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Abstract. In this paper, we describe the Distributed Dispatcher Manager 
(DDM), a system for managing resource in very large-scale task and resource 
domains.  In DDM, resources are modeled as cooperative mobile teams of 
agents and objects or tasks are assumed to be distributed over a virtual space. 
Each agent has direct access to only local and partial information about its im-
mediate surroundings. DDM organizes teams hierarchically and addresses two 
important issues that are prerequisites for success in such domains: (i) how 
agents can extend local, partial information to arrive at a better local assessment 
of the situation and (ii) how the local assessments from teams of many agents 
can be integrated to form a global assessment of the situation. We conducted a 
large number of experiments in simulation and demonstrated the advantages of 
the DDM over other architectures in terms of accuracy and reduced inter-agent 
communication.*  

1 Introduction 

This paper presents a novel multiagent solution to the problem of resource manage-
ment in very large-scale task and resource environments.  We focus on domains of 
application in which resources are best modeled by mobile agents, each of which can 
decide, fairly autonomously, to take on new tasks in their immediate environment.  
Since agents are mobile, they can be redirected to other areas where resources are 
needed.  However, since no single agent has global information regarding the distri-
bution of tasks and resources, local information from agents must be pooled to obtain 
a more accurate understanding of the global situation.  A typical domain that we have 
in mind is one involving sensor webs that must be jointly tasked for surveillance: 
sensors correspond to agents and objects that appear in the environment correspond 
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to tasks.  For these sorts of problem domains, we segment the problem solving proc-
ess into two stages: (1) a situation assessment stage in which information processed 
from individual agents is extended with causal knowledge about likely object behav-
iors and then combined to form a global situation assessment; and (2) a resource 
distribution stage in which agents are (re-)distributed for better task management.  In 
this paper, we focus on the first stage; a companion paper addresses the second stage. 

There are a number of ways one could approach the problem of achieving coordi-
nated behavior in very large teams of agents.  The various methods can range along 
several dimensions; as teams scale up, however, the degree of communication re-
quired for effective coordination is one important measure of system performance 
which one would like to minimize.  The extent of communication can be measured, 
roughly, in terms of the number of rounds of communication needed between agents 
and the size of the messages exchanged.  Complex protocols, such as contract nets, 
that involve explicit coordination in the form of cycles of announcements, bids and 
awards to determine an appropriate task allocation among team members can become 
costly, particularly after the number of tasks grows to the point that several rounds of 
each cycle is necessary to reach agreement on an appropriate division of labor.  
Methods that require a rich agent communication language (ACL) also place a burden 
on the communications medium, requiring larger messages and more complex proc-
essing by each agent; a consequence of the latter is the need for agents of a more 
complex design.   

One of our goals has therefore been to develop methods that minimize such com-
munication-related metrics by limiting the degree of explicit coordination required.  
A secondary goal was to also develop methods suitable for achieving coordinated 
behavior among very simple agents; hence, the ACL is extremely simple in design.  
To accomplish this we have designed a system which exploits agent autonomy in 
service of realtime reactivity.  It assumes that agents are of a relatively simple design 
and organized hierarchically to reduce inter-agent communication.  Agents are 
grouped into teams, each with a distinguished team leader; teams might be assigned 
to specific geographic sectors of interest.  Teams are themselves grouped into larger 
teams.  Communication is restricted to flow only between an agent (or team) and its 
team leader.  State information from individual agents flows up to team leaders and 
sector assignments flow from the team leader to the agents. Each individual agent can 
position itself within an assigned sector depending on the tasks (objects) that it de-
tects in its local environment.  In this model, therefore, resources are not directly 
allocated to tasks but are rather distributed to sectors where it is believed that they are 
most needed: the sector leader need not know exactly which agent is going to take on 
a particular task.   This design does not preclude the possibility of  sector leader, for 
example, using a more complex ACL; however, it does simplify the style and extent 
of communication necessary between agents. 

More abstractly, we can model such problems and their solution in the following 
way. We define a resource management problem, MP, as a tuple, 
MP=〈O,S,T,A,Sa,G,g,Comm, paths,ResBy〉, such that O stands for a set of tasks or 
objects; S, a set of object/tasks states; T, a set of integer times; A,  a set of agents; Sa, 
a set of agent states; G, a set of groups; g: A  ∪ G• G, an assignment of agents and 
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groups to groups; Comm ⊆ A × A, a binary relation indicating a communication link 
between agents; σ : T × O  •  S the actual states of tasks at given time. A causal rela-
tion, ResBy ⊆ S× T × S ×  T, constrains the evolution of object states in terms of con-
tiguous, legitimate paths, such that ResBy(s1,t1,s2,t2) iff s2 at t2 could follow s1 at 
time t1.   

