Managing Parallel Inquiries in Agents’ Two-Sided Search

David Sarne
School of Engineering and Applied Sciences,
Harvard University, Cambridge MA 02138 USA
sarned @eecs.harvard.edu

Sarit Kraus
Department of Computer Science,
Bar-Ilan University, Ramat Gan, 52900 Israel
sarit@cs.biu.ac.il

August 29, 2007

Abstract

In this paper we address the problem of agents engaged in a distributed costly two-sided search for pairwise
partnerships in Multi-Agent Systems (MAS). While traditional two-sided search mechanisms are based on a
purely sequential search of all searchers, our mechanism integrates an ability of some of the agents to maintain
several search efforts in parallel at each search stage. We show that in many environments the transition to the
new mechanism is inevitable since the adoption of the parallel-interactions based search suggests a greater utility
for the searching agents. By exploring the appropriate model equations, we present the new dynamics that drive
the equilibrium when using such a mechanism in MAS environments. Complementary algorithms are offered,
based on the unique equilibria characteristics found, for facilitating the extraction of the agents’ strategies. The
analysis methodology used supplies a comprehensive solution to a self contained model, and also offers a great
value for future work concerning distributed two-sided mechanisms for MAS. Towards the end of the paper we
review two of these important models that can benefit from the proposed analysis.

Keywords: Multi-Agent Systems, Autonomous Agents, Equilibrium Analysis, Matching
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1 Introduction

In this paper we consider the problem of agents engaged in a distributed costly two-sided search
for partners [8] in Multi-Agent Systems (MAS). The problem is often classified as a matching
problem, since the agents’ goal is to form pairwise partnerships. In this problem each agent
is satisfied with only one partner and gains no utility from extending (upon finding a partner)
its partnership further or from operating on its own. The matching problem is a unique variant
of the general coalition formation model and its main incentive is similar to the one which
drives coalitions of agents: throughout partnering, the agents can operate more effectively and
coordinate their activities [39], thus increase the participants’ benefits [7].

Various centralized matching mechanisms can be found in literature [10, 3, 14]. However,
in many MAS environments, in the absence of any reliable central matching mechanism, the
matching process is completely distributed. In a distributed matching model the agents need
to search for partnering opportunities. The agents learn about new partnering opportunities
(and the benefits encapsulated in them) through bilateral interactions. The search process is
considered two-sided when all agents in the environment engage in search. Thus a partnership
eventually formed is the result of the combined search activities of both sides of the interac-
tion (i.e., the agents forming it). Similarly, the two-sided nature of the search suggests that a
partnership between a pair of agents is formed only if it is mutually accepted by them.

This concept of two-sided search for forming partnerships can be found in many traditional
economical applications such as the marriage market [40] and the job market [27]. It can also be
found in many MAS applications [22], e.g., buyer and seller agents operating in electronic mar-
ketplaces and peer-to-peer distributed applications.! An important class of such applications
includes secondary markets for exchanging unexploited resources. An exchange mechanism is
used in those cases where selling the resources is not the core business of the organization or
when the overhead for selling them makes it non-beneficial. For example, through a two-sided
search, agents representing different service providers can exchange unused bandwidth [37] and
communication satellites can transfer communication with a greater geographical coverage. In
all these applications an agent can gain a utility only if it eventually partners with another agent.
However, once a partnership is formed, adding more agents as partners does not produce any
additional benefit.

The main idea of this paper is that a distributed two-sided search in MAS environments
should take into consideration agents’ capability to use parallel (simultaneous) interactions with
other agents. This is in comparison to the traditional models found in the two-sided search lit-
erature [8, 40] where the agents’ search is conducted in a purely sequential manner: each agent
locates and interacts with one agent in its environment at a time.> Autonomous computer agents
have unique inherent filtering and information processing capabilities and, most important, the
ability to efficiently (in comparison to people) maintain concurrent interactions with several
other agents at each given time [15, 2, 21]. This way an agent can make a decision at each
stage of its search based on interactions with several other agents (instead of one). Such use
of parallel interactions in search is favorable especially when the search is costly, as explained

I'The use of the term “partnership” in this context refers to the agreement between two individual agents to cooperate in a pre-defined
manner. For example, in the buyer-seller application a partnership is defined as an agreed transaction between the two parties [16].

2 As we report in the related work section, the use of parallel search was suggested for problems of a single searcher [29]. However, these
were merely optimization problems that did not concern equilibrium dynamics.
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in the following paragraphs. The transition into using this new search technique results in new
dynamics in MAS environments and consequently new equilibrium structures. Specifically, we
consider environments where the agents are associated with two possible types (i.e., a buyer
and a seller) and only agents of one of the types use the parallel interaction search method.
While this model is self contained and associated with specific applications (as illustrated in
the following paragraphs) it can also be used for understanding the dynamics formed in models
where agents of all types use parallel search. The various aspects concerning the transition to
the latter model are discussed towards the end of the paper.

The motivation for using the parallel search technique is mainly the existence of search costs.
These costs are a common inherent part of MAS environments where there is no central source
that can supply full immediate reliable information on the environment and the different oppor-
tunities that can be found in it. The costs reflect the resources (not necessarily monetary) that
need to be invested/consumed by an agent to perform its search activities (e.g., the cost associ-
ated with the interaction and negotiation between agents, locating other agents, analyzing and
comparing offers, decision making, self-advertisement and the cost of maintaining the agent
in an idle state until finding a partnership). The introduction of search costs leads to a more
realistic description of MAS environments. Many authors have argued that recent advances
in communication technologies reduce search costs and other environmental inefficiencies in
MAS environments [6]. However the general agreement is that these cannot be ignored com-
pletely [2] and should be integrated into the agents’ expected utility computation process, given
their specific search strategy. Others have argued that the search cost for locating an opportu-
nity is insignificant compared to the utility encapsulated in most opportunities. Nevertheless
the growing interoperability between different systems and environments in the internet age,
followed by a phenomenal increase in the number and complexity of opportunities available,
makes the overall cost of acquiring such information an important parameter that needs to be
considered when forming the agents’ strategies [9, 21, 36].

Given the search cost, the key issue for each agent engaged in a distributed two-sided search
is to determine the set of agents with whom it is willing to form a partnership. By forming a
partnership the agent gains an immediate utility and terminates its search. On the other hand,
if the search is resumed, a more suitable partner might be found, but some resources will need
to be consumed for maintaining the extended search process. The advantage of parallel search
within this context is mainly in reducing the average cost of an interaction with an agent of the
other type. This reduction is achieved whenever the cost of interacting with a batch of agents
is smaller than the overall cost of interacting with each of them sequentially. For example, in
[37] the analysis of the costs associated with evaluating potential partnerships between service
providers reveals both fixed and variable components when using the parallel search. Thus the
average cost per interaction decreases as the number of parallel interactions increases.

The main contributions of this paper are threefold: First, we formally model and analyze a
distributed two-sided search model in which agents of a specific type can use parallel interac-
tions in their search for a pairwise partnership. This model is a general search model which
can be applied in various (not necessarily computer-agent based) domains. As detailed in the
next sections, the adoption of the new search technique creates new dynamics (mutual strate-
gies adjustments) that drive the agents’ strategies towards a stable equilibrium (different from
the purely sequential models). Second, we show that our mechanism is a generalization of the
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traditional purely sequential two-sided search model, thus the agent’s utility will never decrease
when using our proposed mechanism. As we illustrate, the agents have a strong incentive to
deviate from the sequential search strategy to the new strategy in many environments. The task
of extracting the agents’ new equilibrium strategies adds some computational complexity. This
is mainly because now the agents are not limited to strategies in which they only need to de-
cide what agents to accept, but rather can influence the intensity of their search by deciding on
the number of agents with which they will interact in parallel. Therefore, finally, by using the
unique characteristics identified for the agents strategies and for the equilibrium structure we
supply appropriate algorithms that facilitate the calculation of the agents’ equilibrium strategy.

As a framework for our analysis we use a legacy two-sided agents’ search application -
the buyer-seller search in an electronic marketplace. Issues concerning the design of agent-
mediated electronic trading systems involve finding solutions for a diverse set of interaction
problems. These range from behavioral to organizational issues and also encompass complex
computational, information and system level challenges [32, 18, 15, 41]. Our specific focus
in ecommerce is on the C2C (Consumer-to-Consumer) segment, where a transaction is always
associated with two consumers. In C2C we usually find non-repeated transactions and thus
no a-priori information concerning specific buyers and sellers is collected prior to the buyer’s
need identification” stage of the process.® Therefore each agent needs to explore the market
for opportunities to buy or sell according to its owner’s personal preferences and requirements.
Notice that the seller agents in C2C marketplaces usually have a single item (or a limited
quantity) they wish to sell on an irregular basis. Therefore, even though the seller agents do
not search proactively for buyer agents, they act in a selective manner in order to maximize
their total utility.* Also, in the C2C application, typically, buyer agents are the ones capable of
searching in parallel since they are the ones that approach the seller type agents.

Additional MAS-based two-sided search applications in which only agents of a specific type
can search in parallel can be found in the task/resource allocation domain. Consider, for exam-
ple a scenario of self-interested servers that offer their computational services to agents in an
open MAS environment. Since each server has a limited set of resources it may prefer to reject
“non-profitable” jobs (assuming each server charges a (different) fixed price for execution, thus
the profit is a function of the time it takes to execute a specific task). The agents, on the other
hand, try to minimize the payment to the servers for processing their jobs. Since the jobs vary
in their characteristics and the servers highly vary in their configuration and load, there is no
general correlation between a job and the time it takes to execute it on any specific server. Here,
only agents can search in parallel (interact with servers to learn the cost of executing the job),
since the servers do not know the identity of the incoming agents/jobs prior to the time they ap-
proach them. Another MAS-based interesting application that has been recently introduced in
this domain is the one where experts offer their services, for example as in kasamba.com.’ Since
those who seek for service are not listed on the web-site (only the service providers are listed),
they are the only ones who have the capability of proactively addressing service providers (and

3This is the stage in the Consumer Buying Behavior (CBB) model, in which the consumer realizes her need for the product [15].

4Notice that the concept of “search” in this case is very different from the classical definition of “search” in AL While Al search is an active
process in which an agent finds a sequence of actions that will bring it from the initial state to a goal state, in the buyer-seller domain search
refers to the identification of the best agent to sell to or buy from. In general, the concept here refers to the determination of with whom to
commit to a partnership.

