Teamwork with Limited Knowledge of Teammates

Samuel Barrett and Peter Stone
Dept. of Computer Science
The Univ. of Texas at Austin
Austin, TX 78712 USA
{sbarrett,pstone } @cs.utexas.edu

Sarit Kraus'~
'Dept. of Computer Science
Bar-Ilan University
Ramat Gan, 5290002 Israel
2Inst. for Adv. Computer Studies

Avi Rosenfeld
Dept. of Industrial Engineering
Jerusalem College of Technology
Jerusalem, 9116001 Israel
rosenfa@jct.ac.il

University of Maryland
College Park MD 20742
sarit@cs.biu.ac.il

Abstract

While great strides have been made in multiagent teamwork,
existing approaches typically assume extensive information
exists about teammates and how to coordinate actions. This
paper addresses how robust teamwork can still be created
even if limited or no information exists about a specific group
of teammates, as in the ad hoc teamwork scenario. The main
contribution of this paper is the first empirical evaluation
of an agent cooperating with teammates not created by the
authors, where the agent is not provided expert knowledge
of its teammates. For this purpose, we develop a general-
purpose teammate modeling method and test the resulting
ad hoc team agent’s ability to collaborate with more than 40
unknown teams of agents to accomplish a benchmark task.
These agents were designed by people other than the authors
without these designers planning for the ad hoc teamwork set-
ting. A secondary contribution of the paper is a new transfer
learning algorithm, TwoStageTransfer, that can improve re-
sults when the ad hoc team agent does have some limited ob-
servations of its current teammates.

1 Introduction

Creating effective teamwork is central to many tasks. Due
to the importance of this problem, a variety of teamwork
frameworks and formalizations have been proposed by the
multiagent research community (Grosz and Kraus 1996;
Tambe 1997; Horling et al. 1999). In implementing team-
work, one of these existing approaches may be used, but they
all require agreeing in advance upon a shared coordination
protocol. However, many real-world domains exist where
agents may be developed by a variety of sources, making
it difficult to ensure that all the agents share the same pro-
tocols. Therefore, it is important that agents be capable of
adapting to previously unseen teammates to cooperate in ac-
complishing their joint tasks. Researchers have begun study-
ing this problem under the name ad hoc teamwork (Stone et
al. 2010), but most previous work assumes that the ad hoc
team agent knows its teammates’ behaviors or has expert-
provided knowledge.

Consider a scenario in which several robots are tasked
with capturing intruders. These robots are designed to coor-
dinate as a team to capture the intruder as quickly as possi-

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ble. However, if a robot breaks, it may be necessary to imme-
diately replace the robot with a new robot that may not know
the team’s strategy for capturing intruders. Therefore, it is
advantageous for the replacement robot to observe its team-
mates and quickly adapt to them in order for the team to cap-
ture intruders in minimal time. If the replacement robot has
observations of past teammates, it can use this knowledge to
adapt to the new teammates more quickly. To address this
problem, this paper uses a simple, but representative version
of this team domain with teammates not developed by the
authors. In this problem, we assume that all teammates have
experience in the domain, but the replacement agent may not
necessarily have experience with its current teammates.

The main contribution of this paper is the introduction and
evaluation of an ad hoc team agent that explicitly builds a li-
brary of models of past teammates and selects actions using
a sample-based planning algorithm. The ad hoc team agent
is evaluated by its ability to cooperate with more than 40
previously unobserved teams of agents not created by the
authors, denoted externally-created teams. The externally-
created teammates were designed to perform the shared task,
but not adapt to new teammates. The use of externally-
created teammates prevents biasing the teammates to be pre-
pared for ad hoc teamwork and prevents inadvertent expert
knowledge being given to the ad hoc agent. The second con-
tribution is a new transfer learning algorithm, TwoStage-
Transfer, that can improve the ad hoc team agent’s perfor-
mance when it has some limited observations of its current
teammates.

2 Related Work

Multiagent teams have been well studied, with previous
research mainly focusing on creating standardized meth-
ods for coordination and communication. The SharedPlans
framework assumes common recipes exist across team-
mates (Grosz and Kraus 1999). In STEAM (Tambe 1997),
team members build a partial hierarchy of joint actions. The
TAEMS framework (Horling et al. 1999) consists of a hi-
erarchy of rules, where agents coordinate through common
groups, tasks, and methods.