For finding a solution to MP we consider the notion of an object state function fo : 
T •  S  that associates with an object o its state change over time. If  fo is the actual 
path function then for any t, fo (t)= σ(t,o). We define an information map, I as a set of 
path functions.  We define a solution, Σ, to a given MP, written Σ(MP), such that 
Σ(MP) ⊆  I,  iff each object in O is captured in an actual path function in Σ(MP).  We 
expand on this formalization in later sections.  Schematically we have the following 
(the second stage of the problem is to distribute agents to sectors - see companion 
paper for details).    
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  Partial Information  
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Figure 1: Solving the problem and redistributing the agents 

 
The problem as described presents a number of difficult challenges: (1) there is a 

data association or object identification problem associated with connecting up task 
state measurements from one time point to the next; (2) local information obtained by 
an agent is incomplete and uncertain and must be combined with other agents’ local 
information to improve the assessment; and (3) computing the information map and 
tracking objects must be accomplished in real time (this is one reason for giving indi-
vidual agents the flexibility to act more or less autonomously within their sector: 
agents can react to nearby targets).   

 In this paper we describe the Distributed Dispatcher Model (DDM), a system that 
embodies these ideas.  DDM is designed for efficient coordinated resource manage-
ment in systems consisting of hundreds of agents; the model makes use of hierarchi-
cal group formation to restrict the degree of communication between agents and to 
guide processes for very quickly combine partial information to form a global as-
sessment.  Each level narrows the uncertainty based on the data obtained from lower 
levels. We show that the hierarchical processing of information reduces the time 
needed to form an accurate global assessment. 

We have tested the performance of the DDM through extensive experimentation in 
a simulated environment involving many sensors.  In the simulation models a suite of 
Doppler sensors are used to form a global information map of targets moving in a 
steady velocity. A Doppler sensor is a radar that is based on the Doppler effect. A 
Doppler sensor provides only partial information about a target, in terms of an arc on 
which a detected target might be located and the velocity towards it, that is, the radial 
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velocity [3]. Given a single Doppler measurement, one cannot establish the exact 
location and velocity of a target; therefore, multiple measurements must be combined 
for each target. This problem was devised as a challenge problem by the DARPA 
Autonomous Negotiating Teams (ANTS) program to explore realtime distributed 
resource allocation algorithms in a two dimensional geographic environment. ANTS 
program uses Dopplers combined out of three different sectors, whereas only one 
sector may be activated at a time. The orientations of the sectors are 0, 120 and 240 
degrees.  

We have compared our hierarchical architecture to other architectures; in this pa-
per we report on results that show that situation assessment is faster and more accu-
rate in DDM. We have also shown that DDM can achieve these results while only 
using a low volume of possibly noisy communication. 

2   Path Inference at the Agent Level in DDM 

Each individual agent can extend its local information through the application of 
causal knowledge that constrains the set of possible paths that could be associated 
with a collection of data measurements.   
 
2.1 Objects Movement and Agent Measurements 
 
The ResBy function is meant to capture those constraints.  The relation ResBy holds 
for two object-states s1 and s2 and two time points t1 and t2 where t2 t1,  if it is 
possible that if the state of an object was s1 at t1, then it could be s2 at t2. ResBy 
should also satisfy the following constraints: 
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The constraints (i)-(iii) on ResBy restrict the way the state of an object may change 
over time.  They refer to three points of time t  in an increasing order and to the 
possibility that an object was at state  and s  at these time points, respectively. 
If the object has been in these states at the corresponding times then at t  should be 
a result of at , i.e. ResBy(

321 ,, tt

321 , ss
2s 2

1s 1t >< 11, st , >< 22 , st ). Similarly 
ResBy( < , )  and  ResBy(>22 ,st >< 3t 3, s >< 1s1,t , >< 33 , st ). The constraints indicate 
that it is enough to check that two out of the three relations hold, to verify that the 
object was really at s at , at  and at . That is, if two of the three relations 1 1t 2s 2t 3s 3t
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hold, the third one does as well. The last constraint (iv) is based on the fact that an 
object cannot be in two different states at the same time. 

