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Abstract

In this paper we describe how the productivity of homo-
geneous robots scales with group size. Economists found
that the addition of workers into a group results in their con-
tributing progressively less productivity; a concept called
the Law of Marginal Returns. We study groups that differ
in their coordination algorithms, and note that they dis-
play marginal returns only until a certain group size. After
this point the groups’ productivity drops with the addition of
robots. However, the group size where this phenomenon oc-
curs varies between groups. To determine the cause for the
differences between coordination algorithms, we define a
measure of interference that enables comparison, and find a
high negative correlation between interference and produc-
tivity. Effective coordination algorithms maintain marginal
productivity over larger groups by reducing the team’s in-
terference levels. Using this result we are able to examine
the productivity of robotic groups in several simulated do-
mains in thousands of trials. We find that groups in the-
ory always produce marginally, but that spatial limitations
within domains cause robots to deviate from this ideal.

1. Introduction

Teams of robots are likely to accomplish certain tasks
more quickly and effectively than single robots [6, 11, 9].
To date, only limited work has been performed on studying
how performance scales with the addition of robots to such
groups. Should one expect linear, exponential, or decreas-
ing changes in productivity as the group size grows? Previ-
ous work by Rybski et al. [11] demonstrated that groups of
identical robots do at times demonstrate marginal returns.
As such, their productivity curves resembled logarithmic
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functions; the first several robots within their group added
the most productivity per robot and each additional robot
added successively less. In contrast, Fontan and Matarić
[13] found that robotic groups operating within a similar do-
main contained a certain group size, a point they call ”crit-
ical mass”, after which the net productivity of the group
dropped. Similarly, Vaughan et al. [15] wrote that the rule of
”too many cooks” applies to their groups and adding robots
decreases performance after a certain group size.

Economists have studied the gains in productivity within
groups. According to their Law of Marginal Returns, if
one factor of production is increased while the others re-
main constant, the overall returns will relatively decrease
after a certain point [4]. As the size of the group becomes
larger, the added productivity by each successive worker is
likely to become negligible, but never negative. This clas-
sical model contains no reference to a concept similar to a
”critical mass” group size after which the added worker de-
creases the total productivity of the group.

Our research goal is to understand when the marginal re-
turns predicted by the economic model would be consis-
tently realized as work by [11] found they were, and when
adding robots would decrease performance as [13] and [15]
described. Towards this goal, we first analyze several ex-
isting group coordination algorithms and empirically ob-
serve the different groups’ productivity with the addition
of robots. We observe that the different coordination tech-
niques affect the productivity graphs of these groups during
scale up. To determine the cause for the differences between
coordination algorithms, we define a measure of interfer-
ence that facilitates comparison, and find a high negative
correlation between group interference and productivity. Ef-
fective coordination algorithms maintain marginal produc-
tivity over larger groups by reducing interference levels. Us-
ing this result we are able to examine robotic group produc-
tivity in several simulated domains in thousands of trials.
We find that groups in theory always produce marginally,
but that competition over space causes robots to deviate
from this ideal.



2. Comparing Group Coordination Methods

The Law of Marginal Returns, also often called the Law
of Diminishing Returns, is well entrenched as a central the-
ory within economics. Most economic domains have spa-
tial limitations and other finite production resources. These
limiting factors cause the groups’ performance to typically
increase marginally with the addition of labor. Brue [4]
demonstrated that economists from the Enlightenment Pe-
riod until modern times often did not provide empirical
evidence for their theories. He concluded, ”more empiri-
cal investigation is needed on whether this law is opera-
tional” within new domains, and ”conjectures by 19th cen-
tury economists about input and outputs ... simply won’t
do!” The first goal of this paper was to provide this ro-
bust study for robotic groups. We wished to ascertain when
adding homogeneous robots will hurt group performance as
[13] and [15] predict they will after a certain team size, and
when adding robots continuously adds to the team’s perfor-
mance.

2.1. Studying Group Coordination Techniques

We began with studying the task of robotic foraging. The
previously mentioned works by [11, 13, 15] all performed
their research within this domain. The foraging domain has
been extensively studied, and is formally defined in [7] as
consisting of locating target items from a search region S,
and delivering them to a goal region G. There are many ap-
plications for this domain such as waste cleanup and plane-
tary exploration.