While these algorithms are effective in many settings,
they all assume that all teammates are using the same team-
work mechanism. Even when this assumption is true, in
many classes of teamwork problems, including the prob-



lems we study, selecting optimal actions is computation-
ally intractable (Pynadath and Tambe 2002). Thus, even if
a joint coordination algorithm could be assumed, designing
agents to effectively learn how to behave using “standard”
approaches such as Bayesian learning or planners for par-
tially observable Markov Decision Processes (POMDPs) are
not realistic. In order to effectively learn this task and avoid
this inherent complexity, we use generalized modeling and
transfer learning combined with a sample-based planner.
Additionally, we consider a challenging yet practical set
of problems where teammates cannot be assumed to have a
common teamwork algorithm, referred to as ad hoc team-
work. This paper is particularly motivated by Barrett et al.’s
work (2011), in which the ad hoc agents are provided ex-
pert knowledge about potential teammates. An overview to
current research on ad hoc teamwork is presented by Bar-
rett and Stone (2012). One line of early research on ad hoc
teams involves an agent teaching a novice agent while per-
forming a repeated joint task (Brafman and Tennenholtz
1996). Other research includes Jones et al.’s (2006) research
on pickup teams cooperating to accomplish a treasure hunt.
Liemhetcharat and Veloso (2011) reason about selecting
agents for ad hoc teams, and in robot soccer, Bowling and
McCracken (2005) consider the case where the ad hoc agent
is given a different playbook from its teammates. Further
work into ad hoc teams using stage games and biased adap-
tive play was performed by Wu et al. (2011). However, the
majority of these works use author-created teammates or
provide the agent with expert knowledge of its teammates.
Whereas ad hoc teamwork focuses on cooperating with
teammates and makes assumptions about their intentions,
the related problem of opponent modeling considers rea-
soning about opponents and often focuses on the worst case
scenarios. One interesting approach is the AWESOME algo-
rithm (Conitzer and Sandholm 2007) which achieves conver-
gence and rationality in repeated games. Another approach
is to explicitly model and reason about other agents’ be-
liefs such as the work on I-POMDPs (Gmytrasiewicz and
Doshi 2005), I-DIDs (Doshi and Zeng 2009), and NIDs (Gal
and Pfeffer 2008). However, modeling other agents’ beliefs
greatly expands the planning space, and these approaches do
not currently scale to larger problems. On the other hand, our
research demonstrates that general teamwork modeling can
be applied to learn how to behave in teams, even without any
a-priori knowledge of the current teammates, though our ap-
proach does not make formal performance guarantees.

3 Problem Description

This paper considers the case where an ad hoc agent is try-
ing to cooperate with a set of teammates it has never seen
before. If the ad hoc agent and its teammates share methods
for communication or coordination, it can directly cooperate
with them. However, if these protocols are not available, the
ad hoc agent should observe its teammates and try to adapt
to their behaviors. If the ad hoc agent has previously ob-
served agents similar to its current teammates, it should try
to leverage its prior experiences in order to cooperate with
them more effectively. As motivated in the introduction, an
example domain is robots capturing intruders, for which we

adopt a simpler version of the problem taken from the multi-
agent systems literature that still retains the interesting prob-
lem of requiring coordinated teamwork.

3.1 Pursuit Domain

The pursuit domain is a popular problem in the multiagent
systems literature because it requires all of the teammates to
cooperate to capture the prey (Stone and Veloso 2000). The
details vary, but the pursuit domain revolves around a set of
agents called predators trying to capture an agent called the
prey in minimal time.

In our version of the pursuit domain, the world is a rect-
angular, toroidal grid of size 20x20, where moving off one
side of the grid brings the agent back on the opposite side.
Four predators attempt to capture the randomly moving prey
by surrounding it on all sides in as few time steps as pos-
sible. At each time step, each agent can select to move in
any of the four cardinal directions or to remain in its current
position. All agents pick their actions simultaneously with
collisions being decided randomly. In addition, each agent
is able to observe the positions of all other agents.

