
129

Hierarchical Information Combination in
Large-Scale Multiagent Resource Management

Osher Yadgar1, Sarit Kraus2, and Charles L. Ortiz, Jr.3

1 Dept. of CS, Bar Ilan University, Ramat Gan, 52900 Israel
yadgar@macs.biu.ac.il

2 Dept. of CS, Bar Ilan University, Ramat Gan, 52900 Israel
sarit@macs.biu.ac.il

3 Artificial Intelligence Center, SRI International, Menlo Park, CA 94025 USA
ortiz@ai.sri.com

Abstract. In this paper, we describe the Distributed Dispatcher Manager
(DDM), a system for managing resource in very large-scale task and resource
domains. In DDM, resources are modeled as cooperative mobile teams of
agents and objects or tasks are assumed to be distributed over a virtual space.
Each agent has direct access to only local and partial information about its im-
mediate surroundings. DDM organizes teams hierarchically and addresses two
important issues that are prerequisites for success in such domains: (i) how
agents can extend local, partial information to arrive at a better local assessment
of the situation and (ii) how the local assessments from teams of many agents
can be integrated to form a global assessment of the situation. We conducted a
large number of experiments in simulation and demonstrated the advantages of
the DDM over other architectures in terms of accuracy and reduced inter-agent
communication.*

1 Introduction

This paper presents a novel multiagent solution to the problem of resource manage-
ment in very large-scale task and resource environments. We focus on domains of
application in which resources are best modeled by mobile agents, each of which can
decide, fairly autonomously, to take on new tasks in their immediate environment.
Since agents are mobile, they can be redirected to other areas where resources are
needed. However, since no single agent has global information regarding the distri-
bution of tasks and resources, local information from agents must be pooled to obtain
a more accurate understanding of the global situation. A typical domain that we have
in mind is one involving sensor webs that must be jointly tasked for surveillance:
sensors correspond to agents and objects that appear in the environment correspond

* This work was supported by DARPA contract F30602-99-C-0169 and NSF grant 9820657.

The second author is also affiliated with UMIACS.

M.-P. Huget (Ed.): Communications in Multiagent Systems, LNAI 2650, pp. 129–145, 2003.
© Springer-Verlag Berlin Heidelberg 2003

130 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

to tasks. For these sorts of problem domains, we segment the problem solving proc-
ess into two stages: (1) a situation assessment stage in which information processed
from individual agents is extended with causal knowledge about likely object behav-
iors and then combined to form a global situation assessment; and (2) a resource
distribution stage in which agents are (re-)distributed for better task management. In
this paper, we focus on the first stage; a companion paper addresses the second stage.

There are a number of ways one could approach the problem of achieving coordi-
nated behavior in very large teams of agents. The various methods can range along
several dimensions; as teams scale up, however, the degree of communication re-
quired for effective coordination is one important measure of system performance
which one would like to minimize. The extent of communication can be measured,
roughly, in terms of the number of rounds of communication needed between agents
and the size of the messages exchanged. Complex protocols, such as contract nets,
that involve explicit coordination in the form of cycles of announcements, bids and
awards to determine an appropriate task allocation among team members can become
costly, particularly after the number of tasks grows to the point that several rounds of
each cycle is necessary to reach agreement on an appropriate division of labor.
Methods that require a rich agent communication language (ACL) also place a burden
on the communications medium, requiring larger messages and more complex proc-
essing by each agent; a consequence of the latter is the need for agents of a more
complex design.

One of our goals has therefore been to develop methods that minimize such com-
munication-related metrics by limiting the degree of explicit coordination required.
A secondary goal was to also develop methods suitable for achieving coordinated
behavior among very simple agents; hence, the ACL is extremely simple in design.
To accomplish this we have designed a system which exploits agent autonomy in
service of realtime reactivity. It assumes that agents are of a relatively simple design
and organized hierarchically to reduce inter-agent communication. Agents are
grouped into teams, each with a distinguished team leader; teams might be assigned
to specific geographic sectors of interest. Teams are themselves grouped into larger
teams. Communication is restricted to flow only between an agent (or team) and its
team leader. State information from individual agents flows up to team leaders and
sector assignments flow from the team leader to the agents. Each individual agent can
position itself within an assigned sector depending on the tasks (objects) that it de-
tects in its local environment. In this model, therefore, resources are not directly
allocated to tasks but are rather distributed to sectors where it is believed that they are
most needed: the sector leader need not know exactly which agent is going to take on
a particular task. This design does not preclude the possibility of sector leader, for
example, using a more complex ACL; however, it does simplify the style and extent
of communication necessary between agents.

More abstractly, we can model such problems and their solution in the following
way. We define a resource management problem, MP, as a tuple,
MP=〈O,S,T,A,Sa,G,g,Comm, paths,ResBy〉, such that O stands for a set of tasks or
objects; S, a set of object/tasks states; T, a set of integer times; A, a set of agents; Sa,
a set of agent states; G, a set of groups; g: A ∪ G• G, an assignment of agents and

 Hierarchical Information Combination 131

groups to groups; Comm ⊆ A × A, a binary relation indicating a communication link
between agents; σ : T × O • S the actual states of tasks at given time. A causal rela-
tion, ResBy ⊆ S× T × S × T, constrains the evolution of object states in terms of con-
tiguous, legitimate paths, such that ResBy(s1,t1,s2,t2) iff s2 at t2 could follow s1 at
time t1.

