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Abstract

Often an agent that has to solve a problem must
choose which heuristic or strategy will help it the
most in achieving its objectives. Sometimes the
agent wishes to obtain additional units of informa-
tion on the possible heuristics and strategies in or-
der to choose between them, but it may be costly.
As a result, the agent’s goal is to acquire enough
units of information in order to make a decision
while incurring minimal cost. We focus on situa-
tions where the agent must decide in advance how
many units it would like to obtain. We present an
algorithm for choosing between two options, and
then formulate three methods for the general case
where there aré > 2 options to choose from. We
investigate the 2-option algorithm and the general
k-option methods effectiveness in two domains: the
3-SAT domain, and the CT computer game. In both
domains we present the experimental performance
of our models. Results will show that applying the
2-option algorithm is beneficial and provides the
agent a substantial gain. In addition, applying the
k-option method in the domains investigated results
in a moderate gain.

Introduction

an optimal amount of information units, through which the
best alternative could be determined.

In this paper, we generalize their model to suit domains that
involve choosing between heuristics or strategies. Azoulay-
Schwartz and Kraus’ assumptions hold in this research as
well: the agent chooses the best alternative in advance and
is able to hold onto its decision for a long period of time.
This approach is valid in many situations, especially when ac-
quiring information is costly. In these cases, the agent would
like to execute its decision-making process once and apply
the process’s output thereafter. Moreover, once the agent re-
alizes the decision made does not produce satisfactory results
at any given time, it may re-execute the decision-making pro-
cess, and proceed with its new output. Nevertheless, we are
more concerned with the applicative rather than the theoreti-
cal aspect of the model. Indeed, the model suggests many im-
plementation challenges. We present two examples, from the
heuristics domain and from the computer games domain. In
both domains we compare the utility of the automated agent
with and without using our algorithm. Results will show that
an agent that applies our model is more likely to choose the
best option among the group of possible options. Further-
more, it does not waste too many resources during the deci-
sion process, and thus, its overall utility increases.

The paper first briefly presents the model constructed by

When making decisions, automated agents need to decide,oy|ay-Schwartz and Kraus. It then introduces the algo-
which heuristic function or strategy would best assist thenyiihm for choosing between two options, which was formu-

in achieving their object|ve§. In particular, when an agentgteq by Azoulay-Schwartz and Kraus, and thereafter the
possesses several alternatives to tackle a problem, and thigee generalized methods for cases where there are more
best alternative is unknown in advance, its success depengssn two options. The first of these three methods is a the-
on choosing the most beneficial alternative. [Azoulay-  qretical one which was formulated by Azoulay-Schwartz and
Schwartz and Kraus, 20pa formal model for solving a prob-  kraus. We generalized their ideas to form the other two meth-
lem of choosing between alternatives in e-commerce havgys which are much more feasible in real-time environments.
been presented. They formulated the problem in terms ofye proceed by describing the experimental design and anal-
units of information and agent's utility, and assumed that thg sjs |n section 4 we describe the first domain we considered
agent should decide in advance on how many information the 3-SAT domain, and in the following section we describe
units to obtain about each alternative. Moreover, the agenfe other domain. the CT game domain. In both sections we
could not change its decision during the information obtain,resent the experiments we conducted and the outcomes of
ing process. Then they suggested an algorithm for acquiringpplving the 2-option algorithm and tkeoption generalized

*This work was supported in part by NSF grant no. 11S-0208608Models. In section 6 We compare our work with previoqs re-
and by ISF grant no. 1211-04. Sarit Kraus is also affiliated withsearches. The concluding section discusses the experimental
UMIACS. results and suggests several avenues for future research.