3.2 Ad Hoc Teamwork

Ad hoc team agents must be able to cooperate with a vari-
ety of previously unseen teammates to accomplish a task. In
this paper, we adopt the setting where a team of n agents are
pre-designed to cooperate to accomplish a shared task. Then,
one of these agents is replaced by an ad hoc team agent that
shares the team’s goals, but does not know its teammates’
behaviors. Therefore, the ad hoc agent’s goal is to improve
the team’s performance given its current teammates, but the
ad hoc agent cannot directly control its teammates’ behav-
iors, only its own actions. In this work, the shared task is the
pursuit domain, and the teams have 4 agents that are exter-
nally created as discussed in depth in Section 5.1. This prob-
lem fits into the evaluation framework proposed by Stone et
al. (2010).

4 Modeling Teammates

In order to cooperate effectively with its teammates, the ad
hoc agent chooses its actions by planning about their long
term effects. To this end, this paper assumes that the ad hoc
agent knows the model of the domain and the prey but must
learn to predict its teammates’ actions. Learning teammate
models is a departure from previous work where teammate
models were fixed (Tambe 1997) or a set of possible models
was provided by an expert (Barrett, Stone, and Kraus 2011).

4.1 Planning

Even if the ad hoc agent has a perfect model of its team-
mates, the planning problem is still difficult. With four
predators and a single prey, the pursuit domain has a branch-
ing factor of 5° = 3,125 actions and there are approx-
imately (20 * 20)°> ~ 10'3 different states. When the ad
hoc agent is uncertain of its teammates’ behaviors, the prob-
lem is partially observable, but the problem is too large for
standard, optimal POMDP planning algorithms. To plan ef-
ficiently, our ad hoc agent uses Upper Confidence bounds



for Trees (UCT) (Kocsis and Szepesvari 2006), a Monte
Carlo Tree Search (MCTS) algorithm that employs upper
confidence bounds for controlling the tradeoff between ex-
ploration and exploitation. Previous work has shown that
UCT performs well on domains with high branching factors,
such as Go (Gelly and Wang 2006) and large POMDPs (Sil-
ver and Veness 2010) as well as pursuit problems (Barrett,
Stone, and Kraus 2011).

In UCT, the ad hoc agent plans more each time it must
select an action. To plan, the ad hoc agent performs a number
of simulations from the current world state until the prey
is captured. The ad hoc agent tracks the number of times
it has seen each state-action and estimates the value of the
state-action, i.e. the expected time to capture the prey from
the given state. During these simulations, the ad hoc agent
selects its actions by choosing the one with the highest upper
confidence bound, causing it to explore when it is unsure of
the best action and exploit its knowledge when it is confident
of the results.

4.2 Model Selection

Performing the simulations for the UCT rollouts requires
that the ad hoc agent has a model its teammates’ behavior. If
the agent starts with a correct prior belief distribution over
a set of possible behavior models, it can update the model
probabilities using Bayes’ theorem. However, if the correct
model is not in the set, using Bayes’ theorem may drop the
posterior probability of good models to O for a single wrong
prediction, unduly punishing good models that make a sin-
gle mistake. Therefore, it may be advantageous to update the
probabilities more conservatively, such as using the poly-
nomial weights algorithm that has shown promise in regret
minimization (Blum and Mansour 2007):

loss = 1— P(actions|model)
P(model|actions) o< (1 — 7 *loss) x P(model)

where 7) is empirically chosen to be 0.1.

Given the current belief distribution over the models, the
ad hoc agent can sample teammate models for planning,
choosing one model for each rollout similar to the approach
adopted by Silver and Veness (2010). Sampling the model
once per rollout is desirable compared to sampling a model
at each time step because resampling each step can lead to
states in a rollout that no model predicts should be reached.

4.3 Learning Models

The previous sections described how the ad hoc agent can
select the correct model and use it for planning, but they
did not specify the source of these models. Past work has
typically assumed that the ad hoc agent has expert-provided
models, but a more general solution is for the ad hoc agent to
learn the models. Learning allows the agent to gain a good
set of diverse models over its lifespan, allowing better per-
formance with arbitrary new teammates. The ad hoc agent
builds models of past teammates’ behaviors offline and then
selects from these learned models online while cooperating
with new teammates. It is expected that the past teammates
are representative of the distribution of future teammates,
though the future teammates have not yet been seen.