For finding a solution to MP we consider the notion of an object state function fo :
T • S that associates with an object o its state change over time. If fo is the actual
path function then for any t, fo (t)= σ(t,o). We define an information map, I as a set of
path functions. We define a solution, Σ, to a given MP, written Σ(MP), such that
Σ(MP) ⊆ I, iff each object in O is captured in an actual path function in Σ(MP). We
expand on this formalization in later sections. Schematically we have the following
(the second stage of the problem is to distribute agents to sectors - see companion
paper for details).

Problem

 Team
assignments

Assessment
Agent(re-)
distribution

 Partial Information
 map

 Information

map

Figure 1: Solving the problem and redistributing the agents

The problem as described presents a number of difficult challenges: (1) there is a

data association or object identification problem associated with connecting up task
state measurements from one time point to the next; (2) local information obtained by
an agent is incomplete and uncertain and must be combined with other agents’ local
information to improve the assessment; and (3) computing the information map and
tracking objects must be accomplished in real time (this is one reason for giving indi-
vidual agents the flexibility to act more or less autonomously within their sector:
agents can react to nearby targets).

 In this paper we describe the Distributed Dispatcher Model (DDM), a system that
embodies these ideas. DDM is designed for efficient coordinated resource manage-
ment in systems consisting of hundreds of agents; the model makes use of hierarchi-
cal group formation to restrict the degree of communication between agents and to
guide processes for very quickly combine partial information to form a global as-
sessment. Each level narrows the uncertainty based on the data obtained from lower
levels. We show that the hierarchical processing of information reduces the time
needed to form an accurate global assessment.

We have tested the performance of the DDM through extensive experimentation in
a simulated environment involving many sensors. In the simulation models a suite of
Doppler sensors are used to form a global information map of targets moving in a
steady velocity. A Doppler sensor is a radar that is based on the Doppler effect. A
Doppler sensor provides only partial information about a target, in terms of an arc on
which a detected target might be located and the velocity towards it, that is, the radial

132 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

velocity [3]. Given a single Doppler measurement, one cannot establish the exact
location and velocity of a target; therefore, multiple measurements must be combined
for each target. This problem was devised as a challenge problem by the DARPA
Autonomous Negotiating Teams (ANTS) program to explore realtime distributed
resource allocation algorithms in a two dimensional geographic environment. ANTS
program uses Dopplers combined out of three different sectors, whereas only one
sector may be activated at a time. The orientations of the sectors are 0, 120 and 240
degrees.

We have compared our hierarchical architecture to other architectures; in this pa-
per we report on results that show that situation assessment is faster and more accu-
rate in DDM. We have also shown that DDM can achieve these results while only
using a low volume of possibly noisy communication.

2 Path Inference at the Agent Level in DDM

Each individual agent can extend its local information through the application of
causal knowledge that constrains the set of possible paths that could be associated
with a collection of data measurements.

2.1 Objects Movement and Agent Measurements

The ResBy function is meant to capture those constraints. The relation ResBy holds
for two object-states s1 and s2 and two time points t1 and t2 where t2 t1, if it is
possible that if the state of an object was s1 at t1, then it could be s2 at t2. ResBy
should also satisfy the following constraints:

≥

Let and , tTttt ∈321 ,, Ssss ∈321 ,, 321 tt << such that
>< , st(i) if ResBy(11 , >< 22 , st) and

ResBy(< ,>22 , st >< 3s
>

3 ,t) then
ResBy(< ,>11, st < 3s

>
3 ,t)

, st >< , st(ii) if ResBy(< 11 , 22) and
ResBy(< ,>11, st >< 3s

>
3 ,t) then

ResBy(< ,>22 , st < 3s
>

3 ,t)
< , st >< , st(iii) if ResBy(11 , 33) and the

ResBy(< ,>22 , st >< 33 , st
>

) then
ResBy(< ,>11, st < 22 , st

>
)

>< , st , st s(iv) if ResBy(,1 < 2) then 21 s= .

The constraints (i)-(iii) on ResBy restrict the way the state of an object may change
over time. They refer to three points of time t in an increasing order and to the
possibility that an object was at state and s at these time points, respectively.
If the object has been in these states at the corresponding times then at t should be
a result of at , i.e. ResBy(

321 ,, tt

321 , ss
2s 2

1s 1t >< 11, st , >< 22 , st). Similarly
ResBy(< ,) and ResBy(>22 ,st >< 3t 3, s >< 1s1,t , >< 33 , st). The constraints indicate
that it is enough to check that two out of the three relations hold, to verify that the
object was really at s at , at and at . That is, if two of the three relations 1 1t 2s 2t 3s 3t

 Hierarchical Information Combination 133

hold, the third one does as well. The last constraint (iv) is based on the fact that an
object cannot be in two different states at the same time.

