorithm with the maximal results set here to 5 (T=5) and
1000 queries. This result underlies the potential strengths and weakness of the PHIRST
method. Despite the lower costs of PHIRST, this approach wasoverall equally effective
in returning the query results. When word combinations werefrequent, the unstructured
search component of the PHIRST method still found the results (thus MH was still suc-
cessful). At the other extreme, assuming the word frequencyof any term was less than
d, at least one term was fully indexed. In these cases, complete recall was also guaran-
teed if structured search was used on the indexed term(s) followed by the unstructured
search to find all remaining terms. In addition, all terms taken from the L category were
in less thand documents (as L values had 50 or fewer instances whiled=75), resulting
in full recall for all of these categories (LL, LM, and LH). Aspredicted in Section 5, the
query algorithms did experience minor difficulties in finding series of terms of medium
frequency. Note that the PHIRST method did return slightly fewer results in the MM
cases (870 versus 874).

We found that this limitation was negligible in answering real world queries onced
was significantly higher than T. To verify this finding we usedthe 1000 most popular
real movie keywords taken from the Internet Movie Database1 retrieved on October

1(http://www.imdb.com/Search/keywords)



Table 4: A Comparison of the combined recall levels of SS, US,TTL, and PHIRST methods in 1000 LL,
LM, LH, MM, MH, and HH artificial queries.

SS US TTL=100 PHIRST
LL 3 3 0 3
LM 68 68 2 68
LH 1167 1167 47 1167
MM 874 874 93 870
MH 4626 4626 1180 4626
HH 5000 5000 4997 5000

Table 5: A Comparison of the combined recall levels of SS, US,TTL, and PHIRST methods with
reference to different numbers of results (T) and 1000 queries.

SS US TTL=100 PHIRST
T=5 4592 4592 2138 4587
T=20 15598 15598 3712 15252
T=50 30347 30347 4534 28154

T=2000 105649 105649 5254 35087

25, 2006. These queries were typically between 1 and 4 words (mean 1.94).
Table 5 shows a comparison of the number of results found fromthese queries with

the SS, US, and TTL=100 methods, and the PHIRST method with d=75 and variable
values for T. The results from the SS and US algorithms represent baseline algorithms
that found the maximal number of results (100% recall) for the 1000 queries. For exam-
ple, with T=5, a total of 4592 combined hits were found given these queries. Both the
TTL=100 and PHIRST algorithms did not guarantee 100% recall, albeit with markedly
lower search costs. Note that the PHIRST algorithm found nearly all results (99.89%
of the results found by the complete US and SS algorithms) when only 5 results were
requested (T=5). PHIRST held up fairly well even when 20 matches (T=20) were re-
quired with 97.78% of all matches found. The recall of the PHIRST approach dropped
with T (92.77% at T=50, and only 33.23% at T=D). This confirms the claim that in
real queries the recall of the PHIRST approach would be nearly 100% for T << d (e.g.,
T=5), but would perform poorly once T>> d (e.g., T=D). In comparison, the TTL=100
algorithm performed much worse, even in the case of T=5 with only 2138 total results
found.

Table 6 displays the search costs for executing these real queries within the 4 algo-
rithms described in this paper assumingCS = CU = 1, and each agent stores only one
document. We again found that the PHIRST approach had significantly lower search
costs than all three of the other approaches. Again, observethat the advantage of the
PHIRST approach was most evident when d>>T. If T=5, the PHIRST approach in-



Table 6: A Comparison of the cost levels of SS, US, TTL, and PHIRST methods with reference to
different numbers of results (T).

SS US TTL=100 PHIRST
T=5 57680 591841 86578 12006
T=20 68696 1181515 97735 24976
T=50 83435 1567039 99269 38744

T=2000 158737 2000000 100000 68610

Table 7: A Comparison of the impact of redundant nodes on the publishing load, query results, and search
cost within the Hybrid method with d=75 and T=20 when node failure results in search termination.

Replicated Nodes (k) Publishing Load Query Results Search Costs
1 134.07 6756 6015
5 670.35 14692 24308

15 2011.05 15272 24919

curred a cost of nearly 1/5 the cost of the next best method (SS) (with a high recall of
99.89%). If T=20, its cost, nevertheless, was nearly 1/3 that of thenext best method
(SS) (still with a high recall of 97.78%). If T=D, the cost advantage of the PHIRST ap-
proach was under 1/2 of the next best method (TTL=100) (the recall was only 33.23%).

7.3 Churn Experiments

Recall that the PHIRST approach to handling churn requires that k copies of each in-
verted list must be stored. We conducted experiments studying the relationship between
the value of k, the system’s publishing requirements in creating these k copies, and the
search costs related to executing queries. The goal was to achieve at least 95 percent of
the query results when confronted with churn compared to theresults achieved when
no churn existed while minimizing publishing and search costs.