2 Model construction is Fchange(ua, tB,04,08,TA, TB,NA, B, MA, ME) =

Arisk neutral agent has to choose a heuristic fidmeuristics Pr(Z > Z,), whereZ is a random variable, having the
to solveM problems. After choosing alternativethe agent standard normal distribution ari}, represents the first value
will obtain a value of:; which is unknown in advance. We as- WhereB outperformsA (see[AzouIay-Schwartz and Kraus,
sume that; is normally distributed, that is;; ~ N (1, 02). 2003 for more information). Then, the expected bene-
In addition, the agent does not kngw, but it has some prior fitS from obtaining additionain, andmp is & function of
beliefs about its distribution. We further assume thaalso ~ Fchangeand is denoted byene fits(ma, mp). The agent's
follows the normal distribution g; ~ N(C;, 72). We assume  Utility is wtility(ma,mp) = [, [, 5 benefits(ma,mp) -
thato;, ¢; andr; are known and reflect the agent’s believes.d™A™™5 —cost(m 4, mp)dupdu 4. The specifics of thben-
Otherwise, ifo; is unknown, the agent can use The studentefitsfunction depend on theostmodel. Later we will show
distribution. In addition, if;; andr; are unknown, we assume the specifications for three different cost models. The agent’s
that the agent can estimate their values based on its beliefs geal is to find the pairm 4 andmg, that yields the highest
to the possible values ¢f;. Furthermore, in future work we wutility(m4, mp) value. By considering all possible combi-
will investigate the effect of eliminating normal distribution nations of information units abodtandB, the optimal com-
assumptions. bination is achieved. Algorithm 1 presents the Heuristics-
The agent has; units of information about each alter- Strategies-Choosing (HSC) Algorithm for the two heuristics
nativei, with an average value af;. For instance, in the (or strategies) case.
e-commerce example presented by Azoulay-Schwartz anflroposition 1. The HSC algorithm stops and returng, and
Kraus, a customer would like to buy an item available frommB that maximize the utility function.
two suppliers. The customer collecteg andns, customer-
impressions from friends or from the web about these suppliProof. The intuition for the correctness of the algorithm lies
ers, in order to be able to decide between them. The averagde the form of the utility function. Since it consists of the mul-

impression was calculated to form andz,. tiplication of similar normal distribution functions, its form is
The agent is able to obtain a combination @inb = Gaussian as well, with only one maximum point. As soon

(m1,...,my) additional units about the different alterna- as the algorithm finds that point it stops and returns and

tives. However, this operation is costly, either in time or inmg. l

direct costs. Giver) < ¢ < 1, the discount time factor, . . .

the costmodel, the list of alternatives and the parameters fo?-2 Choosing Between Multiple Heuristics

each alternative, the agent decides whether to proceed withhere arek > 2 alternatives, and the agent can obtain up
the information it has so far, or to accumulate additional in-to M-1 units of information about each of them. We suggest
formation units. One could simply use a greedy algorithm inthree models:

order to find the optimal allocation of additional experiments. 1 The Statistical modein which we considered the agent
In each step the option which proved to be better so faris cho-  tility function given a combination of information units
sen, executed and its result is added to the data accumulated. 55 suggested bjAzoulay-Schwartz and Kraus, 2002
The greedy algorithm stops when there is no additional sam-  Nevertheless, in order to find a combination of ad-
ple that increases the expected utility. Howe\#zoulay- ditional units for each alternative, one must solve a
Schwartz and KraUS, ZODghOWed that the greedy algorithm quadrup|e integraL As a resu't' the model proved to be
is not optimal. The reason being that there may be situations  inapplicable for our purposes;

where obtaining one unit of information about a particular al-
ternative is not worthwhile since it will not lead to a change
in the decision, but obtaining two and more may be worth-
while. In conclusion, first we will present an algorithm for
k=2 heuristics (or strategies) and then generalize itfor 2.

2. TheBinary Tree modelvhere the alternatives construct
the leaves’ level of the tree. We apply the HSC algo-
rithm for each pair. The winning alternative goes up a
level in the tree. We repeat the procedure until the best
alternative reaches the root. This model deviates from

Algorithm 1 The HSC Algorithm our initial assumption that all experiments are colnduclted
o o 05 g prior to decision-making. The binary tree model is an in-
e o from 0 10 60 do termediate approach between the greedy algorithm and
calculate Fchange. the HSC algorithm. However, since the comparisons are
calculate Utility. i i i _
i Utility(m — 1,mp — 1) > Utility(ma, mg) and done in pairs, a Iarge number of experiments may be ex
Utility(ma — 1,mp — 1) > Utility(ma — 2, mp — 2) then ecuted for alternatives that would not have been consid-
retum gna — 1, mp — 1). ered at all when regarding all the alternatives together;
Add m; experiments to alternativie i i i i
Choose the best alternative according to the new results 3. TheFixed number of experlments modeh which we
distribute a fixed number of experiments denotediby (
) o between the different alternatives using the information
2.1 Choosing Between Two Heuristics we have so far. For example, suppose we have five alter-
Suppose the agent has to decide between alternatives A and natives to choose from. Alternative 1 produces the best
B. Currently,z4 > Tp. Since the agent is risk neutral, al- results and alternative 5 produces the worst ones. Thus,
ternativeA will be chosen if no additional information is ob- it is worthwhile to execute more experiments of alterna-