2.1.1 Objects and ResBy Relation in the ANTS Domain

In the ANTS domain, objects correspond to targets. The target state structure is
>=< vrs , . r is the location vector of the target and v is the velocity vector. If a

target state 2s at resulted from target state s at and the velocity of the target re-
mained constant during the period t , then

2t 1 1t
ji t..)(112 ji ttv −⋅+r=r . We assume that no

target is likely to appear with the same exact properties as another target. That is,
there cannot be two targets at the exact same location moving in the same velocity
and direction. Thus, in ANTS where , >=< ivir ,is ResBy is true iff:
(i) may be derived from using the motion equation of a target and given

),,,(2211 ><>< stst

2r 1r 1v dur-
ing the period t and (ii) 12 t− 2v1v = .

The physical motion of a moving body in a steady velocity follows the four con-
straints of the ResBy relation. In general, in any domain every object state that com-
bines out of a singular state along with the first derivative of this state by time where
this derivative is not depended on time satisfies the four constraints.

2.1.2 Agents’ Measurements

Each agent is capable of taking measurements or sampling its nearby environment. In
the ANTS domain a sampling agent state is represented by the location of the sensor
and its orientation.

Object measurements provide only partial information on object-states and may be
incorrect. When an agent takes measurements we refer to its agent state as the view-
point from which a particular object state was measured. We assume that there is a
function PosS that given k consecutive measurements taken by the same agent, up to
time t returns a set of possible states, SS ⊆′ , for an object at time t where exactly
one is the right object state and there is an m such that Ss ′∈ 1≥ mS ≤′ || .
 A path, p, is a sequence of triples where

and for all
>><><< nnn ssatssat ,,...,, 111

SasaSsTt iii ∈∈∈ ,, ni <≤1 , either
< tt >< st , >, s(i) and ResBy(1+ii ii , < ++ 11 iit) is true or
= tt = ss(ii) , and 1+ii 1+≠ ii sasa 1+ii .

Each path represents an object’s discrete state change over time as measured by

sampling-agents in states, sa . Constraint (i) considers the case where two points
in the path captures the change of the state of the object from at time to at
time . In that case, where the path specifies the way the state was changed,
ResBy must hold, i.e. the object could be at at and then at

1at . On the other hand, constraint (ii) considers the case of two points
, on the path that do not capture a change in the ob-

ject’s state but rather two different observations of the object. That is, the object was

nsa...1

)>

>+1is

is it

i

1+is
1+it

(<
1+it

i ssa ,

,,, 11<> ++ iiii stst

>i < ++ 11 ,, ii sat

is t
+is

< it ,

134 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

at a given state at time t , but was observed by two agents. The two agents were, of
course, in different states, and this is captured by the constraint that

is i

1+≠ ii sasa .

=< ss sat ,π
> st

s e
(,π

2t < t

A path often consists of only a very few states of an observed object. However, an
agent would like to infer the state of the object at any given time from a path func-
tion. This is formalized as follows.

An object state function , with respect to two path points
es

f ππ , >ss s, ,

=< eeee ssat ,,π where , associates with each time point an object state (i.e.

) such that
et≤

STf
e

→:,ππ
stf =)(st =)

s

(i) ses ,ππ and eefπ
21,tt∀ 1t < (, f ππ

e

(ii) , ResBy(,>)1,1 t
es

><)(, 2,2 tft
es ππ).

An object state function represents object state change over time points in T with

respect to two path points. To move from a path to an associated function, we as-
sume that there is a function pathToFunc: FP → such that given a path Pp∈ ,

>><>=<< nnn ssatssatp ,,,...,,, 111 , if
es

f ππ , = pathToFunc (p) then,

>=< 111 ,, ssatsπ , >=< nnne ssat ,,π iii stft
es

=∀)(, ,ππ .

i
i

i

ekr
η

σ
βϑ 2)(

2

−−

⋅
=

ir i iθ
i iη i β

k σ

ir iθ

() 





 ⋅+⋅−+= 2

0,100
1

11 ln tvr
k r
ησαθ

0,1

0001

1,2

0102)()()()(
t
rr

t
rr θθθθ −

=
−

,,, rvr ηθ 0α 0=t 11 ,ηθ
1α 1=t jit ,

In the rest of the paper we will use an object state function and its path inter-
changeably.

2.1.3 PosS Implementation in ANTS

A measurement in the ANTS domain is a pair of amplitude and radial velocity values
for each sensed target. Given a measurement of a Doppler radar the target is located
by the Doppler equation:

where, for each sensed target, i, is the distance between the sensor and ; is

the angle between the sensor and ; is the measured amplitude of ; is the

sensor beam angle; and and are characteristics of the sensors and influence the
shape of the sensor detecting area (1). Given k consecutive measurements one can use
the Doppler equation to find the distance . However, there are two possible

angles for each such distance. Therefore, for PosS function in ANTS domain returns
two possible object states, i.e. m=2. For space reasons we do not present the proofs of
the lemmas and theorems.

Theorem 1: (PosS in ANTS) Assuming that the acceleration of a target in a short
time period is zero. The next target location after a very short time is then given by

where
0000
 and are values of the target at time and and

represent values of the target at time . is the time between t=i and t=j.