We treat building teammate models as a supervised learn-
ing problem, where the goal is to predict the teammates’
actions using the features in Table 1 with all positions be-
ing relative to the modeled teammate. The model predicts
the next action of each teammate; when combined with a
model of the domain, the ad hoc agent can plan far into
the future. With its observations of past teammates, the
ad hoc agent learns a decision tree, implemented in the
Weka toolbox (Hall et al. 2009). Several other classifiers
were tried including SVMs, naive Bayes, decision lists, and
nearest neighbor approaches as well as boosted versions of
these classifiers. However, decision trees outperformed these
methods in initial tests in a combination of prediction accu-
racy and training time. All model learning is performed of-
fline, reflecting past experience in the domain, but the ad hoc
agent updates its belief over the models online.

Description Num. Features Values

Predator Number 1 {0,1,2,3}
Prey x position 1 {-10,...,10}
Prey y position 1 {-10,...,10}
Predator; x position 3 {-10,...,10}
Predator; y position 3 {-10,...,10}

Neighboring prey 1 {true,false}

Cell neighboring prey is occupied 4 {true,false}
Previous two actions 2 {—,—,T,1,0}

Table 1: Features for predicting a teammate’s actions. Posi-
tions are relative to the teammate.

To capture the notion that the ad hoc agent is expected
to have extensive prior general domain expertise (as is as-
sumed in the ad hoc teamwork setting), though not with the
specific teammates at hand, we pre-train the ad hoc agent
with observations of a pool of past teammates. Specifically,
it watches teams of four predators for 50,000 steps for each
past teammate type, and builds a separate model for each
type of teammate. Preliminary tests show that less data can
still be effective, but the focus of this research is about min-
imizing observations of the current teammates, not the pre-
vious ones. We treat the observations of previous teammates
as experience prior to deploying the ad hoc agent. If some
observations of the current teammates are available, we can
improve our results using transfer learning in the form of
TwoStageTransfer as discussed in Section 6.

5 Results with Unknown Teammates

This section evaluates a number of ad hoc agents that vary in
the amount of information they have about their teammates.
If the ad hoc agent has access to the true model, it can plan to
cooperate with its teammates optimally or use the same be-
havior as the missing teammate. However, in the fully gen-
eral ad hoc teamwork scenario, such a model is not available.
Thus, this paper instead focuses on the case in which the ad
hoc agent learns models of its past teammates. This section
evaluates ad hoc agents that learn models of past teammates
to several baselines.

5.1 Evaluation

To properly evaluate an ad hoc team agent, it is important
to test it with a variety of possible externally-created team-



mates. Therefore, we collected two sets of teammates cre-
ated by undergraduate and graduate computer science stu-
dents in two offerings of a workshop taught by co-author
Kraus at Bar-Ilan University. Importantly, these agents were
created with no discussion of ad hoc teams; instead, the stu-
dents were asked to create a team of predators that captured
the prey as quickly as possible. The agents produced varied
wildly in their approaches as well as their effectiveness and
are broken into two sets based on the workshop for which
they were produced. The first set of agents, Studentg;oag,
has 29 agents unfiltered for performance. The second set
of agents, denoted Studentgejecreq, has 12 well perform-
ing student-created agents selected in Barrett et al. (2011).
These agents are selected for being capable of capturing the
prey in a 5x5 world in less than 15 steps on average, where
the selection was used to eliminate agents that were too in-
effective for any ad hoc agent to help. Studentg,y,q contains
a wider range of performance than Studentgejecieq as it is
filtered less heavily. These two sets provide a total of 41
different teammate behaviors for testing the ad hoc agent.
Throughout this paper, we refer to a teammate type as its
behavior function, meaning that agents coming from differ-
ent students have different types.

For these evaluations, results are averaged over 1,000
episodes. In each episode, a random team is selected, a sin-
gle agent is replaced by the ad hoc agent, and the team is
given 500 steps in which to capture the prey as many times as
possible. When the prey is captured, it is teleported to a ran-
dom unoccupied location. The randomness is fixed across
evaluations of different ad hoc agents to permit paired statis-
tical analysis, and all statistical tests are performed as paired
Student-T tests with p = 0.01. Results are normalized com-
pared to the maximum number of prey captured if the ad hoc
agent was planning with the true teammate models.