2.1.1 Objects and ResBy Relation in the ANTS Domain 
 

In the ANTS domain, objects correspond to targets. The target state structure is 
>=< vrs , . r  is the location vector of the target and v is the velocity vector. If a 

target state 2s at  resulted from target state s at  and the velocity of the target re-
mained constant during the period t , then 

2t 1 1t
ji t.. )(112 ji ttv −⋅+r=r . We assume that no 

target is likely to appear with the same exact properties as another target. That is, 
there cannot be two targets at the exact same location moving in the same velocity 
and direction.  Thus, in ANTS where , >=< ivir ,is  ResBy is true iff: 
(i) may be derived from  using the motion equation of a target and given 

),,,( 2211 ><>< stst

2r 1r 1v dur-
ing the period t and (ii) 12 t− 2v1v = . 

The physical motion of a moving body in a steady velocity follows the four con-
straints of the ResBy relation.  In general, in any domain every object state that com-
bines out of a singular state along with the first derivative of this state by time where 
this derivative is not depended on time satisfies the four constraints.  

2.1.2 Agents’ Measurements  
 
Each agent is capable of taking measurements or sampling its nearby environment. In 
the ANTS domain a sampling agent state is represented by the location of the sensor 
and its orientation.   

Object measurements provide only partial information on object-states and may be 
incorrect.  When an agent takes measurements we refer to its agent state as the view-
point from which a particular object state was measured. We assume that there is a 
function PosS that given k consecutive measurements taken by the same agent, up to 
time t returns a set of possible states, SS ⊆′ , for an object at time t where exactly 
one  is the right object state and there is an m such that Ss ′∈ 1≥ mS ≤′ || . 
 A path, p, is a sequence of triples  where 

and for all 
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Each path represents an object’s discrete state change over time as measured by 

sampling-agents in states, sa . Constraint (i) considers the case where two points 
in the path captures the change of the state of the object from at time  to at 
time . In that case, where the path specifies the way the state was changed, 
ResBy  must hold, i.e. the object could be at at and then at 

1at . On the other hand, constraint (ii) considers the case of two points 
,  on the path that do not capture a change in the ob-

ject’s state but rather two different observations of the object.  That is, the object was 
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at a given state at time t , but was observed by two agents. The two agents were, of 
course, in different states, and this is captured by the constraint that 

is i

1+≠ ii sasa .  

=< ss sat ,π
> st

s e
(,π

2t < t

A path often consists of only a very few states of an observed object. However, an 
agent would like to infer the state of the object at any given time from a path func-
tion. This is formalized as follows.  

An object state function , with respect to two path points 
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An object state function represents object state change over time points in T with 

respect to two path points.  To move from a path to an associated function, we as-
sume that there is a function pathToFunc: FP →  such that given a path Pp∈ , 

>><>=<< nnn ssatssatp ,,,...,,, 111 , if 
es

f ππ , = pathToFunc (p) then, 

>=< 111 ,, ssatsπ , >=< nnne ssat ,,π  iii stft
es

=∀ )(, ,ππ . 

i
i

i

ekr
η

σ
βϑ 2)(

2

−−

⋅
=

ir i iθ
i iη i β

k σ

ir iθ

( ) 





 ⋅+⋅−+= 2

0,100
1

11 ln tvr
k r
ησαθ

0,1

0001

1,2

0102 )()()()(
t
rr

t
rr θθθθ −

=
−

,,, rvr ηθ 0α 0=t 11 ,ηθ
1α 1=t jit ,

In the rest of the paper we will use an object state function and its path inter-
changeably. 

2.1.3 PosS Implementation in ANTS  
 
A measurement in the ANTS domain is a pair of amplitude and radial velocity values 
for each sensed target. Given a measurement of a Doppler radar the target is located 
by the Doppler equation: 

 

where, for each sensed target, i,  is the distance between the sensor and ;  is 

the angle between the sensor and ;  is the measured amplitude of ;  is the 

sensor beam angle; and  and  are characteristics of the sensors and influence the 
shape of the sensor detecting area (1). Given k consecutive measurements one can use 
the Doppler equation to find the distance . However, there are two possible  

angles for each such distance. Therefore, for PosS function in ANTS domain returns 
two possible object states, i.e. m=2. For space reasons we do not present the proofs of 
the lemmas and theorems.   