SPeople use Kasamba when they need immediate professional guidance, or help on a project. Nowadays, one can find more than 30,000
professionals offering their services to people and hundreds of thousands of visitors seeking service arriving to the web-site every month.
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thus search in parallel). The service seekers’ objective is to maximize their utility which is a
function of the money they spend on the service, the time they spend looking for the service
provider (and the interaction with experts along the way) and the quality of the service/solution
they obtain. The service providers, on the other hand, have a resource constraint (i.e., an expert
has limited time throughout the day in which she can engage in providing the service) thus an
expert’s utility function depends on the money she obtains, the amount of time she needs to
invest in this service, the deadline set for this service (and the way it aligns with other jobs it
received (or expects to receive)), etc.

In the following section we formally describe the model and detail the agents’ interaction
mechanism. We derive the mechanism’s innovative characteristics from an analytic investiga-
tion of the agents’ expected benefit equations, presented in section 3. We expand the analysis
in that section to a complete equilibrium analysis by exploring the dynamics that drive the
agents’ strategies given the strategies set by the other agents in their environment. Throughout
the analysis section we use a specific synthetic artificial environment to illustrate the unique
characteristics of the model and the equilibrium dynamics. In addition, we supply efficient
algorithms for extracting the agents’ strategies that can be used by market makers and agent
designers. In section 4 we discuss two important future extensions of the model and draw the
guidelines for their analysis. A review of relevant work both in multi-agent systems and in the
related area of economical search theory is given in section 5. We conclude with a discussion
concerning the generality and applicability aspects of the suggested model (section 6).

2 The Model

We begin by describing the model and its assumptions, and provide the appropriate notations
which are used later in our analysis sections.

2.1 Model Description

We consider an environment populated with numerous self-interested agents of two types,
where each agent is interested in forming a partnership with a single agent of the opposite
type. For illustrative purposes, in our model description we adopt the eCommerce domain
terminology. Therefore, the two types can be seen as buyer and seller agents, respectively,
residing in a C2C marketplace environment. Each agent is interested in buying or selling a spe-
cific item as described below. Being in a dynamic environment with a high rate of entrance and
exit of agents, the agents have no a-priori valuation concerning the utility that can be obtained
by partnering with specific agents of the other type in the environment. In order to learn this
information, an agent needs to interact with the other agents (according to given conventions
defined by ontology and a language). This is in the absence of a centralized trusted mediator
with global immediate knowledge that can direct the agents into partnerships they all accept.
Having no a-priori information, each agent interacts randomly with others and if the buyer
agent’s preferences and requirements for the product attributes and functionalities are met, then
a possible transaction may be formed. The transaction defines the specific terms (including the
price) and policies by which the item exchanges hands.
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The utility an agent gains from any given transaction, is a function of many factors. While
for simple products (like CDs), the utility is mostly a matter of price, for more complex prod-
ucts, the purchasing decision generally requires a complex trade-off between a set of pref-
erences. Concentrating on C2C we note that most users in this type of market buy and sell
assorted items that are often difficult to describe, and are not easily evaluated. Since in most
cases a used item is considered, the value for the buyer will be influenced mostly by the specific
functionalities (including attributes like color, size, etc.), quality and the current condition of
the product. In addition, the transaction which will eventually be made will include many terms
and policies (concerning warranties, return policy, payment policy, delivery time and policy, in-
surance, etc.). All these terms have values for both sides and can be critical to their buying/
selling decision, regardless of the manner of shopping [15]. Adding reputation and trust factors
to the agents’ considerations, and keeping in mind that in reference to many features, terms
and policies buyers and sellers do not have direct competing interests [12], we assume that the
perceived utilities for a buyer and a seller agent from a given transaction are non-correlated.
Similar to most other two-sided partnership formation models [8, 40] we assume that the util-
ity of each agent from any given potential transaction can be seen as randomly drawn from
a population associated with a specific probability distribution function according to its type.
This latter assumption is often justified by the richness of opportunities that may be found in
the environment and the complexity of each opportunity. Loyal to the economical principles of
market forces as the driving forces that set the terms and conditions of potential partnerships
that can be established, we can expect each agent to face a similar distribution of partnership
utilities.

The interaction between buyer and seller agents may involve bargaining, however we are
interested in the results of the bargaining process (i.e., the terms and policies that define the
transaction) rather than the bargaining protocol itself. Therefore bargaining is just another
factor contributing to the variance in outcomes and the existence of utilities distribution.

We assume that agents, while ignorant of the utility associated with partnering with specific
individual agents of the other type, are acquainted with the overall utility distribution functions®
and that this distribution remains constant over time. Similarly, the interaction with other agents
does not imply any new information about the environment structure.

Before specifying our assumptions concerning the agent’s parallel search capability, we
would like to re-emphasize that all the assumptions made until this point concerning the utilities
distribution are standard and appear in most two-sided search literature cited in this paper (e.g.,
[8, 40]).

While traditional two-sided partnership formation models assume pure sequential search
[8], where each buyer agent is acquainted with only one seller agent in a search stage, in our
model we integrate the capability to maintain parallel interactions. Specifically, we assume that
agents of the buyer type can consider parallel interactions with several sellers (interested in
selling an item similar to the one they seek to buy) at each search round, whereas sellers cannot
control the intensity of their interactions. This suits the electronic marketplace domain since in
current C2C markets sellers are usually approached by buyers and do not approach buyers in a
proactive manner (e.g., buyers and sellers on eBay.com). Still, we do not completely ignore the

SThere are several methods by which an agent can be acquainted with this distribution function: past experience, bayesian update through
sampling, etc.
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option in which both sides in the search model use parallel interactions and we briefly discuss
some of the aspects of such a model in section 4.2.

We assume that the agents’ operation in the eMarketplace, and in particular their search
process, is associated with some cost representing the resources they need to consume for their
operation. Seller agents interact with one buyer agent at a time, thus their search cost per search
stage is fixed. Buyer agents’ search cost is more complex and is assumed to combine fixed and
non-decreasing variable components, where the variable cost is a function of the number of
interactions maintained in parallel. We assume that the marginal cost from interacting with
an additional seller agent in parallel is non-decreasing. This is simply because there are some
fixed cost components associated with any additional interaction (e.g., communication costs,
processing costs [37]).

We assume that the agents’ utility from transactions, as well as the resources required for
maintaining the search, can be measured on a similar scale. Thus the total search utility can be
obtained by subtracting the search “costs” from the perceived utility for any given transaction.
Similar to most of the other two-sided partnership formation models [8, 40] we assume that
the costs are common to all agents of a given type.” This assumption well suits MAS envi-
ronments since the agents are principally technically similar or supplied by the same market
maker (unlike in environments populated with people). A model where different agents of the
same type use different search cost structures may also be considered. In this case we obtain
a set of sub-types that can be integrated into the appropriate equations given in the analysis
section along with their distribution in the general population. For simplification, in this paper
we use the analysis where all the agents of a specific type (e.g. buyer agents) share the same
cost structure, which is applicable for most markets where agents are supplied to the users by
the market maker.

After reviewing and evaluating the perceived utility in a potential partnership each agent
makes a decision whether to commit to it or reject it. A transaction (which is the result of
the partnership) takes effect only if both agents are willing to commit to it. For simplicity we
assume that the agents use synchronous interactions thus if the buyer agent decides to encounter
several seller agents in parallel, it commits (if at all) to its ’best opportunity”, i.e., the one with
the highest utility, and rejects the rest of the agents with whom it interacted. A model based on
a-synchronous interactions in which the buyer agent considers committing to more than a single
opportunity in the same search stage is briefly introduced in section 4.1. If a dual acceptance is
not reached, both agents resume their search in a similar manner (with the same cost structures).

Since the agents are self-interested, their goal is to maximize their total search utility (de-
fined above as the perceived utility from the partnership they eventually form minus the accu-
mulated search costs). Therefore, upon meeting a potential partner at any given stage of the
search, the agent’s problem is to decide whether to form a partnership with this agent or to
continue its search. If it commits to a partnership with that agent and that agent commits to
the partnership as well (i.e. ”dual commitment”) then the agent obtains an immediate gain (the
expected utility from the partnership). Otherwise, the agent needs to continue searching, bear-
ing additional search costs. In the latter case the agent’s future expected utility will be derived
from the benefit future interactions might offer, as well as the encountered agents’ willingness

7One major factor influencing the search cost is the environment opportunities liquidity and volatility, thus the search cost is usually
common to most agents in the environment.
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to form a partnership. Therefore, an agent’s decision of whether to join the current possible
partnership depends on the strategies set by the other agents. In a similar manner the other
agents’ strategies depend on the decision of the agent. Thus, we are seeking strategies that are
in equilibrium.

Lastly, we assume that utilities from a partnership are immediate (e.g., payments versus
shipment of the product). Furthermore, the nature of eCommerce and agents technology sug-
gest fast search stages and short interaction sessions. Thus even though the agents are not
limited by a decision horizon or by the number of search rounds, the probability that an agents’
overall search will last more than a few hours/days is negligible. Therefore, in our model we
see no need in discounting utilities over time. As we briefly discuss in section 3, the inclusion
of a discounting factor does not affect the analysis methodology.

2.2 Assumptions Summary

Before formally introducing the model, we recap the assumptions used and correlate them to
the different entities combining our model:

1. Environment - populated with numerous self-interested agents;

2. Agents - each agent can be of one of two types (e.g., buyers and sellers); benefits from
forming a partnership with a single agent of the opposite type; has no a-priori valuation
concerning the utility that can be obtained by partnering with specific agents of the other
type; can learn the utility of a partnership with a specific agent by interacting with it; is
acquainted with the overall utility distribution functions of forming partnerships in the
environment; incurs costs when interacting with agents of the opposite type; attempts to
maximize its total search utility (defined as the perceived utility from the partnership it
eventually forms minus the accumulated search costs);

3. Partnerships - form only if both agents commit to them; are associated with non-correlated
utilities of the two agents forming them, according to their type;

4. The Search Process - each agent interacts randomly with others to learn the utility of
partnerships with them; agents of one specific type (buyers) can consider parallel interac-
tions with several agents of the other type (sellers) at each search round, whereas agents
of the other type (sellers) cannot control the intensity of their interactions;

5. The Interaction Protocol - at the end of the interaction each agent decides whether to
accept the partnership with the other agent or reject the partnership; if a dual acceptance
is not reached, both agents resume their search; whenever parallel interactions are used,
the agent uses a synchronous interaction protocol and commits (if at all) to the partnership
associated with the highest utility, while rejecting the rest of the agents with whom it
interacted;

6. Utilities and Costs - the utility of each agent from any given potential transaction can
be seen as randomly drawn from a population associated with a specific probability dis-
tribution function according to its type; utilities are immediate and do not need to be
discounted; the cost of interacting with other agents is similar to all agents of the same
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type; when interacting with several agents in parallel, the marginal cost of interaction with
any additional agent is non-decreasing; the cost of search and the utility from a partnership
can be measured on the same scale;

2.3 Problem Formulation

We use U?® and U® to denote the seller and buyer agents’ utility perceived from a specific
transaction between them (respectively). These utilities can be seen as randomly drawn from
a population with p.d.f. f*(U®) and c.d.f. F'*(U®) for the seller agent and f°(U®) and F*(U?)
for the buyer agent, (0 < U* < 00,0 < U’ < c0). The buyer agents’ search cost of sampling

N seller agents is denoted C'(N) (satisfying dON) - 0 and deC]\gV ) > 0). The seller agents’

dN
search cost is fixed per any search round, denoted by c. We use U, to denote the utility
associated with the ”’best opportunity” among the potential opportunities available to an agent
of the buyer type upon interacting with N agents of the seller type in a given search round, i.e.,
Ul = max(U(bl)7 ce U(bN)).