tained. Firstly, the probability of changing the winning option tive 1 than of alternative 5, as less time will be wasted



on fewer alternatives while accumulating information ontwo possible heuristics, we assumed that the better heuris-
all possible alternatives. Following preliminary experi- tic aftern, experiments is heuristi8. As a result, the agent
ments, we sel to be four times the number of alterna- would have chosen heuristf for the M formulas. In that
tives. Thus, it is large enough to accommodate experease, it would have taken the agent the average number of
iments of all alternatives and nonetheless, economicdlips multiplied by the number of formulad/ - 11 4, to solve

in the number of additional experiments. ConsequentlyM formulas. After the HSC algorithm is executed, the total
for the example of five alternativd$=20, and we sug- number of flips will be assembled from,

gest that the best alternative be assigned one thiMl of 1 The number of flips in thens + mp extra experiments
The rest will be assigned two thirds of the remaining yielded by the HSC algorithm;

experimentsimy = [20 - 3] = 7, my = [13 - 2] = 5;
m3 = [8-2] =3;my = [3-3] = 2andms = [1-2] = 1.
This ad-hoc approach will be refined in future work.

2. The number of flips to solve the remainidg — m —
mp formulas in case heuristB prevails;

3. The number of flips to solve the remaining formulas in
case heuristié still leads.

in this case is 1, since the agent solves the re-
uired formulas in the additional experiments. Ac-

i.e. the 3-SAT problem. To demonstrate the HSC algorithm’stordmgly’ the utlity function in this domain s

3 Experimental design and analysis

Our investigation using the HSC algorithm was conducteo‘;
in two domains. The first, a classic NP-complete problem

vast usage possibilities, it was employed in two different cos%‘tmty(m“" mp) - qu an bene fits(ma, mp)
models: gmatms — cost(ma,mp)dupdpas = [, [, M- pa -
1. Minimal Time (MT) scenario - the agent had to soMe Fchange(M —ma—mp)-pp—(1 _liCha"ge)(M—mA -
formulas as quickly as possible; mp)-pa—(mapatmpps)dppdpa = [, [, (M—ma—

: ; : mp) - Fchange-(pa—pp)—mp- (g —pa)dppdua. The

2. (l\)/;atlixrhn;iloF:c:R/q :ESS r{f\l\/;lr:]))ls;cg(rannﬂg—;f;ep;a)%ginbtlg'adn|ts agent searches fen 4 andmp that maximize this equation.

' The MF scenario in the domain is a maximum problem: the

We chose three best-known search algorithms as thggent must solve as many formulas as possible wikHiips.
agent's possible heuristics: Greedy-SAT (GSAT), SimulatedConsidering heuristid is the better heuristic after, exper-
Annealing (SA) and GSAT with Random Walk. The agentiments, the agent would have solvédy. 4, 3-SAT formulas.
had to perform its task by using one of these search algo-owever, if it would have used the HSC algorithm, the total
rithms. The second domain was a computer game, the Chumber of 3-SAT formulas would have been the summation
game (for game specifications §@roszet al,, 2004). Here,  of:
the agent’s task was to maximize its game score. To this end, 1
our agent had seven different strategies to employ against its
opponent agent in the game, and it had to choose the best ) -
strategy against the opponent. The experiments compared?- 1he number of formulas to be solved using heurigtic
the agent's achievements without using the HSC algorithm  if it prevails, Fchange - [T/ ug];
and its achievements after executing this algorithm. We also 3. The number of formulas to be solved if heurishds not
compared these results with methods where a large set of ad- changed(1 — Fchange) - [T/ pa).
ditional experiments had been conducte§Se{manet al,  Here, § is 1 as well, andcost(m4, mp) consists of the
1999 for instance conducted an unlimited number of exper-numper of flips lost in each case, ﬁame@st(mA mpg) =
iments in order to choose the best heuristic). These methods ;qnge - [(mapa + mppup)/ps] + (1 — Fcizange) _
found the best heuristic more frequently than our algorithmy,,, /" + mpup)/pa). Lastly, the HSC algorithm will