Previous work by Fontan and Matarić [13] noted that
proper coordination lies at the root of effective group be-
havior. As a result, we implemented several existing group
coordination algorithms on homogeneous robots without
communication. We then proceeded to study how groups of
these robots behave during size scale up. Our Noise group
uses a method of mutual repelling away from obstacles such
as opposing robots. This method is described by [1] and
uses a repulsion schema any time a robot projects it is in
danger of colliding. It additionally adds a noise element into
its direction vector to prevent becoming stuck at a local min-
ima. The Aggression group developed by [15] is meant to
resolve possible collisions by pushing its teammate(s) out
of the way. They posit that possible collisions can best be
resolved by having the robots compete and having only one
robot gain access to the resource in question. A third ap-
proach, given by [10], is to have the robots spread out over
their operating domain by using a dynamic Bucket Brigade
mechanism. In this method, a robot drops the item it is car-
rying when it detects another robot nearby. In theory, the
next closest robot should retrieve the recently dropped ob-
ject and carry it closer to the goal.

We added three more coordination methods. Our Gothru
group was allowed to ignore all obstacles, and as such spent
no time engaged in coordination behaviors. This ”robot”
could only exist in simulation as it simply passes through
obstacles such as other robots. However, this group was still
not allowed to exit the boundaries of the field. We used this
group to benchmark ideal performance without productivity
lost because of teammates. At the other extreme, our Stuck
group also contained no coordination behaviors but simu-
lated a real robot. As such, this group was likely to become
stuck when another robot blocked its path. Like the Stuck
group, our Timeout group contained no repulsion vector to
prevent collisions. However, these robots did add noise to
the direction vector after a certain threshold had been ex-
ceeded where their position did not significantly move.

2.2. Initial Experiment Setup

We used a well tested robotic simulator, Teambots [3], to
collect data. We strongly preferred using a simulator as it al-
lowed us the ability to perform thousands of trials of vari-
ous team sizes and compositions. The sheer volume of this
data allowed us to make statistical conclusions that would
be hard to duplicate with manually setup trials of physical
robots. Using a simulator even allows us to research be-
haviors, such as Gothru’s, that cannot exist with physical
robots.

In this experiment, Teambots [3] simulated the activity
of groups of Nomad N150 robots. The field measured ap-
proximately 5 by 5 meters. Our implementation of foraging
followed Balch’s [2] multi-foraging task in which the robots
attempt to retrieve two or more types of objects. There were
a total of 40 such target pucks, 20 of which where station-
ary within the search area, and 20 moved randomly. Each
trial measured how many pucks were delivered by groups
of 1 – 30 robots within 9 minutes. For statistical signifi-
cance, we averaged the results of 100 trials with the robots
being placed at random initial positions for each run. Thus,
this experiment simulated a total of 24,000 trials of 9 minute
intervals.

The simulated robots we studied were based on the
same behaviors. The only software differences between the
robots lay within their implementation of the previously de-
scribed teamwork coordination behaviors. Each robot had
three common behaviors: wander, acquire, and deliver. In
the wander phase, the robots originated from a random ini-
tial position, and proceeded in a random walk until they de-
tected a resource targeted for collection. This triggered the
acquire behavior. While performing this second behavior,
the robots prepared to collect the puck by slowing down
and opening up their grippers to take the item. Assuming
they successfully took hold of the object, the deliver behav-
ior was triggered. At times the puck moved, or was moved



by another robot, before the robot was able to take it. Once
this target resource moved out of sensor range, the robot re-
verted once again to the wander behavior. The deliver be-
havior consisted of taking the target resource to the goal lo-
cation which was in the center of the field.