 Hierarchical Information Combination 135

Only certain angles will solve the equations. To be more accurate, the sampling
agent uses one more sample and applies the same mechanism to and . The
angles are used to form a set of possible pairs of location and velocity of a target (i.e.,
the PosS function values). Only one of these target states is the correct one.

21,θθ 3θ

>−⋅−=< ssss vttvrtf
es

),()(,ππ >−⋅−< eeee vttvr),(

>< h
h
e

h
ses
ff

ππππ ,
1

,
,...,11 hji ≤≤ ,1 Tt∈)()(

,,
tftf ji

j
e

j
s

i
e

i
s ππππ

≠

>=< },...,{,, 1 lsssatc
SsSasaTt i ∈∈∈ ,, ml ≤

In addition, pathToFunc (p) is calculated using in the following way
 which is equivalent to .

2.2 Constructing an Information Map

DDM uses partial and local information to form an accurate global description of the
changes in objects over time. The DDM model can be applied to many command,
control and intelligence problems by mapping the DDM entities to the domain enti-
ties. As pointed out earlier, the goal of the DDM is to construct an information map.

Definition 1: An information map, infoMap, is a set of object state functions
 such that for every and

Intuitively, infoMap represents the way that the states of objects change over time.
The condition on the information map specifies the assumption that two objects can-
not be at the same state and time. Because each agent has only partial and uncertain
information of its local surroundings an agent may need to construct the infoMap in
stages. In some cases, an agent might not be able to construct the entire infoMap. The
process of constructing the infoMap will use various intermediate structures.

As mentioned above, to capture the uncertainty associated with sensed informa-
tion, each sampled object is associated with several possible object states. We intro-
duce the notion of a capsule that represents a few possible states of an object at some
time as derived from measurements taken by an agent in a given state.

Definition 2: A capsule is a triple of a time point, a sampler agent state and a se-
quence of up to m object-states, i.e., where

, . We denote the set of all possible capsules by C.

Capsules are generated by the sampling agents using the domain dependent func-
tion PosS and k consecutive samples.

The assessment problem discussed earlier corresponds to the problem of how best
to choose the right state from every capsule. It is impossible to determine which state
is the correct state using only one viewpoint: measurements from one viewpoint can
result in up to m object states, each of which could correspond to the correct state.
Therefore, capsules from different viewpoints are needed. A different viewpoint may
correspond to a different state of the same sampling agent or of different sampling
agents. To choose the right object state from each capsule state, different capsules are
connected using the ResBy relation to form a path. Each of these paths is evaluated
and those with the best probability are chosen to represent the most likely sequence of
object state transitions to form state functions.

136 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

Definition 3: localInfo is a pair of infoMap and a set of capsules, <infoMap, unused-
Capsules> where unusedCapsules= s.t. for all and for all

 and and for every .

 c,...,c m1 >< mi ≤≤1

lj ≤≤1 =ic >< },...,{,, ,1 liiii sssat infoMap , ∈
es

f ππ ijsf
es

≠)(t i,ππ

 , es
f ππ

At any time, some capsules can be used to form object state functions that have a
high probability of representing objects. These functions are recorded in infoMap; we
refer to them as accurate representations. The remaining capsules are maintained in
the unusedCapsules set and used to identify state functions. That is, the condition of
definition 3 intuitively states that an object associated with a function was not

constructed using one of the measurements that were used to form the capsules in the
unusedCapsules set.

2.3 The DDM Hierarchy Architecture

In a large-scale environment many capsules may have to be linked from each area.
Applying the ResBy relation many times can be time consuming. However, there is a
low probability that capsules created based on measurements taken far away from one
another will be related. Therefore, it makes sense to distribute the solution. The DDM
hierarchical structure guides the distributed construction of the global infoMap. The
lower level of the hierarchy consists of sampling agents, which are grouped according
to their associated area. Each group has a leader. Thus, the second level of the hierar-
chy consists of sampler group leaders. Sampler group leaders are also grouped ac-
cording to their associated area. Each such group of sampler leaders is associated
with a zone group leader. Thus, the third level of the hierarchy consists of zone group
leaders, which in turn, are also grouped according to their associated area, with a
zone group leader, and so on. Leader agents are responsible for retrieving and com-
bining information from their group of agents. We refer to members of a group as
group subordinates. Sampling agents are mobile; therefore, they may change their
group when moving to a different area. The sampler leaders are responsible for the
movements of sampling agents. For space reasons we do not discuss the agent distri-
bution process here, but rather focus on the global infoMap formation. We also do not
discuss the methods we have developed to replace group leaders that stop function-
ing. All communication takes place only between a group member and its leader.

A sampler agent takes measurements and forms capsules. These capsules are sent
to the sampler leader at specified intervals. A sampler leader collects capsules from
its sampler agents to represent its localInfo. In this computation, it uses the previous
value of localInfo; it then sends its localInfo to its zone leader. A zone leader collects
the localInfo of all the sub-leaders of its zone and forms a localInfo of its entire zone.
It, in turn, sends it to its leader and so on. The top zone leader, whose zone consists of
the entire area, forms a localInfo of all the objects in the entire area. In the next sec-
tion we present the algorithms for these agent processes.