The behaviors tested are listed below, varying the infor-
mation the ad hoc agent is given. All models are learned on
past teammates in Studentgo,q using the methods in Sec-
tion 4.3, where one model was learned per past teammate
type. The behaviors are ordered from least to most general
ad hoc team settings:

e Match: Match teammates’ behavior. The ad hoc agent
knows the true model of its teammates, and behaves like
the agent it is replacing.

o DT¢or: Plan with the correct decision tree, the best the ad
hoc agent can do with the learned models.

e DT: Plan with the other decision trees. The ad hoc
agent plans with its models learned from past teammates,
not including the current type.

The ad hoc agent builds a separate decision tree for each
type of teammate it has observed. The Match behavior rep-
resents the performance of the original, unified team of
externally-created agents. The DT¢or behavior is the upper
bound of how the ad hoc agent can perform if it knows its
teammates’ type and has previously encountered this type
of teammate. The DT, behavior is representative of the
most general ad hoc team scenario, where the ad hoc agent
must cooperate with teammates that it has not previously ob-
served.

5.2 Results

This section compares the performance of ad hoc agents that
have learned models of their teammates to agents that have
access to true models of their teammates. In the DTy, set-
ting, the ad hoc agent has only observed the teammates in
Studentg;o,g €xcluding the teammate it plays in evaluation,
resulting in 28 past teammates in Figure 1a and 29 past team-
mates in Figure 1b. The DT¢or results are unattainable in the
general ad hoc team setting because they require knowing
the type of the current teammates prior to cooperating with
them, and Match additionally requires the true model of the
teammates.

S 2 2
= o

Frag of Max Reward
o

=
=)

(a) Studentgyoaq (b) Studentsejected

Figure 1: Using varied amounts of prior knowledge to coop-
erate with agents.

Figure la shows the performance of these methods. As
the teammates are created by students for a class project,
the teammates may be arbitrarily far from optimal, causing
Match to perform fairly poorly. Planning using UCT with
the model learned from the current teammate type (DTcor)
performs well, but is unreachable as it requires that the ad
hoc agent has encountered this type of teammate before and
knows the type of these teammates. If the ad hoc agent has
not encountered this type of teammate before, the DTy,
setting still performs very well, significantly outperforming
the originally designed team shown by the Match baseline.
The performance in the DTy, setting suggests that the ad
hoc agent can cooperate very effectively with teammates it
has never seen before.

In case the agents created by one class are biased to be
similar, we also evaluate the ad hoc agent on cooperating
with the Studentsejecred agents. In the DTy, setting, the ad
hoc agent is given the 29 models of the previous teammates
from Studentp;oaq. Figure 1b shows the results for cooper-
ating with teammates drawn from Studentgejecteq. Despite
the fact that the teammates drawn from Studentsejecied ShOW
better performance than the teammates from Studentg;oaq,
the Match setting still performs the worst. Once again,
planning with incomplete models still performs effectively,
with DT, significantly outperforming Match. These re-
sults confirm those for the Studentp,.,q tests, and the rest
of the paper focuses on the Studentg;,,q agents.

6 Generalizing Prior Experiences

Section 5 discusses how an ad hoc agent should cooperate
with teammates it has interacted with before as well as how
the agent should cooperate with completely new teammates.
However, in many cases, an ad hoc agent may have a lim-



ited amount of time to observe its current teammates before
it interacts with them. In addition, it has extensive observa-
tions from past interactions with other teammates. For ex-
ample, in pickup soccer, this scenario corresponds to having
past experience in pickup soccer, showing up to a new game,
and watching a couple minutes before joining in. This sce-
nario fits the transfer learning (TL) paradigm, but requires
the ability to leverage multiple sources of related data. In
this section, we introduce a new transfer learning algorithm
to leverage such information to speed up learning about new
teammates.

6.1 Transfer Learning Background

In this section, we discuss three state of the art transfer
learning algorithms. In TL, the goal is to reuse information
learned on a source data set to improve results on a farget
data set. For TL, only the performance on the target data
matters; the source data is only used for training. Follow-
ing this terminology, we consider the current teammates to
be the target set, and the previously observed teammates are
the source set.