The problem of each seller agent is to find a strategy Sseyer : U® — {accept, reject} that
will map the perceived utility of each potential interaction to a decision of whether to commit
to the proposed transaction or reject it. As for the buyer agent, its strategy is a little more
complex. The buyer agent needs to set a strategy, given the value of the best opportunity found
in the current search round, that defines both whether to commit to an opportunity or reject
it and with how many seller agents it wants to interact in parallel over the next search round
(if at all). Thus the buyer agent’s strategy can be specified as Spuyer : Ul — {accept, N}
where accept suggests committing to the best opportunity in the current search stage (yielding
a utility U _,) and N is the number of seller agents to interact with next if the current set of
opportunities is rejected.

Before concluding the problem definition section, we formally summarize the two-sided
search mechanism detailed above. We divide the description according to the agent’s type.
Each buyer type agent will be performing the following steps:

1: loop
2 Setavalue N

3. Locate randomly NV seller type agents and initiate interaction with all of them in parallel
4. Evaluate the utility U, (bi) from a partnership (transaction) with each agent i, (i < N).

5. Reject all partnerships with a utility smaller than U7,

6 if Satisfied with utility U2, then

7: Commit to a partnership with the agent associated with this utility
8 if Other agent commits to the partnership as well then

9: Terminate the process (terminate search)

10: end if

11:  else

12: Reject the agent associated with this utility
13:  end if

14: end loop

Each seller type agent will be performing the following steps:
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. loop
Wait to be approached by a buyer type agent
Interact with the agent and evaluate the utility U® from a partnership with it.
if Satisfied with utility U* then
Commit to the partnership
if Other agent commits to the partnership as well then
Terminate the process (terminate search)
end if
else
Reject the agent associated with this utility
11:  end if
12: end loop

D I AN L R s

_.
4

For convenience, we have added a table at the end of the paper summarizing all the notations
used and their meanings.

3 Analysis

Since the agents are not limited by a decision horizon, and given the fact that the interaction
with other agents does not imply any new information about the market structure and that the
number of search rounds is not limited, the agents’ search strategy is stationary (i.e. an agent
will not accept an opportunity it has rejected beforehand, and the number of seller agents with
which each buyer agent interacts during a search round, /V, will remain constant over time).
Similarly, the number of search rounds an agent has already participated in does not affect its
optimal strategy, since the cost incurred in earlier search rounds is considered ”sunk cost” and
do not affect future expected utility from resuming the search, calculated from any decision
point and on. This implies a reservation-value based strategy both for the buyer and seller
agents.® We denote the seller agent’s reservation value by z* and the buyer agent’s reservation
value by z°. The agents’ reservation-value strategy suggests that a commitment for a potential
transaction will be received from the seller agent only if U® > z° (i.e., if its immediate utility
U* is greater than or equal to its reservation value z*), and from the buyer agent only if U® >
maz(Ufy, . .., Ulyy, 2°) (i.e., only if the current transaction yields a utility U that is the highest
utility among the different interactions maintained by the buyer agent at this stage and if it is
greater or equal to the reservation value it uses). We use x4, to denote the reservation value
that maximizes the buyer agent’s utility as a function of the number of parallel interactions it
maintains during a search round, /V, and the strategy used by the seller agents. Similarly, we
use x% to denote the reservation value that maximizes the seller agent’s expected utility as a
function of the reservation value and the number of parallel interactions, N, used by buyer
agents.

Our goal is to find a set of equilibrium strategies, i.e., a reservation value x%; for the seller
agents and a pair (IV, 2%;) for the buyer agents, from which no single agent of any of the types

8Notice the reservation value of the search strategy is different from the reservation price usually associated with a buyer or a seller that
are not involved in a search. While the reservation price denotes an agent’s true evaluation of a specific potential opportunity, the reservation
value of a search strategy is mainly a lower bound for the utility from an accepted opportunity, derived from the expected utility optimization
considerations.
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will have an incentive to deviate, as long as the other buyer and seller agents follow this strategy.
For this purpose, we first analyze the strategies that will be used by each agent type, for any
given number of parallel interactions, N. This is achieved by understanding how an agent’s
strategy is affected by changes in the strategies used by agents of the other type. The analysis
is followed by an efficient approximation means for extracting the agents’ reservation value
in those cases where the strategies can not be immediately obtained using direct calculation.
Consequently, based on the analysis presented, we manage to suggest an efficient means for
finding the number of parallel interactions, /V, that is used by the buyer agents in equilibrium
and the appropriate equilibrium reservation values both for the buyer and seller agents.

3.1 Agents’ Strategies

We begin by formulating the appropriate equations describing each agent’s expected utility as
a function of the strategy it uses and the strategy used by the other agents’ type. Consider a
buyer agent using a reservation value z°, interacting in parallel with N seller agents at each
stage of its search. This buyer agent’s expected utility, denoted V?(x%), when seller agents use
a reservation value z° is given by:

Vb(xb):E Ul?es?]'[(Ul?estZ xb)majs 2 xs)]+vb<xb).1[(U£est< xb)U(Us < ZES)]—C(N) (1)

where the term o1[(UL_, > x°) N (U* > z°)] represents the indicator of the event where the
specific buyer agent and its “best” encountered seller agent (in the current search round) have
found the perceived utility from a transaction between the two of them to be greater than or
equal to their reservation values, resulting in a dual commitment. The term o1[(U7_, < 2°) U
(U*® < z®)] represents the indicator of the complementary event (i.e., where the seller and/or the
buyer reject the potential partnership between them). In the latter case, the buyer agent resumes
its search in the same manner, i.e., conducts an additional search round in which it interacts
with N seller agents using the same reservation-based acceptance rule, hence resulting in an
expected future utility which equals V®(x?) due to the stationary nature of the problem. Notice
that if gains are to be discounted, then the only required change in Equation 1 above is the
discounting of the expected future utility V*(2) on the right hand side of the equation.

A similar equation can be formulated to represent the seller agents’ expected utility, denoted
V*(z®), when using a reservation value z° and given the number of parallel interactions, NN,
and the reservation value z° used by the buyer agents:

Ve(z®) = E|US e 1[(U* = UL,,) N (U*> 2°) N (U > 2%))+ 2)
+V*(2*) ¢ 1[(AUY, > U°,j < N)U (U’< 2”) U (U° < 2”)] — ¢

In this case, we need to ensure that U? (the utility for the buyer from a partnership with the
specific seller) is the highest among the utilities from partnering with any of the seller agents
with whom it interacts. This is in addition to the requirement that both agents’ (the seller’s and
the buyer’s) perceived utilities are equal to or greater than the reservation values they set.
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For simplification, we use the notations F% (z), f%(z) and E[U%] to denote the c.d.f., p.d.f.
and the mean of the maximum utility for the buyer agent when interacting with N seller agents
in parallel, respectively. Notice that these values can be calculated using the standard utility
c.d.f and p.d.f functions (F°(z) and f°(x)) as follows:’

b T 00
Fy(o) = (P@)* R R = NP ) E[o]= [ - By o

Using the above notations, we attain (see Appendix A for more details):

(1= F*() [, 2 yfX(y)dy — C(N)
(1= FR (") (1 = F5(z*))

In order to simplify the flow of the paper, we will present only the equations associated with
the buyer type agents. Unless stated otherwise, similar modifications for the seller type agents
are given in Appendix B or can be extracted using methods similar to those we use for the buyer
type agents’ equations.

Equation 4 and its sellers’ modification can be used by each agent to calculate its expected
utility, when using different reservation value strategies, given the search cost parameters and
the strategy used by the agents of the opposite type. From this equation we can derive an agent’s
reaction to changes in the other agents’ strategies, towards a complete equilibrium analysis.
Notice that Equation 4, as well as the rest of the following analysis, is also applicable for the
traditional pure sequential two-sided search [8], simply by using N = 1.

Continuing our analysis, we point to an immediate result from Equation 4:

Vo(2b) = 4)

ln V(") = —o0 5 lim V(@) = B[] — —C W)

rb—o0 2 —0 1-— FS(ZL’S>

)

The content of Equation 5 is intuitive: if the reservation value x° is very large, the chances of
obtaining a utility greater than this reservation value from a given search round are small. Thus,
repeated search rounds must be taken, leading to an overall low utility due to the accumulated
search costs. If, on the other hand, the reservation value, z°, is very small, almost surely a
potential transaction suggesting a sufficient utility can be obtained during the first search round.

Theorems 1-2 below, suggest several additional important properties of the agents’ expected
utility function, that are used later for designing the algorithms for extracting the agents’ strate-
gies. Appropriate modifications of these theories for the seller agents are given in Appendix
B.

Theorem 1 The expected utility function V°(x®) is quasi concave, with a unique maximum
obtained at point x5, satisfying:

Vb(xl]’\,) = (6)

2@"

Proof: Deriving Equation 4 we obtain:
dvi(a®) _ fR(")(V(a’) — 2")
deb (1 — F%(ab))

9The third equation can be obtained using integration by parts over the expression: fyoio Y f]’{, (y)dy.

r(z”) (VP (2®) — %) (7)




Draft: August 29, 2007 12

The value 2% for which the above expression equals zero must satisfy V’;(x’]’v) = x%,. Notice

that f%(«%) > 0 implies r(z% ) > 0, hence for % satisfying V?(2%,) = 24
dQVb(xb ) ’ ’
T = (V) — o) + k) (VY (o) — 1) < 0 ®

N

Thus V°(zY%;) (and in the same manner V*(z%;)) is quasi concave with a unique maximum.O

Equality 6 is very common in models in which agents use reservation-value based strategies
[26]. It suggests that the expected utility when using the optimal reservation value equals the
optimal reservation value. Intuitively, this can be explained by the fact that the agent’s optimal
reservation value is the point where it becomes indifferent to the selection between the utility
that can be obtained from a transaction and the utility associated with continuing the search.
Similarly, if we were about to use a discounting factor A for gains, Equation 6 would transform
into: Vo(x4,) = a8 1°

In order to illustrate the dynamics of changes in the agent’s policy we use the following
synthetic artificial environment.'!