 Hierarchical Information Combination 137

Semi-Autonomous
Agent Movement

Sector
Assignment

Information
Flow

Path Inference

Information Combination

Collection

Path Inference

Information Combination

Collection

sampler leader

localInfoMap capsule

Path Inference

Information Combination

Collection

Path Inference

Information Combination

Collection

Path Inference

Information Combination

Collection

Figure 2: DDM hierarchy information flow diagram

3 Algorithm Description

The formation of a global information map integrates the following processes:
1. Each sampling agent gathers raw sensed data and generates cap-

sules.

138 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

2. Every dT seconds each sampler group leader obtains capsules from
all its sampling agents and integrates them into its localInfo.

3. Every dT seconds each zone group leader obtains from all its sub-
ordinate group leaders their localInfo and integrates them into its
own localInfo.

As a result, the top-level group leader localInfo will contain a global information
map.

We have developed several algorithms to implement each process. We will use a
dot notation to describe a field in a structure, e.g., if then c.sa
is the sampling agent field of the capsule c.

>=< },...,{,, 1 lsssatc

τ

>=< 111 ,..., esp ππ >=< 222 ,..., esp ππ >=< i
j

i
j

i
j

i
j ssat ,,π

)(11
, 11 ppathToFuncf
es
=

ππ
)(22

, 22 ppathToFuncf
es
=

ππ

>< 11, ss st >< 22 , ss st)()(2
,

1
, 2211 tftf

eses ππππ
=

Sampler capsule generation algorithm. We use one sampling agent to deduce a
set of possible object states at a given time in the form of a capsule. A sampling agent
takes k consecutive measurements and creates a new capsule, c, such that the time of
the capsule is the time of the last measurement. The state of the sampling agent while
taking the measurements is assigned to c.sa. The object states resulting from the ap-
plication of the domain function PosS to the k consecutive measurements is assigned
to c.states. The agent stores the capsules until it is time to send them to its sampler
group leader asks for them. After delivering the capsules to the group leader the sam-
pler agent deletes them.

Leader localInfo generation algorithm. Every dT seconds each group leader per-
forms the localInfo generation algorithm. Each group leader maintains its own lo-
calInfo. The leader first purges any data older than seconds before processing new
data. Updating localInfo involves three steps: (i) obtaining new information from the
leader’s subordinates; (ii) finding new paths; (iii) and merging the new paths into the
localInfo.

In the first phase, every leader obtains information from its subordinates. The
sampler group leader obtains information from all of its sampling agents for their
unusedCapsules and adds them to its unusedCapsules set. The zone group leader
obtains from its subordinates their localInfo. It adds the unusedCapsules to its un-
usedCapsules and merges the infoMap of that localInfo to its own localInfo.

Merging of functions is performed both in steps (i) and (iii). Merging is needed
since, as we noted earlier, object state functions inserted by a leader into the informa-
tion map are accepted by the system as correct and will not be removed. However,
different agents may sense the same object and therefore it may be that different func-
tions coming from different agents will refer to the same object. The agents should
recognize such cases and keep only one of these functions in the infoMap. We use the
following lemma to find identical functions and merge them.
Lemma 1:
Let , be two paths, where

and , .

If ResBy(,) then for any

Leaders use lemma (1) and the ResBy relation to check whether the first state of an

object state function resulted from the first state of a different object state function. If

 Hierarchical Information Combination 139

one of the states is related in such a way, the leader changes the minimum and the
maximum triplets of the object state function. The minimum triplet is the starting
triple that has the lowest time. The maximum triple is the ending triple that has the
higher time. Intuitively, the two state functions are merged and the resulted function
is associated with the combination of their ranges. If a leader cannot find an object
state function to meet the subordinate’s function, the leader will add it as a new func-
tion to its infoMap.

The second step is performed by every leader and corresponds to finding paths and
extending current paths given a set of capsules. In order to form paths from capsules,
the agent should choose only one object state out of each capsule. This constraint is
based on the flowing lemma.
Lemma 2:
Let , and >><=< 11

1
111

1,...,,,
h
sssatC >><=< 22

1
222

2,...,,,
h
sssatC

>< 11, ist >< 22 , jst >< ′
11, ist >< ′

22 , jst
11
ii ss ′≠ 22

jj ss ′≠ 22
jj ss ′≠ 11

ii ss ′≠ 11
ii ss ′= 22

jj ss ′=
22
jj ss ′=

11
ii ss ′=

ResBy (,) and ResBy (,) then
(i) if then (ii) if then (iii) if then
(iv) if then

According to this lemma one state of one capsule cannot be in a ResBy relation

with two different states in another capsule with respect to the capsule’s time. Such a
case of two different states violates the ResBy constraints.
 Every leader stores the correct object state functions as part of its infoMap struc-
ture. In the top-level leader we would also like to have represented object state func-
tions with an intermediate probability to represent objects. The top leader knows that
some of the paths that he would like to use to form state functions are correct but it
cannot decide which are correct. Paths with only one viewpoint are paths that may be
correct. For instance, in the ANTS domain, paths with one viewpoint will have a 50%
probability to be correct, due to the characteristics of the sensors. In other domains,
the characteristics of the sensors may lead to different probabilities. The top-level
leader will use these paths of intermediate probability to form a set of functions that
have a partial probability of being correct.