TrAdaBoost (Dai et al. 2007) is a boosting-based al-
gorithm, in which the source and target data sets are
lumped together and then a model is learned via boost-
ing. TwoStageTrAdaBoost (Pardoe and Stone 2010) was
designed in response to problems of TrAdaBoost overfit-
ting the training data. Therefore, TwoStageTrAdaBoost first
searches over a set of possible weightings of the source
data points, and determines which weighting is best us-
ing cross-validation. While the other transfer learning algo-
rithms described here focus on using boosting, bagging ap-
proaches have also shown promise, specifically in the form
of TrBagg (Kamishima, Hamasaki, and Akaho 2009). The
TrBagg algorithm uses bootstrap sampling to create a num-
ber of data sets taken from the combined source and target
data sets. Then, a model is learned on each data set, and these
models then undergo a filtering phase, using cross validation
to determine which models are most helpful.

6.2 TwoStageTransfer Algorithm

While the transfer learning algorithms discussed in Sec-
tion 6.1 are effective on some problems, they do not directly
address the problem of transferring knowledge from mul-
tiple sources. In general, they lump all source data into a
single data set and expect the learning algorithms to handle
this data. TwoStageTransfer is inspired by the TwoStage-
TrAdaBoost algorithm (Pardoe and Stone 2010), and it is
designed to explicitly leverage multiple source data sets.
Specifically in this domain, the ad hoc agent has observed
many other agents, some of which are more similar to the
target teammate than others. Therefore, tracking the source
of the data may be important as it allows the ad hoc agent to
discount data from agents that are differ greatly from it. Re-
cent research into transfer learning has shown this informa-
tion may improve results. Yao and Doretto (2010) had suc-
cess using a boosting approach that allows each data source
to propose a weak classifier at each iteration, but do not
combine the data sets to learn a single classifier. In (2012),
Huang et al. propose the SharedBoost algorithm to select the

best features for prediction from a small number of source
data sets for text classification.

TwoStageTransfer’s goal is to find the best possible
weighting for each set of source data and create a classifier
using these weights, as described in Algorithm 1. TwoStage-
Transfer takes in the target data set 7', the set of source data
sets S = {S1,...,S5,}, a number of boosting iterations m,
a number of folds k for cross validation, and a maximum
number of source data sets to include b. We use the annota-
tion S to mean the data set .S taken with weight w spread
over the instances. The base model learner used in this case
is a decision tree learner that handles weighted instances.

Ideally, TwoStageTransfer would try every combination
of weightings, but having n source data sets and m different
weightings leads to m™ possible combinations (in our case
102%). Rather than try all of them, TwoStageTransfer first
evaluates each data source independently, and calculates the
ideal weight of that data source using cross validation. Then,
it adds the data sources in decreasing order of the calculated
weights. As it adds each data set, it finds the optimal weight-
ing of that set with the data that has already been added. Fi-
nally, it adds the data with the optimal weight and repeats
the procedure with the next data set. This algorithm requires
only nm + nm = 2nm combinations to be evaluated (in
our case 560), with nm for the initial evaluations and then
m when adding each n data sets. To achieve this efficiency,
this approach does not guarantee optimality.

TwoStageTransfer is a general transfer learning algorithm
that can be used in a variety of settings for learning from
multiple source domains. For example, when classifying the
subject of text documents, you may have labeled data from
a variety of sources including newspapers, personal letters,
and books. When trying to build a classifier for a new mag-
azine, it is useful to transfer information about these other
sources, bearing in mind that some sources such as newspa-
pers may be more similar to the magazine than letters.

Algorithm 1 Transfer learning with multiple sources
TwoStageTransfer (1), S, m, k, b)

for all S; in S: do
w; < CalculateOptimalWeight(T', 0, S;, m, k)

Sort S in decreasing order of w;’s

F« 0

for i from 1 to b do
w < CalculateOptimalWeight(T, F, S;, m, k)
F+ FUSY

Train classifiercon T'U F'

return c

CalculateOptimalWeight(7", F', S, m, k):
for ¢ from 1 to m do
Wi = e (1 - 1)
@ = TT[+]S] m—1
Calculate err; from k-fold cross validation on 7" using F'
and S™* as additional training data
return w; such that j = argmax(err;)

6.3 Results

While the tests in Section 5 do not focus on the speed of
learning, speed is crucial when learning about the current



teammates. As in Section 5, the ad hoc agent has previ-
ously observed 50,000 training steps of each of the past 28
teammate types and this data is considered prior background
knowledge. In addition, it has seen only 100 training steps
of the current type of the teammate. Note that this is signifi-
cantly less than the testing time of 500 steps, but the ad hoc
agent is not learning online other than adapting its belief dis-
tribution over the possible models. Both the past and current
teammates in this test are taken from Studentg;aq.