Environment 1 The environment contains numerous buyer and seller agents, where each in-
teraction between any buyer and any seller agents produces utilities drawn from a triangular
distribution function, i.e.:'?

2 2z 2x x?
fla) = — - Fla) = o -

Uupper < Uupper ) 2 Uupper ( Uupper ) 2
where in our case Uyy,er = 100 and the search costs are C(N) = 2+ 0.5N and ¢ = 2.5 for the
buyer and the seller agents, respectively.'> The environment can be used both for experiment-
ing with the traditional sequential (single interaction at a time) search and the parallel-based
search.

(0 S x S Uupper)

Figure 1, illustrates the agents’ expected utility as a function of their reservation value in two
settings (here it is assumed that the agents of the other type use the value 30 as their reservation
value). In the first setting, all the agents use the pure sequential search (N = 1). The middle
curve depicts the expected utility of any of the agents in this scenario as a function of the
reservation value used (the horizontal axis). Since both the buyer and the seller agents use a
sequential search, the curve describes a utility function that is common to all the agents. In the
second setting, buyer type agents use the new parallel search method, sampling N = 4 seller
agents in each search round. In this scenario buyer type agents have the incentive to use the
new technique (represented by the upper curve) since their utility increases for any reservation
value they use in comparison to the pure sequential search. Similarly, the expected utility for

10From this point and on the introduction of the appropriate utility-discounting modification to each equation used is straightforward and
fits into the analysis methodology presented.

T As we show in the following paragraphs the transition of buyer agents to the parallel interaction technique is inevitable in many environ-
ments and non-questionable given the benefits encapsulated in this mechanism. Therefore, our goal with this example is mainly to demonstrate
the different theorems and analysis that we introduce throughout the paper. The selected synthetic artificial environment is rich enough for this
purpose.

12This distribution function can be associated with most electronic marketplaces. It reflects a high probability to draw an opportunity
producing a low utility, and vice versa.

13Thus when buyer agents use N=1, all agents’ search cost structures are symmetric.
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Figure 1: Agent’s expected utility as a function of its reservation value in Environment 1
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Figure 2: Agents’ incentive to use parallel search (in comparison to sequential search).

the seller type agents (represented by the lower curve) always decreases when the buyer agents
adopt the new method.

The incentive for the buyer agents to use the combined parallel search technique is strong.
Any single buyer agent will prefer to use more than a single interaction during a search round, if
it finds the expected utility to be higher in this manner. Figure 2 demonstrates this phenomena
using Environment 1. The cost functions used for this example are: C(N) = a + N and
¢ = o+ (. A two-sided search in this environment will take place only if the expected utility
for the agents when using the pure sequential equilibrium strategy is positive. The set of o and
[ combinations that guarantee a positive utility (when using the equilibrium set of strategies
with N = 1) is represented by the bottom triangular area in the graph. Out of this area, we
have isolated (on the bottom left side) all combinations of « and 3 values where a buyer agent
can increase its expected utility by deviating from such a pure sequential strategy (assuming all
other agents’ strategies are sequential) to a parallel search strategy (i.e., using N > 1). We learn
from the graph that buyer agents have an incentive to deviate from the traditional pure sequential
search strategy for many plausible combinations of « and /3 values. Furthermore, the advantage
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of the new technique is mostly revealed in combinations of small o and 3 values (in comparison
to the average utility from a partnership), which characterize most MAS applications. A simple
tool (applicable for any distribution function) for checking if buyer agents have an incentive to
deviate from the pure sequential search technique to the parallel one is given in Theorem 5 (in
section 3.5).

Next, we introduce a theorem that enables us to extract the agents’ optimal reservation value
as a function of the reservation value used by agents of the other type. Notice that our aim,
at the current stage, is to find the reservation value that maximizes the agent’s utility given the
strategy used by other agents’ type, rather than finding the equilibrium strategies.

Theorem 2 Given the reservation value that was set by the seller agents, x%;, the buyer agents’

optimal reservation value when using N parallel interactions, 1%, satisfies:

b
TN

C(V) = (1= P (BIUR] = [ (1= F()dn) ©)
y:
Proof: Deriving the expected utility given in Equation 4, setting it to zero, and using integration
by parts for calculating fyofmb y 1% (y)dy, we finally obtain Equation 9.0
N

From Theorem 2 we conclude that the buyer agents’ optimal reservation value (and thus the
expected utility for these agents, based on Theorem 1) decreases as C'(V) increases. This also
has an intuitive explanation: when the search costs increase, the agent becomes less selective,
reducing its reservation value. Secondly, we can conclude from Theorem 2 that the buyer
agents’ optimal reservation value (and thus the total utility for the agent), given the seller agent’s
reservation value, decreases as x3, increases. Similar results can be obtained for the seller (see
Appendix B).

3.2 Approximation Technique

Both Equations 6 and 9, and their appropriate modifications for the seller agent, can be used for
calculating the optimal reservation values of any agent type in the search, given the reservation
values used by the agents of the opposite type. However, for some distribution functions (e.g.,
normal distribution function) it is impossible to extract 3, and % using direct immediate
calculations (see the example given in Appendix B).!* Fortunately, the characteristics of the
optimal strategies (given the other agents’ reservation values) as proven in theorems 1-2, enable
us to use binary search as an efficient means for approximating these values up to any required
precision level. In order to apply binary search here we first need to find an interval that bounds
the optimal reservation value of the agent and a condition by which we can tell whether any
of the specific values in this interval are greater or smaller than the optimal reservation value.
Notice that in most scenarios the distribution functions of U* and U" are finite (assuming the
utility of the person represented by an agent from a specific exchange is finite) and can be used
as a bounding interval for the optimal reservation value of the agents. Still, in the following
Proposition 1 we supply a bounding interval and necessary conditions for binary search within

14The case of non-integrated terms in Equation 9 (due to the complexity of a specific distribution function) can be resolved by using specific
function-dependent approximation techniques. For example, solving Taylor series expansion, or using the Trapezoidal Rule and Simpson’s
Rule. In this section we introduce a general approximation algorithm (i.e., distribution-independent) based on binary search.
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Figure 3: Specific characteristics of an agent’s expected utility function V*(z%;)

this interval that are applicable even for distribution functions that are not necessarily defined
over a finite interval.

Proposition 1 (a) The values z¥%, satisfying (1 — F*(z3)) fyofmb yf%(y)dy = C(N) and

=t

xl]’\,_ = 0, can be used as upper and lower bounds, respectively, for the buyer agents’ optimal
reservation value (given the seller agents’ reservation value). Similar bounds can be found for
the sellers’ optimal reservation value; (b) Within the interval defined above, any value z° for
which V(x®) > x° is smaller than the optimal reservation value and vice versa.

Proof: For the proof we make use of Figure 3 which sketches the general shape of any of the
agents’ expected utility as a function of the reservation value used.!> Taking the buyer type
agents, as an example, the expected utility for the case where 2° = 0is E[U%] — % (see
Equation 5). From this point and on the expected utility increases as x° increases, reaching a
global maximum at the point 2%, where V¥, (2%) = x% and decreases beyond that point (derived
from Theorem 1 that indicates the concavity of the function and its limit given in Equation 5
for x* — o0). Since V}}(0) > 0 (see Appendix C for the analysis of the case where V°(0) < 0),
the expected utility V°(z°) calculated using Equation 4 is always greater than z° for 2° < 2%,
and always smaller than x° for 2° > z%,. Now all we need to prove is that ' is in the bounding
interval specified in the theorem. For the upper bound, we note that a reservation value x’]’\,+
that satisfies the condition in part (a) of the theorem always yields Vb(xl]’w) =0< xﬂ’w when
used in Equation 4. Therefore, given the antecedent part of the proof, %, is an upper bound
for the optimal reservation value, x?\, The lower bound, xlj’v, = 0, is obvious. O

Therefore, an algorithm for extracting the optimal reservation value, x%, for the buyer agents
(or x¥% for the seller agents) should first check the value of V/(0) using Equation 4. If this latter
value is negative then z% = 0 (see the analysis in Appendix C). Otherwise, the algorithm
should set the appropriate bounding values (according to Proposition 1) and conduct a binary
search in this interval, each step checking if the current value 2’ is greater or smaller than
V(x?). The interval should be trimmed to include all values smaller than z if V*(2®) > 2° and

15 A unique scenario, in which the expected utility function strictly decreases and never satisfies Vb(m’]’v) = 3:’]’\, is analyzed in Appendix

C.
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vice versa. The algorithm should stop when reaching a value x° for which |V} (2%) — 2b| < p,
where p is the required precision level. These steps are summarized in Algorithm 1.

Algorithm 1 An algorithm for calculating (using approximation) the optimal reservation value z%; for a buyer
agent, given the strategies used by the other agents and the number of parallel interactions it uses

Input: p - required precision level; N - number of parallel interactions used by the buyer agent; x%; - the reservation value
used by the seller type agents.
Output: 2% - precise approximation for the buyer agent’s optimal reservation value.
if Vequation(4) (O) < 0 then
return 0
end if
: Calculate the values of Zypper and Ziower according to Proposition 1
: while | Viguation(a) (@) — 2 [> pdo
Setx = (l’lower + xupper')/z
if .‘/equation<4) (IL’) > x then
Set Tupper = T
else
Set Tiower = T
end if
: end while
: return x

IR

—_ =
LMoY

The notation equation(i) is used in the algorithm to denote the calculation of the parameter
using Equation ¢.

Proposition 2 Given the number of parallel interactions buyer agents use, N, a reservation
value of the seller, 2% and a required precision level, p, Algorithm I returns a reservation
value for a buyer agent that is close to the optimum within p. The complexity of the algorithm

. b
[A) O(lnT)

Proof: According to Proposition 2, the algorithm always handles the interval that bounds the
optimal reservation value. Since the algorithm is based on binary search, its complexity is given

fEb +
by O(In—2=). O

3.3 Finding a Stable Set of Reservation Values

The equilibrium in our model can be described by a set (N, 2%, %) where a single buyer agent
cannot gain a better utility by changing N and/or % which it uses and a seller agent cannot
gain a better utility by changing =%, (as long as the other agents do not change their strategies).
Using the analysis given in the previous section, we can now combine the reactions of both
types of agents to changes in the other agents type reservation value, towards equilibrium.