3.1 Complexity

The main issue, which we would like to resolve, is whether a single level hierarchy or
a multiple level one is best. If there is one level in the hierarchy then all the capsules
are processed by the sampling leader agent. If there are, say, two levels, then there are
several sampling agents that process the capsules simultaneously; this will save time.
However, all of the capsules that the sampling leaders will not be able to use in build-
ing state functions will find their way into the unusedCapsules set and will then be
transferred to the zone leader. The zone leader will collect all of the unusedCapsules
and will process them one more time. Thus, the second level may waste the time
saved by the distribution in the first level. Therefore, the time benefit of the hierarchy
depends on the ratio of the capsules that the lower level is able to use.

140 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

In order to determine the ratio of capsules that have not been used at a given level
for which it is still beneficial to have an additional level in the hierarchy we first state
the complexity of the two main algorithms. First, we consider the algorithm for form-
ing paths and then the algorithm that merges functions.
Lemma 3:
Let C be a set of capsules and m is the maximum number of states in a capsule.
The time complexity of finding the paths by the algorithm of step 2 is in the worse

case: . ()
2
|| 2mC ⋅

1F 2F

2
|||| 21 FF ⋅

O Λ
λ
τ

δ C
Λ τ

|||||| AOC ⋅⋅≤
δ
τ

Lemma 4:

The time complexity of merging two sets of object state functions and is in

the worse case: .

The most time consuming process is the formation of new paths in step 2. It de-
pends on the number of capsules generated by the agents. Thus in the next lemma we
state this number.
Lemma 5:

Let be the group of objects located in the area in a given time period and A the

set of agents located in the area. Let be the size of the sub-area sensed by a single
sampling agent. Suppose that in a give time periods the sampling agent is activating

its sensor for time periods. Let be a set of capsules generated by agents in area

 in the period . Then:

Intuitively, lemma 5 says that the number of capsules is bound by the number of
objects that the agents may observe in a given time period. Using the above lemmas
we derive a bounds on the percentage of unusedCapsule that should be processed at a
given level to make it beneficial to add additional level.

Λ q iΛ qi ≤≤1
i

qi

Λ=Λ
≤≤
U

1

α

2

2 1
q
q −

<α

α

Theorem 1:
Let area be divided into subsections, such that and

be the capsule percentage that could not be used in the state function construction

by the agents at a given level. Then, if it is beneficial, with respect to

performance time, to increase the hierarchy by one level, given that there are at least
two agents in each area.

As can be seen, even when is very close to 1 it is still beneficial to consider adding
an additional level.

 Hierarchical Information Combination 141

4 Simulation, Experiments and Results

We wanted to explore several issues via simulations. First we wanted to ascertain the
ability of the DDM model to identify state functions. Second, we wanted to check
whether the hierarchy model improved the performance of the system. Third, we
wanted to check how much the model was sensitive to noise. Finally, we wanted to
examine whether increasing the number of agents and using better equipped sampling
agents improved performance.

4.1 Simulation Environment

We developed a simulation of the ANTS domain to test the model. The simulation
consists of an area of a fixed size in which Dopplers attempt to identify the object
state functions of moving targets. Each target had an initial random location and an
initial random velocity of up to 50 km. per hour. Targets leave the area when reach-
ing the boundaries of the zone. Each target that leaves the area causes a new target to
appear at the same location with the same velocity in a direction that leads it inwards.
Therefore, each target may remain in the area for a random time period. Each Dop-
pler has initial random location and a velocity that is less than 50 km. per hour. When
a Doppler gets to the border of the controlled area it bounces back with the same
velocity. This ensures an even distribution of Dopplers.

Evaluation Methods. We collected the state functions produced by agents during
a simulation. We used two evaluation criteria in our simulations: (1) target tracking
percentage and (2) average tracking time. We counted a target as tracked if the path
identified by the agent satisfied the following: (a) the maximum distance between the
calculated location and the real location of the target did not exceed 1 meter, and (b)
the maximum difference between the calculated v(t) vector and the real v(t) vector
was less than 0.1 meter per second and 0.1 radians in angle.

In addition, the identified object state functions could be divided into two catego-
ries: (1) Only a single function was associated with a particular target and was chosen
to be part of the infoMap. Those functions were assigned a probability of 100% cor-
responding to the actual object state function. (2) Two possible object state functions
based on one viewpoint were associated with a target. Each was assigned a 50%
probability of corresponding to the actual function. We will say that one set of agents
did better than another if they reached higher tracking percentage and lower tracking
time with respect to the 100% functions and the total tracking percentage was at least
the same.

The averages reported in the graphs below were computed for one hour of simu-
lated time. The target tracking percentage time was calculated by dividing the num-
ber of targets that the agents succeeded in tracking, according to the above defini-
tions, by the actual number of targets during the simulated hour. In total, 670 targets
passed through the controlled area within an hour in the basic settings experiments
described below. The tracking time was defined as the time that the agents needed to
find the object state function of the target from the time the target entered the simula-

142 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

tion. Tracking average time was calculated by dividing the sum of tracking time of
the tracked targets by the number of tracked targets. Note that 29% of the targets in
our experiments remained in the area less than 60 seconds in our basic settings.
 Basic Settings. The basic setting for the environment corresponded to an area
1200 by 900 meters. In each experiment, we varied one of the parameters of the envi-
ronment, keeping the other values of the environment parameters as in the basic set-
tings. The Dopplers were mobile and moved randomly as described above. Each
Doppler stopped every 10 seconds, varied its active sensor randomly, and took 10
measurements. The maximum detection range of a Doppler in the basic setting was
200 meters; the number of Dopplers was 20 and the number of targets at a given time
point was 30. The DDM hierarchy consisted of only one level. That is, there was one
sampler-leader that was responsible for the entire area.