We implemented a total of eight coordination methods.
Our previously described Noise team was the default team
included in the Teambots distribution [3]. Our Stuck and
Gothru groups both removed all coordination behaviors
but one group was blocked by teammates, while the other
passed through. The Bucket Brigade coordination behav-
ior was initiated once a robot detected a teammate within
2 radii. Then, these robots would drop the target being car-
ried, move backwards for 25 cycles, and finally revert to the
random walk behavior. The Aggression group was based on
the random function of aggressive behaviors described in
Vaughan et al. [15]. For every cycle a robot found them-
selves within 2 radii of a teammate, it selected either an ag-
gressive or timid behavior. In order to decide, we had each
robot choose a random number between 1 and 100. If the
random number was lower than fifty, it became timid and
back away for 100 cycles. Otherwise it proceeded forward,
mimicking the aggressive behavior. As all robots within two
radii choose whether to continue being aggressive every cy-
cle, one or both of the robots assumed the timid behavior be-
fore a collision occurred. Similar to the Aggression group,
our Repel Fix group backtracked for 100 cycles but mutu-
ally repelled like the Noise group. Our Repel Rand group
moved backwards for a random interval uniform over 1 –
200 and also mutually repelled. Our Timeout group moved
with a random walk for 150 cycles once these robots did
not significantly move for 100 cycles. If the timeout thresh-
old was set too low, the robot may consider itself inactive
while approaching a target or its home base. However, if this
value was set too high, it did not successfully resolve pos-
sible collisions in a timely fashion. We experimented with
various values until we found that this combination seemed
to work well.

2.3. Initial Results

Figure 1 graphically represents the results from this ex-
periment. Our X-axis represents the various group sizes
ranging from 1 to 30 robots. The Y-axis depicts the cor-
responding average number of pucks the group collected.

According to the economic Law of Marginal Returns,
marginal returns will be achieved when one or more items
of production are held in fixed supply while the quantity
of homogeneous labor increases. In this domain, the fixed
number of pucks acted as this limiting factor of produc-
tion. Consequently, one would expect to find production
graphs consistent with marginal returns. However, only the

Figure 1. Initial Foraging Results

Gothru group demonstrated this quality over the full range
of group sizes. All other groups contained a critical point
(CP1) where maximal productivity was reached. After the
group size exceeded this point, productivity often dropped
precipitously. Eventually, the groups reached a level (CP2)
where the addition of more robots ceased to significantly
negatively effect the groups’ performance.

With the exception of the Aggression, Repel Fix, and Re-
pel Rand groups, all groups’ productivity graphs differed
significantly. For example, the Stuck group reached its CP1
point with an average of only 20.94 pucks collected with
groups of 3 robots. The Aggression group reached a maxi-
mum of 30.84 pucks collected in groups of 13 robots. Even
among equally sized groups, the differences were large.
When comparing foraging groups of 10 robots, the Stuck
group gathered only 8.58 pucks - far fewer than Gothru’s
35.62 pucks, while the Aggression group collected 30.52
pucks, only 5.2 fewer than Gothru.

Our resulting research was motivated by these results.
The Gothru group was the only group capable of realiz-
ing marginal gains throughout the entire range of 30 robots.
However, many groups demonstrated the positive quality of
maintaining increasing productivity over a larger range of
robots. For example, the Noise group only kept marginal
gains until groups of seven robots, while the aggressive
group kept this quality until groups of 13 robots. We also
found that the positive qualities of improved performance
and maintaining marginal performance over larger groups
are not always synonymous. The Noise group kept posi-
tive marginal performance over a smaller range than the Ag-
gression group, yet performed better in groups sized seven
or less. A closer look at the various coordination models
was needed to draw lessons about how to create groups with
both properties.



3. Why does Performance Drop?

We needed a mechanism for understanding why certain
coordination mechanisms were more effective than others.
We posited that differences among robotic groups were of-
ten sparked from clashes in spatial constraints. Specific to
foraging, conflicts arose over which robot in the group had
the right to go to the home base first. As the group size
grew, this problem became more common. This caused the
groups to deviate from the ideal marginal productivity, de-
picted by the Gothru group, by greater amounts. The length
of time robots clashed with their teammates because of joint
resources, such as the home base location, served as the ba-
sis in comparing coordination models within any domain.