Nevertheless, though the decisions made were slightly imgia|q 4, , andmp that will maximize utility(ma, mp) =
proved, given our cost model, the approach applied by SeJ )

T
man yielded a huge loss in the number of experiments exe’4 fﬂB ma +ms + FChfnge "y T (1~ Fehange) -
cuted. For space reasons, these results are not detailed herg,;, — Fchange - W — (1 — Fchange) -
We first executed preliminary runs to prepare an offline2atatmels g, q, , = | mp— LEE 4 Fchange-
f . - - HA HA Jpup HA
database. The database comprised vital information, namelyr—p.ims  T—psmsp +ma —mpldupd
which option is the best, and moreover, the mean qualit nB A 4 BIAHBASA:
of each option. Our hypothesis was that the execution 0ff 1 |mplementation issues
the HSC algorithm will indeed benefit the agent. Moreover, . .
by executin% a small number of additional g(]experiments theWe construqted 305 d|ﬁerent 3-SAT formulas, each consist-
agent's utility will increase. ing of 100 dlf_ferent variables and 430 clauses. Th_e formulas
were tested in advance for the existence of a valid truth as-
. signment. The GSAT algorithm restarted with a new random
4 The 3-SAT domain truth assignment after 5,000 flips, and the total number of
We assumed that each Truth-assignment flip takes one unit oéstarts was set at 18. The temperature of the SA algorithm
time. Thus, the MT scenario in this domain is a minimumwas set at 2%, and the experiment was stopped after 100,000
problem: the agent must sol« formulas within a minimal  unsuccessful flips. The Random Walk with GSAT was im-
number of flips. Without loss of generality, when comparingplemented using three different probabilities of Walk: 50%,

. The number of formulas solved during the extra experi-
ments yielded by the HSC algorithmm, 4 + mp;




Heuristic | GSAT | Simulated | Random | Random | Random 2600
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Table 1: Offline results of number of flips (in thousands)
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Figure 2: 3-SAT MT scenario influence bf

4.2 2-heuristic experimental results

. . According to the results presented in table 1 we compared (1)
50%vs 60%  SAws Greedy SAvs.B0% Random 60% to Random 50%; (2) SA to GSAT,; (3) Random
80% to SA. Other pairs, although feasible, would not effec-
. . L ivel monstr he H Igorithm’s performance: the dif-
Figure 1. 3.'SAT % of choosmg the best heuristic W'thom the;er?axgee bgtwsetearﬁhteﬁ ngni%s t(t)o Iasrg;): foor thfel ;Igoﬁit(heg to
HSC_aIgorlthm, with the allgorlthm in the MT and with the improve. From empirical results we know that the algorithm
algorithm in the MF scenarios will not advise on further experiments in those cases, and sim-
ply yield the better heuristic according to the information the
agent has. Thus, it will not endure any loss for these other

60% and 80% (The three different heuristics of this algorithmpairs' T_he offline results revealed that the best heuristic in
will be denoted by Random 50%, 60% and 80%). In each ex€2ch pair was Random 60%, SA and Random 80%, respec-

periment the maximal number of flips was set at 15,000 andVe!y- The total number of experiments in each scenario was
y 0, 40 experiments per pair.

the number of restarts was set at five. We established all t X )
algorithms’ parameters such that, on the one hand, they will !N the MT scenario, when the agent did not use the HSC al-

have a reasonable potential to solve any formula, but on thgorithm, it always chose the heuristic with t_he better 5-game
other. their execution time will remain low. average. In contrast, when the agent applied the HSC algo-