All of the transfer learning algorithms use decision trees
as their base learning algorithm. Each algorithm has some
set of parameters that can be tuned, and their values were
chosen in some preliminary tests and limited by compu-
tational power. For TwoStageTransfer and TwoStageTrAd-
aBoost, 10 different weightings were used. In TrAdaBoost
and TwoStageTrAdaBoost, 10 boosting iterations were used.
For TrBagg, a total of 1,000 sets were used for training clas-
sifiers, and a Naive Bayes classifier served as the fallback
model. As in Section 5, all statistical tests are performed as
paired Student-T tests with p = 0.01.

DTCOI’ 50000
TwoStageTransfer + DTy
DToth

TwoStageTransfer
TrAdaBoost
TwoStageTrAdaBoost
DTcor 100

TrBagg

JHERRNEN

Figure 2: Comparing transfer learning algorithms’ abilities
to improve ad hoc agents that have limited observations of
their current teammates.

Figure 2 shows the results of the four transfer learning al-
gorithms, where the ad hoc agent plans with UCT using one
of the learned models. All learning is done offline with only
model selection happening online during the evaluation. One
baseline for comparison is ignoring the previously observed
teammates and learning a new model from just the observed
100 steps of the current teammates, shown as DTcor,100. As
an upper baseline, we compare to the unattainable perfor-
mance of using a model learned from 50,000 steps of the
current teammate, shown as DT¢or, 50000, Which represents
the best performance attainable using models learned given
large amounts of data.

In these results, TwoStageTransfer outperforms the other
transfer learning algorithms, and the difference is statisti-
cally significant with p < 0.01. In addition, combining
the models learned with TwoStageTransfer with the mod-
els learned from representative teammates in the TwoStage-
Transfer + DTy, setting helps, reaching results that are sta-
tistically significantly better than DTy, with p < 0.01.
TrBagg performed poorly in this setting, mis-transferring in-
formation, possibly due to the fallback model used, though
several were tested.

In addition, it is important to see how well TwoStage-
Transfer scales with different amounts of target data. Fig-
ure 3 shows results with varying amounts of target data, but

constant amounts of source data. The difference between the
results with 1,000 steps of target data and 100 is statistically
significant, but the differences between 10,000 and 1,000 or
100 and 10 are not. The results show that the performance of
TwoStageTransfer does improve with more target data, but
the improvement is not smooth.

1.0

°
g DTcors
=(0.8 ] COr,50000
g mmm TwoStageTransfer,
><0-6 mmm TwoStageTransfer,
g() 4 @ TwoStageTransfer,,
S mmm TwoStageTransfer,,
802 m DTcor 0
S
L

0.0

Figure 3: Various amounts of target data for creating models
with TwoStageTransfer.

7 Conclusion

Existing research focuses on cases where teamwork frame-
works are set in advance or an agent has access to the cor-
rect model of its teammates. Therefore, the core contribu-
tion of this paper is the introduction of an ad hoc agent that
autonomously learns a library of models of past teammates
and the evaluation this agent when cooperating with over 40
externally-created teammates that it has not previously en-
countered. Another contribution is the development of a new
transfer learning algorithm, TwoStageTransfer, that can sig-
nificantly improve results when the ad hoc agent has a lim-
ited number of observations of its teammates and observa-
tions of several previous teammates. Both learning a library
of models and using transfer learning to improve models are
expected to be applicable to other domains in which an agent
must adapt to new teammates.

While this paper answers several questions about ad hoc
team agents, it also raises new questions to be explored in
future research. Future research should test whether similar
algorithms apply to other ad hoc team domains. One possi-
ble research avenue is into what to communicate to team-
mates when communication protocols are available. In ad-
dition, this work focuses on agents that follow mostly fixed
behaviors, with little adaptation to the ad hoc agent’s be-
haviors; handling adaptive teammates is a complicated, but
exciting, area for future research.