Recall that an important result from Equation 9, is that an agent’s optimal reservation value
decreases as the reservation value used by the agents of the opposite type increases, i.e., for any
specific /N we obtain:

b s
dz3, dzyy

dn, dit, <0 x%igmxg: lim a3 =0 (10)
xNﬂOO
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Figure 4: Agents’ reaction curves - the buyer agent’s optimal reservation value as a function of the reservation
value used by the seller agents (vertical axis) and the seller agent’s optimal reservation value as a function of the
reservation value used by the buyer agents (horizontal axis).

This behavior is illustrated in Figure 4, which reflects characteristics similar to those de-
scribed in [8] for the pure sequential two-sided search. Nevertheless, while in [8] any point
of interception between the two curves is an equilibrium point, in our model every such point
is merely a potential “suspected” equilibrium point. If the buyer agents can only change their
reservation value, then each such point is an equilibrium point for the specific N value used by
the buyer agents. Nevertheless, since buyer agents can control the number of seller agents with
whom they interact in parallel then these intersection points can merely be considered “sus-
pected” equilibrium points and the determination of whether these points are in equilibrium
requires further validation as described in the following paragraph.

From Equation 10 we conclude that at least one “’suspected” equilibrium exists for each NV
value (in the extreme case, we obtain a set of strategies where agents of a specific type or of
both types accept any agent of the opposite type). In some environments we have a single
”suspected” intersection point (for example, for the uniform distribution function). However,
theoretically, a general distribution function might produce several equilibria points with uncer-
tainty regarding the identity of the one that will eventually be used. None of these ’suspected”
equilibria dominates the other for both agent types (buyer agents and seller agents), i.e., none
of the “’suspected” equilibria Pareto dominates any of the others. This can be observed by re-
calling the fact that V°(2%;) = 2% for both agents (Equation 6) and given the structure of the
two curves in Figure 4. An additional important result is that the total number of “’suspected”
equilibrium strategies sets for any given N is odd. This, again, is derived from the unique
structure of the two curves described in Figure 4.

In order to find all these “’suspected” equilibrium sets of strategies, for any given N value,
we can use the following Algorithm 2.

The algorithm operates in a recursive form (see steps 17-18). It starts with an initial set of
“suspected” equilibrium sets of strategies, Q = {(z%,2%)1,- -, (%, 7% )x}, that were found
in earlier recursive executions of this algorithm for the specific N value that is used. It adds to
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Algorithm 2 FindSuspect(Q, p, N, (Tupper, Tiower)) - An algorithm for finding “suspected” equilibria when the

buyer agents use NV parallel interactions at each search round.

Input: @ - a set of “suspected” equilibria strategies; p - required precision level; IV - number of parallel interactions used by
the buyer agent; (Tupper, Tlower) - an interval in which the buyer agents’ reservation values of new “suspected” equilibria
should reside.

Output: () - an extended set of ”suspected” equilibria strategies.

1: Set z° = Typper
2: Set 'tho'r'e = :rgtore =0
3: for (i = 1to 2) do

diff=p+1

5 while dif f > p do

6 Setz® = ‘rzquation@?) (‘Tb)

7. Set xb = wgquation(g) (xb)

8 Set dsz :| ¥ — :ritore | + | "Eb - 1:1-57‘t07‘6

9 Set T3iore = T° 3 Tiorore = zb

10:  end while

1:  if (z°,2°) ¢ Q then

A

12: add (z°,2°) to Q
13: end if

14: Set z¥ = Tlower

15: end for

16: if found different sets (x°, %) in both executions of steps 4-13 then
17. Q= FindSuspect(Q, p, N, (Tiower, 72“1"’“;1“1””)

18: @ = FindSuspect(Q, p, N, (M, Zupper)

19: end if

20: return @

this set new “suspected” equilibrium sets upon finding them. Thus for its initial execution we
can use Q = () as an input. On each of its recursive executions it operates on a specific interval
of buyer agents’ reservation values. Therefore, for its initial execution we can use the interval
(0, 2%) where 2%, is the optimal reservation value of the buyer type agents when seller agents
use a reservation value zero (2% can be found using either a direct calculation through Equation
9 or Algorithm 1 that was given in the previous subsection). Since z% reaches its maximum
value when z° = 0 (see Equation 10) then there will be no set of strategies in equilibrium
in which buyer agents use a reservation value greater than this latter z% value. Therefore all
suspected equilibrium sets are within the interval with which the algorithm begins. In its main
loop (steps 5-10) the algorithm finds a set of strategies “suspected” to be in equilibrium, by
sequentially changing the reservation values used by the different agent types, where at each
stage one type sets its optimal reservation value given the last reservation value set for the other
type. This calculation method always converges to a point of intersection of the two curves as
depicted in Figure 4 (i.e., “suspected” equilibrium set) since each agent’s reservation value is
sequentially increased/decreased (as a reaction to the changes in the other agent’s reservation
value) in a decreasing rate, in each subsequent stage of the process. If only a single equilibrium
set exists in the specified interval, then when executing steps 5-10 from both ends of the interval
the same set of reservation values is reached, thus there is no point in searching for further
”suspected” strategy sets in this interval. Otherwise, if a new “suspected” set of strategies
is found, then we divide the interval into two parts and recursively activate the algorithm for
any of these two new intervals (steps 17-18). This is due to the fact that we do not know the
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Figure 5: Finding ”suspected” equilibrium sets of strategies (/N=4)

number of “suspected” equilibrium sets that might exist in this interval. In any case, any new
”suspected” equilibrium sets of strategies are added to the set () (steps 11-13).

Proposition 3 Algorithm 2 will reach all suspected equilibria strategy sets. The number of
recursive executions of itself that will be initiated is bounded by Z * In(2) , where d is the
interval given in its most initial execution and Z is the number of suspected equilibria in the
specific environment.'%

Proof: Further recursive executions of the algorithm occur only if the interval contains “’sus-
pected” equilibrium sets (steps 17-18), in which case the interval is divided into two equal
sub-intervals. If the given interval does not contain ’suspected” equilibrium sets (i.e., both ex-
ecutions of steps 4-13 end up with the same set of strategies) then no further executions take
place for this interval. Therefore, the number of recursive executions is equivalent to a binary
search (in an interval smaller than d) for any “suspected” set of strategies that exist (i.e., for any
intersection of the two curves). O

Figure 5 illustrates the changes in the strategies of the two-types of agents when using En-
vironment 1 (where buyer agents use N = 4). From this figure we can clearly see that the
singular intersection point is where buyer type agents use 2} = 65.6 and seller type agents
use z; = 9.2. This is in comparison to the (46.5,46.5) equilibrium reservation values, asso-
ciated with the traditional sequential two sided search model (for NV = 1), obtained from the
middle curve in Figure 1 by calculating V?(2%) = 2%. Recall that in Theorem 1 we obtained
VO (28,) = x4, (and similarly for the seller type agents). Thus in the former scenario, the buyer
type agents’ revenue increases at the expense of the seller type agents. This is always true
since the buyer agents become more selective, thus the probability for the seller agents to be
accepted in a given encounter decreases (and the increase in the number of search rounds the
seller agents need to execute results in increased aggregated search costs).

16The actual number of times the code is executed is smaller since the search is performed in intervals that decrease exponentially on each
execution.
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3.4 Finding Equilibria Strategies

Now that agents of both types are capable of calculating their strategies, given the number of
parallel interactions set by the buyer agents, N, we proceed to find the equilibria strategies. As
noted in the previous subsection, the agents can identify suspected equilibrium strategies set
for each /V value. However in order to guarantee that this is a set of equilibria strategies, we
need to make sure no single buyer agent has an incentive to deviate from its specified strategy
by using a different strategy (N’, %) while all other buyer agents use strategy (N, 2%) and all
other seller agents use strategy x3,. Fortunately, we do not need to check the stability of the set
(N, 28, x%,) for any N’ # N value. The following Theorem 3 suggests that we only need to
check if a single buyer agent has an incentive to deviate towards using strategies (N + 1, 2% 41)
and (N — 1,28 _,) in order to declare a set of strategies as equilibrium.

Theorem 3 (a) If V(b)) > Vi (2%,) then V() > Vi (a%.p), VE > 1 (b) If
V5 (b)) > VE (2% ) then VE(ab) > Vi, (24 _,), V1 < k < N.

Proof: We first prove part (a) of the theorem. Assume otherwise, i.e., assume Vi (z%) >
Vi (@hs) and Vi (2% 1) < Viio(2h ). Therefore, given Equation 9, we obtain:

C(N) + C(N +2) — 2C(N +1) = (11)
— (= PR (0= By + [ (= By =2 [ (1= i)y

Since C'(N) is an increasing linear (or convex) function of NV then C'(N)+C(N +2) —2C(N +
1) > 0. Also, from the assumption used in the prelude of the proof, we know (using Theorem
1) that: 2% > 2%, and 2%, < 24, thus:

0 < [ Fy @y (1 B oody—2 [ F )y = [ F)"(1- ) a2

_ —_ _ b
TN Y=TpN11 Y=TNi1 Y=TN11

where the last equality is derived using the substitution F?(y) = (F°(y))® as given in Equation
3. The result of Equation 12 is a contradiction, thus the assumption made at the beginning
of the proof is invalid. Thus V{(z%) > V¥, (2%,,) necessarily results in V5, (25, ,) >
Viio(2hss). Therefore, if Vi (2h) > Vi, (2% ) then the value of V?(z}) (Vk > N) de-
creases as k increases, thus VY (z%) > Vi, (2%.,,), Vk > 1. A similar proof can be written
for part (b) of the theorem. O

Therefore, in order to find an equilibrium in a given environment, one needs to find the
’suspected” equilibrium strategy sets for each /N value (as explained in subsection 3.3), and
then check if stability holds for these sets by evaluating the buyer type agents’ utility when
shifting to N + 1 or N — 1 parallel interaction strategies. Nevertheless, this process requires
an upper bound for N (for a lower bound we can use N = 1). The following theorem suggests
such an upper bound.
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Theorem 4 The number of parallel interactions, N*, that is used by buyer agents in equilib-
rium is bounded (from above) by any N that satisfies:
E[U?] E[UX]+C(2)—2C(1)

N>max( ot C2) — O(1)

) (13)

Proof: First, we will prove Lemmas 1-3. The first lemma suggests that the expected maximum
utility of a sample increases as the sample size increases (however in a decreasing rate). This
lemma is then used in the proof of Lemmas 2-3, that specify the condition under which both
seller and buyer agents will accept any agent they come across.