Previous work by Goldberg and Matarić [6] found a con-
nection between the level of interference a group demon-
strated and its corresponding performance. They defined in-
terference as the length of time robots collide, and we be-
gan by using this definition to equate between our coordi-
nation algorithms. This measure sufficed for some robots,
such as those simulated by the Stuck group, because they
did not engage in any other coordination behaviors. How-
ever, this metric of interference could not explain the dif-
ferences between all groups. Many robots, such as those
simulated by the Aggression group, never collided. If one
takes the position that only collisions constitute interference
within robotic groups, these robots do not interfere. Yet
we clearly observed how the addition of robots detracted
from the groups’ productivity after its maximal productiv-
ity point.

In this section we present our measure of interference.
We describe scale up experiments in foraging and search
domains that are characterized by resources that lend them-
selves to group conflicts. We find that interference and
productivity are strongly negatively correlated in such do-
mains, and use this metric to explain differences in produc-
tivity between all teams. We posit that in the absence of
spatial conflicts, all teams should consistently demonstrate
marginal gains during scale up. We confirm this idea by eas-
ing the ”space crunch” in our domains and notice how all
groups consistently demonstrate marginal returns. We con-
clude that any domain with group spatial conflicts will suf-
fer from deviations in marginal performance once interfer-
ence cannot be resolved.

3.1. Interference: Measure of Coordination

We define interference as the length of time an agent
is involved with, either physically or computationally, pro-
jected collisions, real or imaginary, from other robots and
obstacles. This period of involvement often extends well
beyond the actual collision between two robots. Any time
spent before a supposed collision in replanning and avoid-

ance activities must also be recorded. Similarly, all post-
collision resolution activity must be included as well. Thus,
according to our definition, the Gothru group has zero inter-
ference because it never engages in any interference resolu-
tion behaviors and represents idealized group performance.
The Aggression group engages in interference resolution
behaviors before a collision ever happens. Its various timid
and aggressive behaviors to avoid collisions all constitute
interference by our definition. The Bucket Brigade group
demonstrates that interference can exist after a collision is
prevented. For this group, one needs to measure the pro-
ductivity lost by handing off the resource from one robot
to the next. Many times this group lost productivity during
this process because the second robot never properly took
the dropped target. Only this measure takes into the account
the total interference resolution process.

According to our hypothesis, we expected to see a neg-
ative correlation between levels of interference and produc-
tivity in three respects. We reasoned that the degree to which
a group deviates from the idealized marginal gains is pro-
portional to the amount of average interference within the
group. This can impact where the group hits maximal per-
formance. Those groups which reached CP1 with a small
number of robots spiked high levels of interference much
faster than those where this point was delayed. Second, even
before groups hit their maximum productivity point, we hy-
pothesized that the more productive groups have lower lev-
els of interference than their peers. Finally, we expected that
differences in where the productivity of the groups eventu-
ally plateau can be attributed to the group’s saturation level
of interference. Those robots that more effectively deal with
interference even in large groups will have CP2 values at
higher levels.

In order to confirm this hypothesis, we reran our eight
foraging groups and logged their interference levels accord-
ing to our definition. The Gothru group never registered any
interference. For all remaining groups, we used the sim-
ulator to measure the number of cycles the robots in the
groups collided. For all groups other than the Stuck and
Gothru groups, we additionally measured the number of cy-
cles the robots triggered interference resolution behaviors
when they were not colliding. In the Noise and repulsion
groups, this represented the number of cycles spent in re-
pelling activities. In the Aggression group, it was the num-
ber of cycles spent in timid and aggressive behaviors. In
the Timeout group, this was the cycles spent trying to re-
solve a collision once the robot timed out. In the Bucket
Brigade group, internal behaviors alone did not suffice to
measure interference by our definition. We only recorded
cycles spent when the robots came close to another and con-
sequently dropped the resource they were carrying. How-
ever, we could not measure the time lost when the second
robot did not effectively take that resource as we did not



have omnipotent knowledge of such events. As a result, our
measurement for interference for this group did not nec-
essarily represent an exact measurement, but an underes-
timate.

Figure 2 represents the result from this trial. The X-axis
once again represents the group size, and the Y-axis repre-
sents the average number of interference cycles that each
robot within the group registered over the 100 trials.