Acknowledgments

A portion of this research took place in the Learning Agents
Research Group (LARG) at The University of Texas at
Austin. LARG research is supported in part by grants from
NSF (IIS-0917122), ONR (N00014-09-1-0658), and the
FHWA (DTFH61-07-H-00030). This work was supported in
part by ERC grant #267523, the Google Inter-university cen-
ter for Electronic Markets and Auctions, and MURI grant
number W911NF-08-1-0144



References

Barrett, S., and Stone, P. 2012. An analysis framework for
ad hoc teamwork tasks. In AAMAS ’"12.

Barrett, S.; Stone, P.; and Kraus, S. 2011. Empirical evalu-
ation of ad hoc teamwork in the pursuit domain. In AAMAS
11.

Blum, A., and Mansour, Y. 2007. Learning, regret mini-
mization, and equilibria.

Bowling, M., and McCracken, P. 2005. Coordination and
adaptation in impromptu teams. In AAAI, 53-58.

Brafman, R. L., and Tennenholtz, M. 1996. On partially
controlled multi-agent systems. Journal of Artificial Intelli-
gence Research 4:477-507.

Conitzer, V., and Sandholm, T. 2007. AWESOME: A gen-
eral multiagent learning algorithm that converges in self-
play and learns a best response against stationary opponents.
Machine Learning 67.

Dai, W,; Yang, Q.; Xue, G.-R.; and Yu, Y. 2007. Boosting
for transfer learning. In ICML °07, 193-200.

Doshi, P., and Zeng, Y. 2009. Improved approximation of
interactive dynamic influence diagrams using discriminative
model updates. In AAMAS 09.

Gal, Y., and Pfeffer, A. 2008. Network of influence
diagrams: Reasoning about agents’ beliefs and decision-
making processes. Journal of Artificial Intelligence Re-
search 33:109-147.

Gelly, S., and Wang, Y. 2006. Exploration exploitation in
Go: UCT for Monte-Carlo Go. In NIPS ’06.

Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework
for sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research 24(1):49-79.

Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269-357.

Grosz, B., and Kraus, S. 1999. The evolution of shared-
plans. In Rao, A., and Woolridge, M., eds., Foundations and
Theories of Rational Agency, 227-262.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
an update. SIGKDD Explor. Newsl. 11:10-18.

Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.;
Zhang, S.; Decker, K.; and Garvey, A. 1999. The TAEMS
White Paper.

Huang, P.; Wang, G.; and Qin, S. 2012. Boosting for transfer
learning from multiple data sources. Pattern Recognition
Letters 33(5):568 — 579.

Jones, E.; Browning, B.; Dias, M. B.; Argall, B.; Veloso,
M. M.; and Stentz, A. T. 2006. Dynamically formed hetero-
geneous robot teams performing tightly-coordinated tasks.
In ICRA, 570 - 575.

Kamishima, T.; Hamasaki, M.; and Akaho, S. 2009. TrBagg:
A simple transfer learning method and its application to per-
sonalization in collaborative tagging. In Ninth IEEE Inter-
national Conference on Data Mining, 219 -228.

Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-
Carlo planning. In ECML *06.

Liemhetcharat, S., and Veloso, M. 2011. Modeling mutual
capabilities in heterogeneous teams for role assignment. In
IROS 11,3638 —-3644.

Pardoe, D., and Stone, P. 2010. Boosting for regression
transfer. In ICML ’10.

Pynadath, D. V., and Tambe, M. 2002. The communica-
tive multiagent team decision problem: Analyzing teamwork
theories and models. Journal of Artificial Intelligence Re-
search 16:389—423.

Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In NIPS '10.

Stone, P., and Veloso, M. 2000. Multiagent systems: A
survey from a machine learning perspective. Autonomous
Robots 8(3):345-383.

Stone, P.; Kaminka, G. A.; Kraus, S.; and Rosenschein, J. S.
2010. Ad hoc autonomous agent teams: Collaboration with-
out pre-coordination. In AAAI *10.

Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83—124.

Wu, E; Zilberstein, S.; and Chen, X. 2011. Online planning
for ad hoc autonomous agent teams. In IJJCAI

Yao, Y., and Doretto, G. 2010. Boosting for transfer learning
with multiple sources. In CVPR ’10.