rithm, it mostly executed more experiments for both heuris-
The preliminary experiments executed each of the fiveics, and then either changed its mind or continued with the
heuristics on the 305 3-SAT formulas. Table 1 presents theetter 5-game heuristic. On average, only 12 additional ex-
average number of flips each heuristics obtained. The paranperiments were executed for each heuristic. Figure 1 summa-
eters in the equations of section 2 were estimated using thézes the percentage of experiments in which the agent chose
data accumulated during the preliminary experiments stagehe best heuristic, with and without the HSC algorithm across
since this data comprises our whole population. Thus, the ahe three heuristic pairs. As we expected, the algorithm im-
priori parameterg 4 and(g were estimated with the mean of proved the agent’s decision-making, and directed it to the best
all the offline results of all heuristics (55.2), and and7p heuristic in 80% of the experiments. Moreover, without the
were estimated by their standard deviation (22.14). In addiHSC algorithm, the agent would have chosen the best heuris-
tion, o4 andog were estimated by heurist&s and heuristic  tics only in 61% of the experiments. This improvement re-
B standard deviations, respectively. A sensitivity analysis ofsulted in a gain in the number of flips: the average number
these parameters determined that the results were not senef-flips for 300 3-SAT formulas without the algorithm (4.20
tive to changes in the parameters. In the analyses we varigdillion) was significantly higher than with the HSC algorithm
the values ofr4 andop, of (4 andT4 and of (3 and g (4.06 million)(Wilcoxon pv=0.07).
and re-executed the experiments. Except for several extreme To show the influence df1 on the average gain, we exe-
situations we obtained similar results for the specific valueguted 120 additional experiments, with 12 different values for
described above. M. Figure 2 summarizes the average gain per formula solved
. . for M varying between 100 and 3000. As expected, the aver-
Furthermore, in each experimenfy andnp were SeL10 o440 gain’is in linear relation to the size M since the HSC

five, M to 300, andT to 200,000. That s, in each experiment o 44 ithm poses a greater potential benefit as the number of
of both scenarios, five formulas chosen randomly from thg, ., 1as increases.

305 formulas mentioned above, were solved first, and were . - ,anvs task in the MF scenario was to solve as many
used as thg age'nt’s prghmmary units of mformatlop. Then, Itformulas as possible within 200,000 flips. Here, on average
had to decide with which heuristic to proceed solving the re-, ' : ’

ining 300 f las. We all dth t onlv fi it nine additional experiments were executed for each heuris-
maining. ormuias. Vve aflowed the agent only Tive unitsy; . Figure 1 presents the percentage of experiments in which
of prior information since this is often the case in the real

Id i 410 b their decisi \ f bthe agent chose the best heuristic, with and without using the
world - agents need 10 base heir decision on only Tew 0byg algorithm (note that the percent of without the HSC al-

servations due to uncertainty in their environment or due to %orithm is the same as in the MT scenario). In this scenario
cost associated with the information. '




7 Greedy | SA | Random | Random | Random
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Figure 3: 3-SAT MF scenario influence of Table 2: MT Scenario chosen heuristic distribution, with and

without applying the HSC algorithm: (top) The binary tree

) _ _ results; (bottom) The fixed number of experiments results
as well, the agent succeeded in choosing the best heuristic

more frequently by using the algorithm (83% vs 61%). Con- .
sequently, it managed to solve six more formulas on averd The CT domain

age: 212 formulas with the HSC algorithm in contrast to 206 jnyestigated the HSC algorithm in a two-player negoti-
without it. To demonstrate the influence ©f we executed .4 game that uses the CT gafi@roszet al, 2004. In

an additional 70 experiments for seven different values of ;¢ game each player has a goal placed on the géme board
varying from 2,500 to 100,000. As the average gain is depenn g certain resources to help it reach the goal. The players
dentorlT (the larger thel the larger the gain), we normalized ¢4, eychange resources, and at the end of the game are as-
the gain by calculating the average gain per 2,500 flips. Thugjigneq 4 score that corresponds to their performance through-
whenT was set to 5,000 the average gain was divided by 2¢ \t the game. During the game the agents may negotiate
and when is was set to 100,000 the average gain was divides}, resources, commit to resource exchanges and execute ex-

by 40. Figure 3 summarizes the average gain per 2,500 flipganges. However, the commitments made by an agent are

It supports our hypothesis that the gain of using t_he HSC a."hot enforceable, and it might decide to back down on a com-

Smitment or even deceive an opponent agent by committing to
an exchange it does not intend to keep.