Figure 2. Foraging Interference

We found that CP1 typically occurred for all groups
when the average interference level within each robot of
the group reached a level between 2500 and 3000 cycles.
The longer the group was able to maintain classically di-
minishing returns, the more cycles of interference were
needed to cause the critical point. This is because CP1
will only be reached once the productivity lost due to in-
terference is larger than the total marginal productivity of
the group. Before this point, the total production of the
group increases, albeit marginally. For example, the Stuck
group, which reached its critical point with only four robots,
needed closer to only 2500 cycles to cause this critical point.
The Aggression group hit CP1 with 13 robots, and conse-
quently needed closer to 3000 cycles to counter the produc-
tivity of more robots.

Even when viewing the differences between productivity
among equally sized groups, interference differences were
significant. We found a very strong average negative cor-
relation of -0.94 between the differences in groups’ perfor-
mance and their interference level over the entire range of 1
to 30 robots. For example, the Noise group most closely fol-
lowed the idealized Gothru productivity graph for groups up
until 7 robots, and registered significantly less interference
than the other groups. This interference resolution mech-
anism had little overhead, and needed fewer cycles to re-
solve a possible collision. However, this method didn’t scale
well beyond this point. When the group size became larger

than seven, its interference levels grew exponentially and
the group’s performance quickly decayed. In contrast, the
Aggression and other repelling groups had significant levels
of interference from the onset, but interference levels only
grew linearly with respect to the group size. As a result, this
group proved more effective with larger group sizes.

We also found that the eventual performance plateau
(CP2) was strongly correlated with interference. Some
groups levelled off at significantly smaller interfer-
ence levels than other groups. For example, even in group
sizes above 20 robots, the Bucket Brigade group regis-
tered an average interference level of 400 fewer cycles less
than the Stuck group. Consequently, it collected on aver-
age over 5 pucks more than this group at this level.

As one would expect, most groups performed equally
well with one robot, as coordination behaviors should only
be triggered in groups of two robots or more. The one ex-
ception was the Timeout group which collected on average
8.7 pucks with one robot, or about 2 pucks fewer than the
other groups. As we defined interference as the time spend
on resolving collisions, or even perceived collisions, such
a result is quite plausible. At times these robots timed out
while slowing down to pick up a puck or avoid an obsta-
cle even by themselves. As we defined such internal rea-
soning as interference, these robots interfered with them-
selves in the amount of about 1000 average cycles per trial.

Two of our groups have slight underestimates for inter-
ference; however, this did not change our overall results.
As previously mentioned, the Bucket Brigade group inter-
fered if a second robot did not successfully receive the re-
source handed off to it. We found that this did occur at times
when there were relatively small groups of these robots.
Thus, the correlation between their productivity and that
of other groups’ among groups of 2–6 robots dropped to
-0.80. By discounting this range, the average overall cor-
relation reached almost -0.97. However, after 6 robots we
found that there were enough robots in the area to en-
sure a second robot would quickly take the resource, and
the amount of this underestimate was less significant. The
Noise group also registered an underestimate for interfer-
ence. These robots actually used two repulsion fields for
collision resolution. They triggered a strong repulsion field
when they sensed another robot or obstacle 0.1 meters away.
We only measured the number of times this repulsion field
was triggered. However, a second, much weaker repulsion
field was triggered from 1.5 meters away. In this instance,
our underestimate did not seem to significantly statistically
detract from our results. With or without the data from this
group, the average correlation between groups was -0.94.



3.2. Competing over Spatial Resources

We proceeded to study if our results were limited to for-
aging or were a general phenomenon seen when robotic
groups are faced with restriction production resources. We
created a new spatially limited search domain where the
task goal was to find the exit out of the room as quickly
as possible. We placed groups of robots within a room of
1.5 by 1.5 meters with one exit 0.6 meters wide. We rea-
soned a critical productivity point would once again form
in this domain. Too few robots would result in a long search
time until the exit was found. However, too many robots
would cause interference as the exit was only physically
wide enough for one robot.

We ran simulated trials of seven of our eight foraging
groups ranging in sizes from 1 - 23 robots (the room holds
23 robots) and averaged the results from 100 trials for sta-
tistical significance. We omitted the Bucket Brigade group
as this coordination method was not relevant to this domain.
We then measured the length of time it took the first robot
from each group to completely exit the room. We ended the
trial at that point and recorded the time elapsed. Thus, this
experiment constitutes over 16,000 trials of variable length.