Lemmal (1) £ o (2)2EUx g
Proof:
(1) Formulating the explicit expression E[U% ;] — E[U}], we obtain:
B[V )~ BIUR = [ (F0) = F')™ )iy (14)
y=0

which is always positive.
(2) Formulating the explicit expression E[U} ] — 2E[U% ;] + E[U%], we obtain:

ElU o] = 2Bk + UK == | PO)0-F@)Pay  as
which is always negative. O y
Lemma 2 Seller agents will commit to any partnership if the buyer agents use N > E[CUS]
parallel interactions.
Proof: Substituting N > @ in the appropriate seller’s modification for Equation 4 (see

Equation 33 in Appendix B) we obtain:

(1= F*(")") [ )2, vf*(y)dy — E[U?]

VST T Re O Pe)) (1o

= [y ) P )Ny — [yl ()
(1= Fo(a)N)(1 = F(z%))

Now notice that the right hand side of Equation 16 above is negative for any x° value. Therefore
V#(0) < 0, and according to Theorem 8 (given in Appendix C), V*(x*) is a strictly decreasing
function of x°. Thus the seller agents’ strategy in this scenario would be to use z° = 0, i.e.,
accept any partnership. O

Lemma 3 Buyer agents will use a reservation value 1% = 0 if the number of parallel interac-
(E[Uﬂ E[U&]+C(2>—2C<1))
c ' c@-CcO

tions they use satisfies: N > max
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Proof: From Lemma 2, we ascertain that in this case the seller agents accept any partner-
ship, thus (1 — F*(z®)) = 1. Now notice that C(1) + (C(2) — C(1))(N — 1) < C(N) for
any N > 1 (because the cost function C'(N) is an increasing linear (or convex) function).

Therefore if we use N that satisfies E(U%) < C(1) + (C(2) — C(1))(N — 1) (equivalent to

N E[UJI)VC](E)CEQC)(}?C(U) then we can apply the same methodology used in Lemma 2 and prove

that any buyer’s expected utility when using this /V value is negative and therefore the buyer
agents use 2%, = 0 as their reservation value. O

Returning to the proof of Theorem 4, notice that for any N that satisfies the theorem’s
condition, all agents’ strategy would be to use a zero reservation value. Therefore, buyer and
seller agents’ expected utility becomes V°(0) = E[U%] — C(N) and V*(0) = E[U?] — N,
respectively (derived from Equation 4 and its appropriate modification for the seller as given
in Appendix B). Since the buyer’s utility V°(0) = E[U%] — C(N) is negative for this N
value (see Lemma 3), it is also a decreasing function of /V for any /N value that satisfies the
theorem’s condition. Therefore, a buyer agent will always have an incentive to deviate from

strategy (N', 2%, = 0) to strategy (N, 2%, = 0) for any N’ > N. Thus there is no equilibrium

in which buyer agents use a strategy (N’ > N, z%,). Since both E[U®] — ¢ and E[U@a)ofgaic(l)

are increasing concave functions (see Lemma 1), an /V value that satisfies Equation 13 always
exists. O

Once we have bounded the range of possible values for the equilibrium number of parallel
interactions to be used by the buyer agents, we can suggest Algorithm 3 as a computational
means for finding the equilibrium strategies.

Algorithm 3 An algorithm for finding the equilibrium strategies.

Input: p - required precision level.

Output: Result - set of equilibrium strategy sets, in which each element defines the number of parallel interactions used by

buyer agents and the reservation values used by the buyer and seller agents.

Set an upper bound, Ny pper according to Theorem 4.

Set Result =

for i = 1to Nypper do
Find the ”suspected” equilibrium strategy sets using Algorithm 2 when the buyer agents use 7 parallel interactions.
Add to Result each of the sets found in step 4 that satisfies the conditions given in Theorem 3.

end for

return Result

AN A A

While Algorithm 3 returns all the ’suspected” equilibrium sets of strategies, we do not at-
tempt to determine which one will eventually be used. The research on multiple non-dominating
equilibrium strategies in game and agents theory is quite rich [17], and thus we do not include
this question within the scope of the current paper.

Figure 6, illustrates the expected utility of buyer agents as a function of the number of
parallel interactions, IV, that they use when in environment 1. In this case, the optimal expected
utility will be obtained when using N = 11. This expected utility that the buyer agents obtain
in equilibrium is greater than the one obtained in the purely sequential two-sided search model
(see Figure 1). The utility of the seller agents significantly drops in this case.
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Figure 6: Extracting equilibrium sets of strategies for environment 1

3.5 Buyer Agents’ Incentive to Use Parallel Search

As demonstrated in Figure 2, in many environments buyer agents have a strong incentive to
adopt the new parallel search mechanism. The following Theorem 5 suggests a simple rule for
checking whether or not buyer agents indeed have an incentive to adopt parallel search in a
given environment.

Theorem 5 [f the index I, calculated according to Equation 17 below, is greater than I then
any single buyer agent has an incentive to deviate from a purely sequential search strategy to a
parallel one.

OO (= Py -
0@ [ (- Py

Proof: From Theorem 3 we learn that if a buyer agent’s expected utility decreases when it shifts
from its (N = 1,2%) strategy to a new strategy (N = 2, z5), while seller agents do not change
their reservation values, then its expected utility when using strategy (N = 1,2%) is greater
than when using any other strategy (N = k,z%), k > 1. Therefore, the adoption of a parallel
search strategy occurs only if V?(x4) > V(%) holds (while the seller agents use a reservation
value ). Thus, given Theorem 1, all we need to prove is that if / > 1 then x5 > 2% holds.

Using two instances of Equation 9, one for (N = 1, 2%) and the other for (N = 2, %), while
the seller type agents continue to use their equilibrium strategy x, we obtain:

C(1) [7,4(1 = FP(y)?)dy
C2) [7,,(1— F(y))dy

If 25 > 2% then replacing x4 with 2% in Equation 18 above will result in the right hand side of
the equation being greater than 1. O

Theorem 5 is applicable for any distribution function. Its advantage is that it supplies a
simple tool for determining whether the analysis suggested in this section should be applied
in the specific environment in which the agents operate. Using Equation 17, the agents (or a
market maker or a market designer) can identify if a single buyer agent will have an incentive

1=

(18)
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to deviate from the traditional sequential search strategy to a parallel search strategy (assuming
all other agents use sequential search). If such an incentive exists, then a sequential-search
based equilibrium will not hold in the environment and all buyer agents will use the parallel
search technique. The new equilibrium in this case can be found using the algorithms developed
throughout this section.

4 Future Extensions

The work presented in this paper is the first step towards adding parallel search into MAS
two-sided search models. Obviously, once the analytical foundations for analyzing a model of
this type are set, many further two-sided search variants can be considered. In this section we
review two of these models, which we perceive as a natural extensions of our work. While
the analysis of these two model variants is beyond the scope of this paper, we do choose to
present the basic equations on which their analysis should be built (which are modifications of
those given in the previous sections) and point to issues that need to be addressed as part of the
attempt to apply the methodology presented above.

4.1 Considering Several Sellers at Each Search Stage

In the previous section we assumed that a buyer agent engaged in parallel interactions is re-
quired to reply to all the agents it interacts with simultaneously, thus the agent commits only to
the seller associated with the highest utility at that search stage (assuming the utility is above
its reservation value). Notice that within any search round of the buyer agent, there might be
several seller agents, with whom it interacts, associated with a utility greater than its reservation
value. In such a scenario, the buyer agent can benefit from an a-synchronous decision making
mechanism, in which it holds its reply to some of the agents. This way, the buyer agent, upon
receiving a rejection from the seller agent associated with the highest utility, can improve its
expected utility by considering committing also to partnerships with other seller agents within
the current search stage.

In this scenario, the buyer agent first identifies set A of seller agents to whom it is willing to
commit (i.e., associated with a utility greater than its reservation value) out of those reviewed
in the current search stage, and rejects the rest. Then it commits to the agent A; € A that is as-
sociated with the partnership yielding the highest utility. If a rejection was received from agent
A; then this agent is removed from A and the buyer commits to a new partnership according
to the same criteria. The process continues until either: (a) set A is empty, in which case the
buyer agent initiates another search round; or (b) a dual commitment is obtained, in which case
the agent rejects all remaining agents in A.

Notice that the above change does not affect the interaction protocol followed by the seller
agents. Buyer agents, on the other hand, alter their interaction protocol (in comparison to the
one presented in section 2.3) as follows:

1: loop

2. Setavalue N

3:  Locate randomly NV seller type agents and initiate interaction with all of them in parallel
4. Evaluate the utility U, (”i) from a partnership (transaction) with each agent 7, ( < N).
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5. Set A = {all partnerships the agent is willing to commit to }

6:  Reject all partnerships not included in set A

7. while (A # () do

8: Commit to the partnership associated with the highest utility in A and remove it from
set A

9: if (the other agent responded ”commit”) then

10: Reject all the remaining agents in A

11: Terminate search

12: end if

13 end while

14: end loop

The analysis of this new mechanism variant requires the introduction of several additional
definitions and notations to aid in formally introducing its equations. Consider a buyer agent
that interacts with N seller agents at a specific search stage. We use G(z) to denote the
probability that the k" best seller agent (in terms of associated utility) among the agents with
whom the buyer agent interacts will offer a utility equal to or smaller than z. The value of
G () can be calculated using:!”

G =3 (V) - Py ez (19

, 1—1
=1

Notice that the function G (z) satisfies:

lim Gy(x) =15 lim Gy(a) = 0 (20)
The above is intuitive since the probability that the £*" best partnership will be associated with
a utility smaller or equal to the maximum possible value is always 1. Similarly, the probability
that the k" best partnership will be associated with a utility smaller than the discrete value 0 is
equal to zero (since the distribution is continuous). Notice that G (x) increases as a function of
k. This, also, is intuitive since the probability that the k-th best element in a sample of N > k
values is smaller than a value z is always smaller than the probability that the (k£ + 1)-th best
element in the sample is smaller than x.
Since G(x) per se is a c.d.f. (commutative distribution function), we can find its associated
p.d.f., denoted gy (x), by deriving Equation 19:

gr(x) = dGilx) _ Z ( N )fb(x)(Fb(x))N_i(l — F°(2))"*(N—i+1-NF°(z)) (21)

dx : i —1
=1

Using the above definitions, we can calculate the expected value of a buyer agent when
interacting with N seller agents while using a reservation value z° and while the seller agents
use a reservation value z°. This is given by:

17The probability that the k*" best seller will have a utility smaller than z is the probability of having at least N — k 4 1 sellers with a
utility equal to or smaller than x. Therefore the index ¢ goes from 1 to k, adding the probability of having exactly 7 — 1 sellers with a utility
greater than « and N — 4 + 1 sellers with a utility smaller or equal to x.
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) . using the it/ best seller
seller accepts buyer former (i — 1) rejected
N 7\ o

S (TFE) T [ ey ) - ow)
y=ab
N : (22)
2z (L= Fo(@))(Fo(2)) =1 (1 - Gi(a?))

