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1. Introduction

To date, only limited work has been performed on study-
ing how performance scales with the addition of robots to
groups. Our work focuses on studying this issue within
one domain, robotic foraging. Foraging has been exten-
sively studied, and is formally defined as consisting of lo-
cating target items from a search region S, and delivering
them to a goal region G [4]. Previous work by Rybski et
al. [6] demonstrated that groups of foraging robots do at
times demonstrate marginal returns. As such, their produc-
tivity curves resembled logarithmic functions; the first sev-
eral robots within their group added the most productivity
per robot and each additional robot added successively less.
In contrast, Fontan and Matarić’s [7] foraging robots con-
tained a certain group size, a point they call ”critical mass”,
after which the net productivity of the group dropped. Sim-
ilarly, Vaughan et al. [8] wrote that the rule of ”too many
cooks” applies to their groups and adding robots decreases
performance after a certain group size.

Economists have studied the gains in productivity within
groups. According to their Law of Marginal Returns, if one
factor of production is increased while the others remain
constant, the overall returns will relatively decrease after a
certain point. This model contains no reference to a con-
cept similar to a ”critical mass” group size after which the
added worker decreases the total productivity of the group.
Our research goal is to understand when the marginal re-
turns predicted by the economic model would be consis-
tently realized as work by [6] found they were, and when
adding robots would decrease performance as [7] and [8]
described.

2. Comparing Group Coordination Methods

We compared several existing coordination algorithms
developed for the foraging domain including the concepts
of Aggression [8], a dynamic Bucket Brigade [5], and the
use of a repulsion schema mechanism (Noise group) [1].

Our Gothru group represents idealized group behavior with-
out any possibility for interference and can only exist in
simulation. These robots were never affected by obstacles,
and were allowed to simply pass through teammates. At
the other extreme, our Stuck group also contained no co-
ordination behaviors but simulated a real robot. As such,
this group was likely to become stuck when another robot
blocked its path. Repel Fix resolved collisions by moving
away from a teammate for a fixed period of time of 100 cy-
cles. Our Repel Rand group moved backwards for a random
interval uniform over 1 – 200. The Timeout method only re-
acted once a robot detected it had not sufficiently moved
for 100 cycles. After this point, it attempted to become un-
stuck by moving in a random walk for 150 cycles.

We used a well tested robotic simulator, Teambots [3], to
collect data. Teambots [3] simulated the activity of groups
of Nomad N150 robots. The field measured approximately
5 by 5 meters. There were a total of 40 such target pucks,
20 of which where stationary within the search area, and
20 moved randomly. Each trial measured how many pucks
were delivered by groups of 1 – 30 robots within 9 min-
utes. For statistical significance, we averaged the results of
100 trials with the robots being placed at random initial po-
sitions for each run. Thus, this experiment simulated a total
of 24,000 trials of 9 minute intervals for a total of 372,000
minutes of robotic activity.

According to the economic Law of Marginal Returns,
marginal returns will be achieved when one or more items
of production are held in fixed supply while the quantity
of homogeneous labor increases. In this domain, the fixed
number of pucks acted as this limiting factor of production.
However, only the gothru group demonstrated this quality
over the full range of group sizes. All other groups con-
tained a point where maximal productivity was reached. Af-
ter the group size exceeded this point, productivity often
dropped precipitously. Figure 1 graphically represents these
results. Our X-axis represents the various group sizes rang-
ing from 1 to 30 robots. The Y-axis depicts the correspond-
ing average number of pucks the group collected.



Figure 1. Foraging Productivity Results

We needed a mechanism for understanding why certain
coordination mechanisms were more effective than others.
We posit that differences among robotic groups often arise
from clashes in spatial constraints. Specific to foraging,
conflicts arose over which robot in the group had the right to
go to the home base first. As the group size grew, this prob-
lem became more common. This caused the groups to de-
viate from the ideal marginal productivity, depicted by the
Gothru group, by greater amounts. The length of time robots
clash with their teammates because of joint resources, such
as the home base location, serves as the basis in compar-
ing coordination models within any domain.

3. Definition of Interference

We define interference as the length of time an agent
is involved with, either physically or computationally, pro-
jected collisions, real or imaginary, from other robots and
obstacles. This period of involvement often extends well
beyond the actual collision between two robots. Any time
spent before a supposed collision in replanning and avoid-
ance activities must also be recorded. Similarly, all post-
collision resolution activity must be included as well. Thus,
according to our definition, the Gothru group has zero inter-
ference because it never engages in any interference resolu-
tion behaviors and represents idealized group performance.
All other groups register varying amounts of interference.

We found a very strong average negative correlation of
-0.95 between the differences in groups’ performance and
their interference level over the entire range of 1 to 30
robots. For example, the Noise group most closely followed
the idealized Gothru productivity graph for groups up un-
til 7 robots, and registered significantly less interference
than the other groups. This interference resolution mech-
anism had little overhead, and needed fewer cycles to re-
solve a possible collision. However, this method didn’t scale
well beyond this point. When the group size became larger

than seven, its interference levels grew exponentially and
the group’s performance quickly decayed. In contrast, the
Aggression and repelling groups had significant levels of in-
terference from the onset, but interference levels only grew
linearly with respect to the group size. As a result, this group
proved more effective with larger group sizes. Generally,
groups were able to maintain marginal gains in productiv-
ity only when interference levels where relatively low.

4. Conclusion

We found that different coordination techniques affected
the productivity graphs of foraging robotic groups during
scale up. To determine the cause of the differences between
coordination algorithms, we define a measure of interfer-
ence that facilitates comparison, and found a high negative
correlation between group interference and productivity. Ef-
fective coordination algorithms maintain marginal produc-
tivity over larger groups by reducing interference levels.
However, if the new robot added too much interference into
the system, it detracted from the group’s productivity and
marginal productivity gains would cease.

The spatial constrictions which cause interference in the
foraging domain are common to many areas such as waste
cleanup, area coverage in vacuuming, search and rescue do-
mains, and planning collision-free trajectories in restricted
spaces. We believe our novel metric of interference will al-
low for a better understanding of robotic teams in these do-
mains as well.
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