In [Talmanet al, 2004, an automated agent able to play
repeated CT games was developed. The agent characterizes
itself and its opponent in terms of cooperation and reliabil-
ity. The cooperation trait measures the willingness of an
) - ) . agent to share its resources with others, whereas the relia-
We tested the generalizéeheuristic model using the binary jjity trait measures the agent's willingness to keep its com-
tree algorithm and the fixed number of experiments algomiiments in the game. Accordingly, the agent is capable of
rithm. The binary tree was built according to the pairs Weemploying seven strategies, differing in the level of cooper-

described inosection 4.2. That if’)’ the binary tree’s leaves wergiion and reliability the strategy dictates. Each strategy is
Random 50% and Random 60%, then GSAT and SA and figyitaple to a different type of an opponent, but the optimal

nally Random 80%. The fixed number of experiments Procematching scheme is unknown. For example, it may prove

dure was executed according to the 'description presented Beneficial to play a low-reliability strategy against a highly-
2.2. We repeated the procedures 40 times for both a|9°”thm%ooperative opponent by deceiving it. On the other hand, per-

Table 2 summarizes the number of times (of the forty ex-haps a more logical strategy against such an opponent will
periments) the agent chose each heuristic with and withoute a high-cooperation strategy which promotes reciprocity in
each algorithm for the MT scenario. As expected, both algothe game, and may benefit the agent in the long run. Thus, in
rithms improved the agent’s decision-making, in the binaryorder to maximize the agent’s score in the game, it must de-
tree algorithm by 27.5% and in the fixed number of experi-termine which strategy best-suits each opponent type. Each
ments algorithm by 25%. Nevertheless, the gain in the agent'strategy trait can be low (L), medium (M) or high (H), and a
utility was not very impressive in the binary tree case: onstrategy will be referred to by its cooperation-reliability level,
average 1,500 flips were lost per experiment due to the exesuch as a low-cooperation medium-reliability strategy (or LM
cution of heuristics that although seemed promising in theistrategy). Therefore, the seven possible strategies in the game
pair, were in fact time consuming in the overall aspect. Orare LL, LM, LH, MM, MH, HM and HH. The remaining two
the other hand, in the fixed number of experiments case 1,52%rategies, ML and HL are not applicable as an agent apply-
flips were gained per experiment (the average total number afg low reliability strategy has by definition a low cooperation
flips per experiment was 4,800). The number of additional exlevel - when an agent almost never keeps it commitments, it
periments were 14 for each heuristic on average. Due to this not willing to share its resources.
disappointing results of the binary tree method, for the MF We expect that our suggested model will assist the agent in
scenario we executed only the fixed number of experimentis decision-making, which will result in higher score in the
method. Here, on average 1.6 formulas more were solved pgame. Followingn; games of each strategy the agent exe-
experiment when applying the algorithm. cutes the HSC algorithm and determines which strategy best-

very steep at the beginning, but when- 25, 000 it becomes
moderate.

4.3 k-heuristic experimental results



Strategy| LL | LM | LH | MM | MH | HM | HH
Avg. Score| 80.9| 85.7| 68.6| 69.4| 69.5| 69 | 69.2

B1'Without the alg orithm B VYith the algorithm

100

Table 3: Average score of each strategy against an LH oppo- a0
nentin the CT domain 60

suits each opponent type. The model adjusted to the CT game | 20 +—
is similar to the 3-SAT model except for the introduction of 0
the time discount factorj. Each game the agent plays with L
a non-optimal strategy results in a lower score. Hence, each
experiment added by the HSC algorithm brings about a tim
cost of§. In contrasteost(m 4, mp) = 0 in this domain: the

execution ofm 4 + mp additional games does not incur an
additional cost associated with 4, andmpg. In conclusion,

D

s LH LA ws WH

[
=
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?:igure 4: CT % of choosing the best strategy with and without
the HSC algorithm

for two strategiesA and B (with A as the current winning 1 =
strategy) having a mean score @fi and 15, respectively, A //

the agent searches for, andmp that maximize the utility £ /

function: qu fus Fchange(up — pa) - ™A T Edppdu 4. g

In addition, we define the agent’'s gain from applying the @ 0

HSC algorithm as follows: leScores be the score of the e

strategy the agent chose before the algorithm angep 0 : : : : :

be the score of the strategy it chose after using the algo- o o0z 04 DDe'Bna 08 1 12

rithm. Then, its total gain from the algorithm is obtained by
(Scorep — Scorey) - §maTmE, ) ] )