Here, the buyer agent would have liked to partner with the k" best seller in the sample only if
all N — k better seller agents have turned it down and this k' seller agent is associated with a
better utility than the buyer agent’s reservation value.

Similarly, the expected utility of a seller agent using a reservation value 2° while the buy-
ers use a reservation value ¥ and sampling NN sellers at a time, and the other sellers use a
reservation value z* is given by:

V() =

(o WEE GNP =P ) ) )l e

Viz®) = ~ [ : : ——
<fy:xb Foly) 3oity (yog) (FP ()N = (1= FP(y)) =2 (F (2 ))H> (1—=F*(z))

Here, the term (fy]ixb fo(y) Zf\il (N]\ii)(Fb(y))N‘i(l—Fb(y))i‘l(Fs(:L’s/))i_1> represents the
probability that the current buyer agent will accept the specific seller agent for which the cal-
culation takes place. This will happen only if the utility associated with this seller agent is
above the buyer agent’s reservation value, and as long as all other partnerships considered by
the buyer agent, that are associated with a utility greater than the one of a partnership with the
seller agent, have been rejected by the other sellers.

It is notable that in this model variant the seller agents’ strategy is affected also by the strat-
egy used by other seller agents in the environment. This, is in comparison to the model where
buyer agents commit only to the best seller agent with whom they interact (if their perceived
utilities are above their reservation value), in which seller agents’ strategies are affected only
by the buyer agents’ strategy (see Equation 33 in Appendix B).

The optimal number of parallel interactions, /N, in this model might be different from the
one in the model presented in the previous sections. This is obviously a better model for the
buyer type agents since it reduces their overall search costs. It is also beneficial for the seller
type agents since it increases the probability of being accepted by the buyer, even if the seller is
not associated with the highest utility in the buyer’s sample. Nevertheless, since the interaction
mechanism is required to be a-synchronous, various aspects need to be considered prior to the
formal equilibrium analysis. For example, a seller agent in this model is required to wait until
the buyer agent receives responses from several other seller agents. It is possible that during
this time period this seller agent will be addressed by a new buyer with possibly a better utility
associated with a partnership with it. Furthermore, the asynchronous communication requires
defining appropriate protocols for maintaining timeouts and failures while communication takes
place. We do believe however, that once these setbacks are resolved, the analysis of this model
variant will benefit from the analysis methodologies presented in the previous section.
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4.2 Adding the Parallel Search Technology to the Seller’s Search

As noted, a model where sellers are also capable of conducting parallel search is not used in
current markets. However, we do anticipate its application in future C2C marketplaces, where
sellers will use more proactive methods to approach buyers. Though this is not the main focus
of this paper, we provide a short review of such a model.

Using Cs(N,) and C, (V) to denote the seller and buyer agents’ search costs, respectively,
(where N, and N, are the sample sizes used by the seller and the buyer agents), we obtain:'®

VS(‘/L‘S) = E|:Ulfest b 1[(Ub Z U(b])v] S N) N (sz xb) N (Ulfest Z xs)]+ (24)
+ V(@) @ 1@ > U, ) < N) U (U< 2") U (Upy < 7)) = Cl(V,)]
resulting in:'

(1= Ff (27) [,y 3. (y)dy — NyCL(N,)

Vei(2®) = . (25)
(1= F, (%)) (1 = Fg, (2))
Here, again, we obtain:
lim V*(2%) = lim Vo(2b) = —o0 (26)
and:
NyC (N,
lim V*(a*) = BUY, ) — —eCelNe) 27)

= L= Py
We can also suggest a theory similar to Theorem 2, where the modification of Equation 9 is:

s

NiCL(N) = (1 = Fy@)EU) - [ (1= Fi)dy) 28)
y=0

In this general model the equilibrium dynamics are highly influenced by the different cost
function structures. The equilibrium in this model is a set of strategies defining both the number
of parallel interactions and the reservation values that need to be used, (z} , x?vb, Ny, Ny), for
each agent type. However finding such an equilibrium is not trivial (we need to guarantee that
no single agent of any of the types will have an incentive to change the number of parallel
interactions and/or the reservation value specified for its type) and we cannot guarantee that
one actually exists.

The table in Figure 7 is an example of the reservation values that will be used by buyer and
seller agents, when both agents use parallel search. It uses the same environment characteristics
that are detailed in environment 1. Notice that each pair (m?\,b, %) is an equilibrium candidate
(i.e., reflecting the stable set of reservation values used when the seller type agents use /N
parallel interactions and the buyer type agents use V). Therefore, each pair should be evaluated
according to possibilities of using other /N values and different reservation values. This is

181n this scenario, both seller and buyer equations are equivalent.

19Here we used: (U} > Ufj)\ﬁ #7,j<N)= f;?‘;b Fo()N=1f(y)dy =

1_Fb(x?vb)Nb
Ny,
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Figure 7: Dual parallel search - the upper value in each cell in the table is the buyer agents’ utility and the lower
value is the seller agents’ utility, for each combination of parallel interactions (N, Np) they use.

demonstrated by the two sets of graphs in Figure 7. In this example we learn that (N, =
4, Ny = 6) is an actual equilibrium, because neither agent has an incentive to use a different
strategy. Contrarily, the pair (N, = 1, Ny = 5), is not an equilibrium point, since both agents
can improve their expected utility by using different sample sizes (N, = 3 for the buyer and
N, = 8 for the seller).

While this model suggests many interesting dynamics when analyzing the agents’ strategies
it is beyond the scope of this paper.

5 Related Work

The process of searching for partners, often associated with the agent matchmaking concept,
has wide evidence in MAS literature [22, 7]. Service matchmaking and brokering have also
been referred to in several systems and applications [43, 23]. In its wider context the pairwise
partnership formation can be seen as part of the multi-agent coalition formation model found
mostly in the electronic marketplace [19, 24, 36]. The emphasis on coalition formation mecha-
nisms in ecommerce is usually associated with the advantage of potentially obtaining discounts
based on volume as an incentive for buyer agents to cooperate [45, 46]. Additional coalition
formation models for the electronic marketplace consider extensions of the transaction-oriented
coalitions into long-term ones [7], and for large-scale electronic markets [24].

Nevertheless, while agents’ search is recognized to be costly [9, 21], coalition and part-
nership formation models typically ignore this important factor. For example, in many mech-
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anisms an assumption is made that agents can scan as many agents as needed [19], or that
a central matcher or middle agents are available to support the matching process [10]. This
applies also to coalition formation models where the analysis is derived from equilibrium con-
siderations [5, 44]. Furthermore, many of these models do not consider the temporal continuity
of the agents (i.e., their long term considerations).?® Only a few works have considered the
problem of finding matches for cooperative tasks without the help of a predefined organization
or a central facilitator [31]. None of these has considered the parallel search option.

The concept of matching agents with other agents is an important function of many domains
and processes (other than MAS), thus relevant research can also be found in economics and
social studies (e.g., students applying to colleges, workers seeking employers, the marriage
market, etc.). The review of economic literature reveals two additional relevant research areas.
The first concerns the legacy two-sided matching application [14]. Here we find two types
of agents where an agent of one type can be matched only with agents of the other type [34,
28]. A matching in this context is considered stable only if no two agents can be found who
would prefer to be matched with each other rather than with their current matches. A special
property of such two-sided markets is that stable matchings always exist and that the set of
stable matchings is a lattice under the common preferences of all agents of the same type.
These results were further used for the analysis of many extensions of the model [38, 20] and
for empirical studies of two-sided search markets (e.g., the labor markets [33]). The main
difference between the stable matching model and our decentralized costly two-sided search
model is that the first considers a centralized match-making design, where the matching process
does not involve costly search (i.e., the “stable matching” results are valid only if the process
allows each searcher to consider all potential opportunities). In our two-sided search based
model, this assumption that all parties involved have complete knowledge about the available
options from which to choose is relaxed.

The second relevant economic research area, known as search theory, considers the problem
of an individual interested in locating an opportunity which will minimize its expected cost
(or maximize its expected utility), while the search process is associated with a search cost
([26, 25], and references therein). Within the framework of search theory, three main clusters of
search models can be found. These are (a) the fixed sample size model; (b) the sequential search
model; and (c) the variable sample size model. In the fixed sample size model, the searcher
executes a single search round in which it obtains a large set of opportunities simultaneously
[42] and chooses the one associated with the highest utility. In the sequential search strategy
[35, 25] the searcher obtains a single opportunity at a time, allowing multiple search stages.
Several attempts were made to adopt the fixed sample size search [21] and the sequential search
[9] models in agent-based electronic trading environments associated with search costs. In these
cases the main focus was on establishing the appropriate characteristics of the environment and
search strategy rather than the computational aspects of extracting it. Last, the variable sample
size search method [4, 13, 29, 30] suggests a combined approach in which several opportunities
are obtained during each search period. Nevertheless, all these economic search models focus
on establishing optimal strategies for the searcher, assuming no mutual search activities are
taken. The environment in which the searcher operates in these models is completely static,

20In our model the agent has a temporal continuity, i.e., it is a continuously running process and not a ”one-shot” computation that maps a
single input to a single output and then terminates [11].
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and is not affected by the searcher’s strategy. Therefore, the searcher mainly needs to extract
the strategy that optimizes its expected utility and does not need to model the effects changes
in its strategy will have on the strategy of others in the environment. In contrast, the analysis of
two-sided search is driven mainly by equilibrium considerations.

In an effort to understand the effect of dual search activities in such models, the “two-sided”
search research followed. This notion was explored within the equilibrium search framework
[1, 8, 40, 3, 27]. The main drawback of economic two-sided search models in the context of
MAS environments is that they all consider a purely sequential search, sampling one partnering
opportunity at a time, while agents’ technology allows us to maintain a large number of par-
allel interactions when searching. Furthermore, while traditional two-sided search research is
more concerned with describing the equilibrium equations and the equilibrium affect on global
economic phenomena, MAS applications research requires computational means for deriving
the agents’ policies for different settings and the distributed computation of the equilibrium
strategy.