Figure 3 presents our productivity graphs and corre-
sponding interference levels from this experiment. The X-
axis in both graphs depict the size of our groups. In the up-
per section, we flipped the Y-axis to represent the search
time of zero as the highest point. As in our foraging graphs,
we represent better performance as higher values in this
graph. In the lower graph the Y-axis represents our aver-
age measurement of interference per robot in the group.

We found that the time to complete the search task was
strongly negatively correlated in our new domain as well.
We observed that with the exception of the Gothru group,
all groups ceased to demonstrate marginal returns at some
point. In the Repel Fix group this point occurred with only
5 robots, while the Timeout group reached this point with
14. The Noise group had the lowest level of interference
through groups of 16 robots, and was able to most closely
approximate Gothru’s performance until this group size. Af-
ter this point the Timeout group fared the best. We found
that certain interference resolution mechanisms work best
in specific domains. While the repulsion methods were quite
effective in foraging, the interference levels in these groups
grew exponentially in this domain. Overall, the average sta-
tistical correlation for groups of 1-23 robots between the
time elapsed to exit the room and their corresponding inter-
ference level was -0.94.

3.3. Easing Spatial Restrictions

According to our hypothesis, deviations of productiv-
ity in robot groups are strongly correlated with interfer-

Figure 3. Search Time and Interference

ence. Once our foraging and search groups ceased to suc-
cessfully resolve inference they realized their critical group
sizes. Adding further robots only hurt the groups’ perfor-
mance. We posit that the physical space limitations exis-
tent within many robotic groups often cause this interfer-
ence. The one home base area within the foraging domain
and the one exit within the search domain create a competi-
tion over space between robots that cannot always be prop-
erly resolved.

We were able to confirm that our robotic groups always
demonstrated marginal returns once restrictions over phys-
ical space were eased. We changed the foraging group re-
quirement of returning the pucks to one centralized home
base location. Instead, they were allowed to consider the
pucks to be in the home base immediately. With the excep-
tion of the Bucket Brigade group, we reused all 8 previ-
ously studied foraging groups. Once again, we omitted this
method because it was not applicable to our new domain.
We left all other environmental factors such as the num-
ber of trials, the size and shape of the field and the targets to
be delivered identical. Thus, Teambots [3] simulated 21,000
trials of 9 minute intervals in this experiment.

As figure 4 shows, all groups did indeed always achieve
marginal returns in the modified foraging domain. While
Gothru still performed the best, the differences between it
and other groups’ coordination methods were not as pro-



nounced. The level of interference all groups demonstrated
was also minimal, and thus not displayed. We concluded
that not every foraging domain needed to have a critical
point for productivity where marginal gains during scale up
ceased.

Figure 4. Modified Foraging Domain

Within the search domain, we hypothesized that limita-
tions in the room size and width of the exits created the
large amounts of interference during scale up. In order to
ease this restriction, we doubled the size of the room to be-
come approximately 3 by 3 meters, and widened the exit to
allow free passage out of the room by more than one robot.
Once again, we measured the time elapsed (in seconds) un-
til the first robot left the room and averaged 100 trials for
each point. This experiment also constituted over 16,000 tri-
als of varying lengths. Figure 5 graphically shows that our
modified domain consistently realized marginal increases in
faster search times with respect to group size. Once again,
interference levels were also negligible in our new domain.
Thus, we concluded that achieving marginal productivity
gains was always possible once competition over spatial re-
sources was removed.