Figure 5: CT % of correct re-evaluations for differeist
5.1 Implementation issues

For our study, we constructed 300 game scenarios, which Vagigarence between the two alternatives was negligible as in

ied the game boards, the resources each player was assigngd \ v ys HM case, the algorithm did not improve the per-
and the dependency relationship between the two players. Fef-mance. This is because the two strategies are almost iden-
evaluation purposes the HSC algorithm was executed 10 eg.5| Thus, applying the algorithm resulted in no gain since it
tablish which strategy best suits an LH type opponent (besigrely decided to perform additional experiments. However,
matches for the other opponent types are carried outin a simyg |oss was incurred as well (the average number of addi-
ilar manner). To this end, we first executed all 300 gamesyiona| experiments was 3 for each alternative). Accordingly,
in which the agent played all seven strategies against an Lk agent's gain was on average 0.8. This gain is somewhat
type opponent. The results served as the CT domain offlingyy, pecause it is multiplied byma+ms .
database as shown in table 3. Interestingly, the LM strategy Naturally, the time discount factor has a great influence on
produced the best results. In addition, we &eit 0.90, t0  {he HSC algorithm’s performance. We envisioned that if we
allow a certain amount of exploration. We later vartednd  jncreases the HSC algorithm will shift more frequently to-
investigated its influence on the algorithm’s performance. \yards the better strategy. To test our hypothesis, we ran-
_ . domly selected ten experiments from the experiments de-
5'2, 2-heuristic experlmental results ) scribed above, across the three pairs, in which the worse strat-
In light of the results in table 3, we compared strategies: (1kgy would have been chosen by the agent according to the
LL and LH; (2) LM and MH; (3) MM and HM. Other pairs  preliminary experiments. We then re-evaluated the HSC algo-
can be compared in a similar manner as long as the differengghm's performance in those games witlvarying between
between them is not too diverse for the HSC algorithm to in0.10 and 0.98. Figure 5 presents the percentage of experi-

troduce an improvement nor a loss. Each comparison wagents the HSC algorithm pointed out the better strategy, for
executed 40 times, totaling 120 experiments. In each experieach possiblé.

ment, our agent played five 2-player CT games against an LH

opponent applying each strategy. Then, the agent executési3 k-heuristic experimental results

the HSC algorithm, which yielded the additional number OfWe tested the generalizéeheuristic model using the binary

games of each strategy the agent needs to play. On aver ge algorithm and the fixed number of experiments algo-

only three games of each strategy were additionally executedhy, 1, |y the binary tree, the pairs were established according
Figure 4 summarizes the percentage of experiments ify, ihe settings described in 5.2: LL vs LH, followed by MM

which the agent chose the best strategy, with and without Ug;5 M. then LM vs MH. and finally we added the HH strat-

ing the HSC algorithm across the pairs of the three strategie%,gy_ Then. we repeatea the HSC algorithm bottom up. The

By using the HSC algorithm, the agent was able to apply the;, o4 number of experiments procedure was executed accord-

better strategy in 72% of the games, whereas without the HS¢q 5 the description in 2.2. We repeated the procedures 40
algorithm it would have applied the better strategy in onlytimes for both algorithms.

60% of the games. Nevertheless, as we anticipated, when the



The results in this domain were similar to those of the 3-tomated agents’ decision-making. We evaluated this model
SAT domain: both algorithms improved the agent’s decision-in two different domains - an NP-complete problem and a
making while keeping the number of additional experimentscomputer-game framework. In each domain we executed a
to a minimum (on average, 11 additional games per strategyarge number of experiments for several aspects of the do-
- the binary tree algorithm by 30% and the fixed number ofmain. We have shown that agents that apply the HSC algo-
experiments algorithm by 27.5%. The agent’s gain was 0.015thm have improved their decision making by at least 20%,
in both cases. Again, this figure seems low, but any positivevhile executing a minimal number of additional experiments.
figure indicates a gain in performance due to the algorithm. Moreover, we have demonstrated how to adjust the HSC al-

gorithm to suit these different domains and to perform well
6 Related work when solving both minimum and maximum problems.