We simulated conditions with k set at 1, 5, and 15 and studied their impact on
the publishing storage and query results of the Hybrid algorithm and setd=75 for the
publishing algorithm. We revisited the real-world queriesfrom the previous dataset,
again assumed 2000 nodes published a total of 2000 documents, and studied the case
where the goal was to return 20 matches (T), and a scenario with a very high churn rate
of 0.5. To simulate churn, we created random snapshots of thesimulator where half of
the nodes were chosen at random to have failed with uniform distribution. In the first
set of experiments we assumed that when the entire set of k nodes were “down” the
query would fail. The results from this experiment are presented in Table 7.

As these results indicate, there is a clear tradeoff betweenhaving additional nodes
within k, their storage requirements, and the query results. Setting k=1 had the lowest



Table 8: A Comparison of the impact of redundant nodes on publishing load, query results, and search
costs of the Hybrid method where d=75 and T=20 when node failure results in an unstructured search.

Replicated Nodes (k) Publishing Load Query Results Search Costs
1 134.07 15428 566477
5 670.35 15259 59994

15 2011.05 15277 35544

publishing load, but also meant that each term had no replicated copies. Note that this
value of 134.07 is identical to the result found in the top portion of Figure 2 for the
data point where the Number of Nodes is 2000. Keeping additional copies of inverted
term data increased the published load per node proportionately. As a result, one could
publish one redundant dataset (k=2) in PHIRST and still incur a cheaper publishing
cost than naively publishing all terms (PHIRST k=2 encountered a publishing load cost
of 268.14 compared to the naive publishing load of 315.67 seen in Figure 2). While
setting k=15 resulted in the highest average published load, it allowed the algorithm to
find all possible results (see query results in Table 7). In this experiment, we assumed
a query would fail if a structured search was desired, but thenode with the inverted
list(s) had failed. As a result, note that the numbers in the third column (search costs in
Table 7) increase as k increases. In the case of k=1, the search failed many times, thus
resulting in significantly lower search costs in conjunction with the lower query results.
As predicted mathematically (see end of Section 6), settingk=5 results in an effective
tradeoff between achieving over 95% recall from the inverted lists (96% of the results
from k=15) while still keeping the publishing load relatively low (1/3 of the publishing
load of k=15).

Next, we repeated the above experiment, but assumed that an unstructured search
would be used if the node with the inverted list failed. Theseresults are presented in
Table 8. Note that the publishing costs (column 2 in Table 8) are identical to those
depicted in Table 7. However, as opposed to the results in Table 8, here the query
results remained fairly constant. Nonetheless, note that in this experiment the search
cost for k=15 was the lowest since the entire k set of nodes never failed, and thus ran-
dom search was never used. Conversely, setting k=1 resultedin often using the random
search, which here caused the highest search cost. Also, small fluctuations existed in
the query results, with performance slightly decreasing ask increased. First, as each ex-
periment randomly decided which nodes should fail, slight differences existed between
trials. Additionally, when a node’s inverted list was unavailable, as often occurred when
k=1, a full unstructured search was used. Despite the high search costs, this approach
did infrequently find results that the PHIRST hybrid approach would have missed as



structured search had been desired, but not enough entries had been indexed to return
the full 20 results. Referring back to row 2 of Table 5 (results of T=20) we see that the
full structured search (SS) found 15598 matches in the equivalent experiment without
churn, as opposed to 15252 found by PHIRST. However, note that these differences
represent less than 1% of the highest query result value (when k=1). Finally, here
k=5 again provided a good tradeoff between publishing costs, query results, and search
costs.

Based on these results we concluded that the PHIRST approachwas successful in
reducing the publishing load, even in systems with a very high churn rate.

8 Conclusions

In this work we have presented PHIRST, the first system capable of executing distrib-
uted P2P full-text search. PHIRST contains novel publishing algorithms that ensure
that no agent will be required to store more thand entries in its inverted list of a given
term. This allows PHIRST’s publishing algorithms to partially index all words in the
corpus and still keep the storage costs allocated equitably. More importantly, this ap-
proach also makes PHIRST highly scalable since the average amount of the inverted file
information actually decreases as the number of agents and documents in the system
increases. We have also presented query algorithms that select the best search approach
based on global frequencies of all words in the corpus. Thesealgorithms allow PHIRST
to choose the best method based on estimated costs. PHIRST uses unstructured search
to effectively compensate for the lack of inverted lists of terms published and struc-
tured search to locate rare terms. Finally, we have shown that PHIRST can handle
issues related to both scheduled and unscheduled node failures.
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