We first compared several settings to test the hierarchy model and the sampling
agents characterizations. Each setting was characterized by (i) whether we used a
hierarchy model (H) or a flat model (F); (ii) whether the sampler-agents were mobile
(M) or static (S); and (iii) whether Dopplers varied their active sectors from time to
time (V) or used a constant one all the time (C). In the flat model the sampler agents
used their local capsules to produce object state functions locally.

Mobile and dynamic vs. static Dopplers. In preliminary simulations (not pre-
sented here for space reasons) we experimented with all combinations of the parame-
ters (i)-(iii) above. In each setting, keeping the other two variables fixed and varying
only the mobility variable, the mobile agents did better than the static ones (with
respect to the evaluation definition above).

Hierarchy vs. flat models. We examined the characteristics of 4 different settings:
(A) FSC that involves static Dopplers with a constant active sector using a nonhierar-
chical model; (B) HSC as in (A) but using the hierarchical model; (C) FMV with
mobile Dopplers that vary their active sectors from time to time, but with no hierar-
chy; (D) HMV as in (C) but using the hierarchical model. We tested FSC on two
experimental arrangements: randomly located Dopplers and Dopplers arranged in a
grid formation to achieve better coverage. There was no significant difference be-
tween these two FSC formations. Our hypothesis was that the agents in HMV would
do better than the agents in all of the other settings.

Figure 3: Target tracking percentage and average time by the settings

The first finding is presented in the left part of Figure 3. This indicates that the set-
ting does not affect the overall tracking percentage (i.e., the tracking percentage of
the 50% and 100% functions). The difference between the settings is with respect to
the division of the detected target between accurate tracking and mediocre tracking.
HMV performed significantly better than the other settings. It found significantly

 Hierarchical Information Combination 143

more 100% functions and did it faster than the others. This supports the hypothesis
that a hierarchical organization leads to better performance. Further support for a
hierarchical organization comes from HSC being significantly better than FMV even
though, according to our preliminary results, HSC uses Dopplers that are more primi-
tive than the Dopplers FMV.

Another aspect of the performance of the models is the average tracking time as
shown in the right part of Figure 3. Once again, one can see that hierarchically based
organizations lead to better results. We found that by considering only targets that
stayed in the controlled zone at least 60 seconds, HMV reached 87% tracking per-
centage where 83% were accurately detected

We also considered a hierarchy with two levels: one zone leader leading four sam-
pling leaders. The area was divided equally between the four sampling leaders, and
each obtained information from the many mobile sampling agents located in its area.
In this configuration Dopplers were able to move from one zone to another; Dopplers
changed their sampling leader every time they moved from one zone to another.
Comparing the results of the two-level hierarchy simulations (not presented here
because of space reasons), with the one level hierarchy simulations we found that
there was no significant difference in the performance (with respect to the evaluation
definition) of the system when there were two levels of the hierarchy when there was
only one level in the hierarchy. However, consistent with theorem 1, the computation
time of the system was much lower.

Communication and noise. While the performance of the hierarchy-based mod-
els are significantly better than the non-hierarchy ones, the agents in the hierarchy
model must communicate with one another, while no communication is needed for
the flat models. Thus, if no communication is possible, then FMV should be used.
When communication is possible, however, messages may be lost or corrupted. The
data structure exchanged in messages is the capsule. In our simulations using a hier-
archy model, each sampling agent transmitted 168 bytes per minute. We examined
the influence of randomly corrupted capsules on the HMV’s behavior. Figure 4
shows that as the percentage of the lost capsules increased the number of tracked
targets decreased; however, up to a level of 10% noise, the detection percentages
decreased only from 74% to 65% and the accurate tracking time increased from 69
seconds to only 80 seconds. Noise of 5% resulted in a smaller decrease to a tracking
accuracy of 70% while the tracking time increased slightly to 71. DDM could even
mange with noise of 30% and track 39% of targets with average tracking time of 115
seconds.

In the rest of the experiments we used the HMV settings without noise.
Varying the number of Dopplers and targets. We examined the effect of the

number of Dopplers on performance. We found that, when the number of targets was
fixed, then as the number of Dopplers increased the percentage of accurate tracking
increased as well. The significance of this result is that it confirms that the system can
make good use of additional resources. We also found out that as the number of Dop-
pler sensors increased, the 50% probability paths decreased. This may be explained
by the fact that 100% paths result from taking into consideration more than one sam-
ple viewpoint. We also found that increasing the number of targets, while keeping the

144 Osher Yadgar, Sarit Kraus, and Charles L. Ortiz, Jr.

number of Dopplers fixed, does not influence the system’s performance. We specu-
late that this is because an active sector could distinguish more than one target in that
sector.