Our future goal is to generalize the fixed number of exper-

iments method. In this work we established its parameters

X ; 9" . mpirically, and although it pr isf ry results, w
use it cannot change its decision. In the k-armed bandit proqa pirically, and although it produced satisfactory results, we

| X is ch dl d the decisi £ whi are interested in investigating its feasibility in additional do-
'em, an item Is chosen repeatedly and the decision of WhiCl,4ing - \we also intend to examine the normal distribution
item to select may change over time. Another approach is th

statistical one. IfiPizarroet al, 2004 the statistical ANOVA || itor distribution and the a-priori distribution are symmet-

was employed for choosing the best model for a neural netrLc with one maximum, our assumptions hold. Nevertheless

work. The procedure enabled them to isolate a subset qf, ey analysis is required to ascertain this assumption.
models whose mean error was the smallest, and subsequently

the simplest model was chosen (Occams razor criteria). Th f
main difference between that work and ours is that they wer eferences

not interested in minimizing the number of additional experi-[Azoulay-Schwartz and Kraus, 200R. Azoulay-Schwartz
ments since no cost was involved. The same approach can beand S. Kraus. Acquiring an optimal amount of informa-
found in heuristics-related work$Selmanet al., 1993, for tion for choosing from alternatives. Froceedings of the
instance, conducted a large number of experiments in order 6th International Workshop on Cooperative Information
to identify the best heuristic. We suggest a method that will Agents V] pages 123-137, 2002.

minimize the number of experiments to be executed, whil§carisson and Johansson, 1998, Carlsson and S. Johans-
providing the best option in a hlgh. percentage ofthe cases. In 5o, Generous and greedy strategies Piloceedings of
another wor Tseng and Gmytrasiewicz, 1909@eveloped an Complex System&998.

information-gathering system that uses the information valu ) . : .

to guide the process. However, they assume that the numbi:@rass and Zilberstein, 20D@. Grass and S. Zilberstein. A
of possible answers for a query in the gathering process is fi- Value-driven system for autonomous information gather-
nite while we consider a continuous set of possible answers. g- J- of Intel. Information System$4:5-27, 2000.
Moreover, they consider a myopic sequential procedure fofGroszet al, 2004 B. Grosz, S. Kraus, S. Talman, B. Stos-
the information gathering process. Thus, their solution is not sel, and M. Havlin. The influence of social dependen-
optimal: they only consider the nearest step of information cies on decision-making: Initial investigations with a new
gathering, assuming that in each step the agent can decide game. InProceedings of AAMA®ages 782—789, 2004,
about the next information to b'e'obtaineHB_rass and Zil- [Pizarroet al, 200 J. Pizarro, E. Guerrero, and P.L.
berstein, 200Ddeveloped a decision theoretic approach that - aiindo. A statistical model selection strategy applied to

uses an explicit representation of the user’s decision model neural networks. ESANN '2000pages 55—60, 2000
in order to plan and execute information-gathering actions, ' ' '

However, their system is based on information sources thaselmaretal, 1993 B. Selman, H. A. Kautz, and B. Cohen.
return perfect information about the asked query. Local search strategies for satisfiability testingtHa 2nd
In the world of strategies, researchers also have been more DIMACS Challenge on Cliques, Coloring and Satl993.

concerned with finding the most beneficial strategy in a giverjTalmanet al, 200§ S. Talman, K. Gal, M. Hadad, and

domain rather than formulating a general model. For exam- S, Kraus. Adapting to agents’ personalities in negotiations.

ple, in[Carlsson and Johansson, 198&ee types of strate- In Proceedings of AAMAR005.

gies - generous, even-_matched and greedy - were Investigat ins, 1989 J. C. Tins. Multi-armed Bandit Allocation In-

as concepts for analyzing games. They granted the participat- ;

. : ; . dices John Wiley & Sons, 1989.

ing agents a strategy and examined their performances in two o

types of games. Their aim was to determine which kind ofl Tseng and Gmytrasiewicz, 199€. Tseng and P. J. Gmy-

strategy was preferable and in which environments. trasiewicz. Time sensitive sequential myopic information
gathering. INHICSS-321999.

Our problem is different from the k-armed bandit problem
[Tins, 1989 since once the agent decides which alternative t

7 Conclusions and future work

In this paper, we generalized a model developddaoulay-
Schwartz and Kraus, 20§2vhich considered the problem of
choosing between alternatives in e-commerce. We have pre-
sented an adjusted model which was designed to improve au-