4. Related Work

Many algorithms have been developed to assist in robotic
group coordination. We studied the methods of Arkin and
Balch [1], Vaughan et al. [15], and Ostergaard et al. [10]
that can be implemented on homogeneous robots. All of
these methods resolve spatial conflicts without foreknowl-
edge of the operating domain and do not have any need for
communication. Other algorithms exist that require advance
knowledge of the physical details of the operating domain.
Examples of these algorithms include the territorial alloca-
tion method developed by Fontan and Matarić [13] and the
territorial arbitration scheme in Goldberg and Matarić [6].
Both methods limit each foraging robot to a specific area or
zone and thus prevent collisions. Jäger and Nebel [9] pre-

Figure 5. Modified Search Domain

sented an algorithm that can dynamically create these areas
in a vacuuming domain, but require the robots to commu-
nicate locally. Another group of algorithms preassign val-
ues so that certain robots inherently have a greater priority
to resources than others. This group of coordination meth-
ods is similar to the Aggression method we studied, but it
preassigns robots to be aggressive or meek. The fixed hier-
archy system within Vaughan et al. [15] and the caste ar-
bitration algorithm within Goldberg and Matarić [6] imple-
mented variations of this idea on foraging robots.

To date, only limited work exists on improving robot
scalability. The work by Fontan and Matarić [13] found that
groups of 3 robots performed best within their foraging do-
main. Adding more robots only hurt performance when us-
ing their territorial coordination method. Jäger and Nebel
[8] presented a collision avoidance technique for use in
trajectory planning among robot groups that requires local
communication. They noted that their coordination method
will not scale beyond groups of 4 robots. Rybski et al. [11]
found marginally increasing productivity up to groups of 5
foraging robots, but did not study larger sizes. Our use of in-
terference to contrast coordination methods during scale up
is based on Goldberg and Matarić [6], but their definition of
interference as collisions did not suffice in our study.

Within the general agent community, Shehory et al.
[14] presented a scalable algorithm for a package deliv-
ery domain suitable for groups of thousands of agents. He
based his algorithm on concepts borrowed from physics.
Later work by Sander et al. [12] studied how computa-
tional geometry techniques could be applied to groups in the
same domain. Both found that group productivity did scale
marginally with the addition of agents and that a point ex-
isted where adding agents did not significantly improve the
productivity of their system. Their agents did not compete
over physical space, and they never found that adding agents
hurt group performance. Specific to the search domain,
work by [5] studied the scalability qualities of their PHA*



algorithm, and found that their algorithm yields marginally
better results with the addition of agents. Their agents also
never impeded the proper functioning of their teammates,
and thus search performance times always improved dur-
ing scale up.

We demonstrated in our paper that the spatial restrictions
within robotic domains often prevented marginal gains from
being realized as group sizes grew. The corollary of this hy-
pothesis is that marginal returns will always be achieved in
domains that do not clash over resources. It is not surpris-
ing that groups of agents should therefore always realize
marginal returns during scale up once group interference is-
sues have be resolved or are not applicable.

5. Conclusion and Future Work

In this paper we presented a comprehensive study on the
productivity of robotic groups during scale up. As the size
of robotic groups grew, effective coordination methods were
critical towards achieving optimal or near optimal team pro-
ductivity. The limited space inherent in many environments,
such as the foraging and search domains we studied, make
this task difficult. Using our novel, non-domain specific def-
inition of interference, we were able to equate between the
effectiveness of various existing coordination algorithms.
Our interference metric measured the total time these robots
dealt with resolving team conflicts and found a strong neg-
ative correlation between this metric and the corresponding
productivity of that group. Groups demonstrated marginal
gains only when their interference level was low. If the new
robot added too much interference into the system, it de-
tracted from the group’s productivity and marginal produc-
tivity gains would cease.

Many robotic domains also contain the limited space and
production resources that our foraging and search domains
exemplify. We predict robotic groups involved with plan-
etary exploration, waste cleanup, area coverage in vacu-
uming, and planning collision-free trajectories in restricted
spaces will all benefit from use of our interference metric.
We plan to implement teams of real robots in these and other
domains in the future.

This paper limited its study to homogeneous robots with-
out communication. Additionally, we did not study coordi-
nation methods which require pre-knowledge of their do-
main or algorithms that use other forms of preprocessing.
We leave the study of how to widen our metric to allow
contrasting robots with differing capabilities such as com-
munication, foreknowledge of domains, and preprocessing
requirements for future work. This paper demonstrates how
the best coordination method can be observed by compar-
ing different interference levels. We also plan to expand our
work to dynamically select the best coordination method
in any high interference domain. By creating robotic teams

that adjust to the triggers of interference, we believe it will
be possible to improve the performance of these groups.
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