Figure 4: Target detection percentage and
average time as function of the communication
noise

Figure 5: Tracking percentage and average
time as a function of the number of Dopplers

Maximum detection range comparison. We also tested the influence of the de-
tecting sector area on performance. The basic setting uses Dopplers with detection
range of 200 meters. We compared the basic setting to similar ones with detection
ranges of 50,100 and 150 meters. We found that as the maximum range increased the
tracking percentage increased up to the range covering the entire global area. As the
maximum radius of detection increased the tracking average time decreased. This is
a beneficial property, since it indicates that better equipment will lead to better per-
formance.

5 Conclusions and Related Work

We have introduced a hierarchical approach for combining local and partial informa-
tion of large-scale object and team environments where agents must identify the
changing states of objects. To apply the DDM model to a different environment, it is
only necessary to represent three domain-specific functions: PosS, that maps meas-
urements to possible states; ResBy, that determines whether one given object state
associated with a time point can be the consequence of another given object state
associated with an earlier time point; and pathToFunc, that, given a path, returns a
function to represent it. Given these functions, all the DDM algorithms implemented
for the ANTS domain are applicable, as long as the complexity of these functions can
be kept low. Thus, we believe that the results obtained for the ANTS simulations will
carry over to any such domain.

The results reported in this paper support the following conclusions: (i) the hierar-
chy model outperforms a flat one; (ii) the flat mobile dynamic sector setting can be
used in situations where communication is not possible; (iii) increasing resources
increases performance; (iv) under the identified constraints, it is beneficial to add
more levels to the hierarchy; and (v) the DDM can handle situations of noisy com-
munications.

In terms of related work, the benefits of hierarchical organizations have been ar-
gued by many. So and Durfee draw on contingency theory to examine the benefits of

 Hierarchical Information Combination 145

a variety of hierarchical organizations; they discuss a hierarchically organized net-
work monitoring system for object decomposition and also consider organizational
self-design [6,7]. DDM differs in its use of organizational structure to dynamically
balance computational load.

The idea of combining partial local solutions into a more complete global solution
goes back to early work on the distributed vehicle monitoring testbed (DVMT) [5].
DVMT also operated in a domain of distributed sensors that tracked objects. How-
ever, the algorithms for support of mobile sensors and for the actual specifics of the
Doppler sensors themselves is novel to the DDM system. Within the DVMT, Corkill
and Lesser [2] investigated various team organizations in terms of interest areas
which partitioned problem solving nodes according to roles and communication, but
were not initially hierarchically organized [8]. Wagner and Lesser examined the role
that knowledge of organizational structure can play in decisions [9].

All the alternative approaches to the ANTS problem (e.g., [4]) have been based on
local assessment methods that require coordinated measurements from at least three
Doppler sensors and intersecting the resulting arcs of each. Such coordination re-
quires good synchronization of the clocks of the sensors and therefore communica-
tion among the Doppler agents to achieve that synchronization. In addition, commu-
nication is required for scheduling agent measurements. We have presented alterna-
tive methods, which can combine partial and uncertain local information.

References

1. ANTS Program Design Document, unpublished.
2. Corkill, Daniel, and Lesser, Victor. The use of meta-level control for coordination in a

distributed problem solving network. In Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, pp. 748-756. August, Karlsruhe, Germany, 1983.

3. G. P. Thomas, The Doppler effect, London: Logos, 1965.
4. Leen-Kiat Soh, Costas Tsatsoulis, Reflective Negotiating Agents for Real-Time Multisensor

Target Tracking. IJCAI 2001: 1121-1127.
5. Lesser V., Corkill D. and Durfee E., An update on the Distributed Vehicle Monitoring Test-

bed, CS Technical Report 87-111, University of Massachusetts, Amherst, 1987.
6. So Y., Durfee E., Designing Tree-Structured Organizations for Computational Agents, Com-

putational and Mathematical Organization Theory, 2(3), pages 219-246, 1996.
7. So Y., Durfee E., A Distributed Problem-Solving Infrastructure for Computer Network Man-

agement. International Journal of Intelligent and Cooperative Information Systems,
1(2):363-392, 1992.

8. W. Richard Scott, Organizations: Rational, Natural and Open, Prentice-Hall, 1992.
9. Wagner Thomas and Lesser Victor. Relating Quantified Motivations for Organizationally

Situated Agents. In Intelligent Agents VI --- Proceedings of the Sixth International Work-
shop on Agent Theories, Architectures, and Languages, Lecture Notes in Artificial Intelli-
gence, pp. 334-348. April, 1999.

	1 Introduction
	2 Path Inference at the Agent Level in DDM
	2.1 Objects Movement and Agent Measurements
	2.1.1 Objects and ResBy Relation in the ANTS Domain
	2.1.2 Agents’ Measurements
	2.1.3 PosS Implementation in ANTS

	2.2 Constructing an Information Map
	2.3 The DDM Hierarchy Architecture

	3 Algorithm Description
	3.1 Complexity

	4 Simulation, Experiments and Results
	4.1 Simulation Environment

	5 Conclusions and Related Work
	References