6 Discussion and Conclusions

The parallel interaction technique is inherent in the infrastructure of autonomous information
agents. Nowadays, as agents technology is a reality and traditional processing and commu-
nication limitations have been removed, it is high time to consider parallel search models in
MAS domains and in particular the two-sided search application. Furthermore, as proven and
demonstrated throughout the paper, there is a strong incentive for individual agents to use such
techniques in many different environment settings.

We show that the agents can control their search intensity by initiating parallel interactions
with other agents, for improving their utility. Furthermore, the mechanism we introduce is
general, and can be applied to traditional search theory domains. For example, even in the
classical marriage market application, nowadays, we can find equivalents for parallel search
such as TV shows where a candidate becomes acquainted with several potential partners or
even speed-dating.

We emphasize that the agent’s utility will never decrease when using our proposed mech-
anism. This is because the agent controls the number of parallel interactions it uses in each
search round, hence in the worst case scenario the proposed calculations will indicate that the
optimal number of interactions is 1, thus the expected utility will be identical to the case where
the traditional pure sequential method is used. In fact, the latter method is actually a specific
case of our general model, using a single interaction over each search round.

Deriving the equilibrium strategy for the agents is a complex task. The novelty of the pro-
posed analysis is that it results in efficient algorithms that allow the agents to quickly eliminate
non-equilibrium strategies. Furthermore, we have managed to establish a simple thumb rule
for determining in which environments the use of more than a single interaction at a time is
beneficial.

While the model uses pairwise partnerships, we see a potential for extending it to limited size
coalitions, e.g., a carpooling application in which the coalition size is limited to 4-5 members
(based on the capacity of different car models). In this case, the set of equations used can be
replicated to include a limited number of additional extensions of the coalition and the use of
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different opportunities distribution functions for each coalition size.

This paper reveals two potential future extensions of the analysis. The first concerns an
alternative a-synchronous communication protocol the buyer agents can use to improve their
performance and the second is a model in which all agents use the parallel search. Our initial
results relating to these two extensions suggest that the analysis methodology and results given
in this paper can nurture and play a significant role in the analysis and development of these
interesting variants.
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A The Buyer Agent’s Expected Utility Function

Recall that the expected utility, V*(2?), of a buyer agent that uses a strategy (N, z°) while seller
agents use a reservation value x® is given by (Equation 1 from Section 3.1):

V¥ (2") = B |Upo@1[(Upeu> 2" )N(U* > 2*) 4V (2") 01[(Up< 2”)U(U* <2*)-C(N)| (29)

The term o1[(UL, > 2°) N (U > x°)] represents the indicator of the event where the specific
buyer agent and its “best” encountered seller agent (in the current search round) have found
the perceived utility from a transaction between the two of them to be greater than or equal
to their reservation values, resulting in a dual commitment. In this case, the buyer agent’s
utility from the partnership is U?,_,, where U_,, is characterized by the probability distribution
function f% (x) (see Equation 3). Therefore, E[U,fest o 1[(UL, = 2°) N (U > a:s)]] =
(1= F*(z)) [ =, vfX (y)dy. The term o1[(Uy,,, < 2°)U(U® < x°) represents the indicator of
the complementary event (i.e., where the seller and/or the buyer reject the potential partnership
between them). The probability for the latter event is 1 — (1 — F%(2%))(1 — F*(z*)), and the

expected future utility (due to the stationarity of the problem) is V°(z?).
Therefore, the above Equation 29 transforms into:

[e.9]

Vi) = (1= Fea) [

y=r

Yfn()dy+ (1= (1= Fy (@) (1= F*(27))V* (@) = C(N) (30)
resulting with Equation 4:

(1= F*(2) [.Z 0 yfX(y)dy — C(N)

Y

(1= FR(a*)(1 = F5(z*))

V() = (31)

B Appropriate Seller Agents’ Equation Modifications

In this appendix we present the appropriate modifications for seller agents for primary equa-
tions and theorems presented in the paper.

A modification of Equation 4

A seller agent’s expected utility when using a reservation value x* while buyer agents inter-
act with IV seller agents in parallel and use a reservation value x° can be calculated using:

([0 Foa ) w)dy) [, uf*(y)dy — ¢
(S R W) fo(y)dy) (1 — Fo(a*))
The term ([, F}r_,(y) f*(y)dy) represents the probability that the buyer agent commits to

a partnership with the seller agent (i.e., the probability that the utility from partnering with
the seller agent is greater than the maximum utility associated with partnering with any of the

Vi(2®) =

(32)
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other N — 1 seller agents with whom the buyer interacts). Recall that fyo;b FY () fo(y)dy =
[ P )N o (y)dy = (1 — F*(«*)N) /N, thus:

e (L= FPEN) [ yfe(y)dy — Ne
Vi) = (1 — Fo(zb)N)(1 — Fs(a9)) (33)

A modification of Equation 5

An immediate result from Equation 33:

Nc

lim V¥(2®) = —o0 ; lim V¥(2®) = E[U®] —

x5 —00 x5—0

A modification of Theorem 1

Theorem 6 The expected utility function V°(x*) is quasi concave, with a unique maximum
obtained at point 3, satisfying:

Vi(zy)=2N (35)
The proof is identical to the one used in Theorem 1.

An example where x4, cannot be computed directly from Equation 9

Consider for example the environment where utilities are normally distributed (a common
distribution in most real-life applications). Here Equation 9 becomes:

2 2
{l"?\, e —(y—p) 7( 7}4)

c<N>:<1_/me Bl - /yo1_/

This function is certainly not trivial and contains non-integrated terms.

dy dy) (36)

A modification for Theorem 2

Theorem 7 Given the number of parallel interactions used by the buyer agents, N, and the
reservation value they set, T';, the seller agents’ optimal reservation value, 1%, satisfies:

s

N = (1= ) E) - [ xo (1— F*(y))dy) 37)

The proof is identical to the one used in Theorem 2.
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C Scenarios where the Expected Ultility of an Agent Strictly Decreases as
a Function of Its Reservation Value

As discussed in Proposition 1, there is a unique scenario, in which the expected utility func-
tion strictly decreases and never satisfies V°(z%) = 2% The following theorem presents this
scenario.

Theorem 8 If the expected utility of a buyer agent when using a reservation value =% = 0
(i.e., accepting any potential partnership) is negative, then the expected utility function V°(x)
(Vs(x) for the seller) strictly decreases.

Proof: If V(0) < 0 then Equation 7 results in a negative first derivative at point 2° = 0.
Therefore, a value 2% satisfying V (z%) = 2% is non-feasible (given the concavity charac-
teristic found in Equation 8). Thus, given the limit found in Equation 5 for the case where
x® — o0, the expected utility function of the agent strictly decreases and reaches its maximum
value (which is negative) for 2* = 0. O

Furthermore, it can easily be shown directly from Equation 4 that if V°(0) < 0 then

VP (xb) < 0 for any z° > 0. Substituting V?(0) < 0 in Equation 4 we obtain:

C(N) > / y e (y)dy (38)
Yy

=0

Therefore, for any 2z > 0 the numerator in Equation 4 is always negative and the de-

nominator is inevitably positive, resulting in a negative expected utility (thus a scenario where
VP (xb,) = 2% does not exist).



Draft: August 29, 2007

37

Notation

Meaning

Us,U°

the seller and buyer agents’ utility perceived from a specific transaction between them (respectively)
(drawn from the probability distribution functions £*(U*) and f*(U®))

PO, F(0)

p.d.f and c.d.f functions of the utility obtained by seller agents from any potential transaction

fU”) . FP U

p-d.f and c.d.f functions of the utility obtained by buyer agents from any potential transaction

C(N) t}12e buyer-agents’ search cost when interacting with N seller agents (satisfying %%V) > 0 and
PteltN
el

c the seller-agents’ search cost per search round (a seller agent interacts with a single buyer agent at a

time)

Ssetlers U—{accept, reject}

seller agents’ strategy (determines whether to accept or reject the current potential partnership that
yields a utility U*®)

Shuyer: Ué’ﬁst—»{accept, N}

buyer agents’ strategy (determines whether to accept or reject the best potential opportunity found in
the current search stage (yielding a utility U2 _,) or to resume the search by interacting with N new
seller agents)

UL . the utility associated with the “best opportunity” among the potential opportunities available to the
buyer agent at a given stage of its search

z° a reservation value used by a seller agent

x° a reservation value used by a buyer agent

Vi(z), Vi(z) the expected utility of buyer and seller agents, respectively, when using a reservation value

U (bi) the utility for a buyer agent obtained by a partnership with the ¢ — th seller agent with which it
interacts at a specific search stage

x5 the buyer agent’s reservation value that maximizes its expected utility when maintaining N parallel
interactions with seller agents at each search round, given the strategy used by the seller agents

TN the seller agent’s reservation value that maximizes its expected utility when buyer agents maintain
N parallel interactions with seller agents at each search round, given the strategy used by the buyer
agents

F% (z) the cumulative distribution function of the maximum utility for the buyer agent when interacting with
N seller agents in parallel

Y (@) the probability distribution function of the maximum utility for the buyer agent when interacting with

N seller agents in parallel

E|U%] the expected maximum utility for the buyer agent when interacting with /N seller agents in parallel

:vl]’\,+ , x?\,_ upper and lower bounds for the buyer agents’ optimal reservation value, respectively

p a precision level used in the suggested approximation means

1 an index used for determining if a single buyer agent has an incentive to deviate from a purely se-
quential search strategy to a parallel one.

A a set of seller agents with whom a buyer agent is considering committing to a partnership, when
trying to improve its acceptance probability (see section 4.1)

Gr(x) the probability that the k™" best seller agent (in terms of associated utility) among the agents with
whom the buyer agent interacts is offering a utility equal to or smaller than z (see section 4.1)

gi(x) the probability distribution function derived from the function G, (z) (see section 4.1)

2 the reservation value used by other sellers, used in the process of setting a single seller agent’s strategy

in the variant where buyer agents are trying to improve their acceptance probability (see section 4.1)

Cs(Ns) , Co(Ny)

the seller and buyer agents’ search costs, respectively, when all agents use parallel search (see section
4.2)

Ns ,Nb

the sample sizes used by the seller and the buyer agents, respectively, when all agents use parallel
search (see section 4.2)

Table 1: Summary of notations used for special variables and constants.