Theorem 1: (PosS in ANTS) Assuming that the acceleration of a target in a short 
time period is zero. The next target location after a very short time is then given by 

      

where 
0000
 and  are values of the target at time and and 

represent values of the target at time .  is the time between t=i and t=j.  
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Only certain angles will solve the equations. To be more accurate, the sampling 
agent uses one more sample and applies the same mechanism to  and . The 
angles are used to form a set of possible pairs of location and velocity of a target (i.e., 
the PosS  function values). Only one of these target states is the correct one. 
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In addition, pathToFunc (p) is calculated using in the following way 
 which is equivalent to . 

2.2 Constructing an Information Map 

DDM uses partial and local information to form an accurate global description of the 
changes in objects over time. The DDM model can be applied to many command, 
control and intelligence problems by mapping the DDM entities to the domain enti-
ties.  As pointed out earlier, the goal of the DDM is to construct an information map. 

Definition 1: An information map, infoMap, is a set of object state functions 
 such that for every  and   

Intuitively, infoMap represents the way that the states of objects change over time. 
The condition on the information map specifies the assumption that two objects can-
not be at the same state and time. Because each agent has only partial and uncertain 
information of its local surroundings an agent may need to construct the infoMap in 
stages. In some cases, an agent might not be able to construct the entire infoMap. The 
process of constructing the infoMap will use various intermediate structures. 

As mentioned above, to capture the uncertainty associated with sensed informa-
tion, each sampled object is associated with several possible object states. We intro-
duce the notion of a capsule that represents a few possible states of an object at some 
time as derived from measurements taken by an agent in a given state. 

Definition 2: A capsule is a triple of a time point, a sampler agent state and a se-
quence of up to m object-states, i.e.,  where 

, . We denote the set of all possible capsules by C. 

Capsules are generated by the sampling agents using the domain dependent func-
tion PosS and k consecutive samples.  

The assessment problem discussed earlier corresponds to the problem of how best 
to choose the right state from every capsule. It is impossible to determine which state 
is the correct state using only one viewpoint: measurements from one viewpoint can 
result in up to m object states, each of which could correspond to the correct state. 
Therefore, capsules from different viewpoints are needed. A different viewpoint may 
correspond to a different state of the same sampling agent or of different sampling 
agents. To choose the right object state from each capsule state, different capsules are 
connected using the ResBy relation to form a path. Each of these paths is evaluated 
and those with the best probability are chosen to represent the most likely sequence of 
object state transitions to form state functions.   
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Definition 3: localInfo is a pair of infoMap and a set of capsules, <infoMap, unused-
Capsules> where unusedCapsules= s.t. for all and for all 

 and   and for every  . 

 c,...,c m1 >< mi ≤≤1

lj ≤≤1 =ic >< },...,{,, ,1 liiii sssat infoMap  , ∈
es

f ππ ijsf
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≠)(t i,ππ

 , es
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At any time, some capsules can be used to form object state functions that have a 
high probability of representing objects. These functions are recorded in infoMap; we 
refer to them as accurate representations. The remaining capsules are maintained in 
the unusedCapsules set and used to identify state functions. That is, the condition of 
definition 3 intuitively states that an object associated with a function was not 

constructed using one of the measurements that were used to form the capsules in the 
unusedCapsules set.  

2.3 The DDM Hierarchy Architecture 

In a large-scale environment many capsules may have to be linked from each area. 
Applying the ResBy relation many times can be time consuming. However, there is a 
low probability that capsules created based on measurements taken far away from one 
another will be related. Therefore, it makes sense to distribute the solution. The DDM 
hierarchical structure guides the distributed construction of the global infoMap. The 
lower level of the hierarchy consists of sampling agents, which are grouped according 
to their associated area. Each group has a leader. Thus, the second level of the hierar-
chy consists of sampler group leaders. Sampler group leaders are also grouped ac-
cording to their associated area. Each such group of sampler leaders is associated 
with a zone group leader. Thus, the third level of the hierarchy consists of zone group 
leaders, which in turn, are also grouped according to their associated area, with a 
zone group leader, and so on. Leader agents are responsible for retrieving and com-
bining information from their group of agents. We refer to members of a group as 
group subordinates. Sampling agents are mobile; therefore, they may change their 
group when moving to a different area. The sampler leaders are responsible for the 
movements of sampling agents. For space reasons we do not discuss the agent distri-
bution process here, but rather focus on the global infoMap formation. We also do not 
discuss the methods we have developed to replace group leaders that stop function-
ing.  All communication takes place only between a group member and its leader.  

A sampler agent takes measurements and forms capsules. These capsules are sent 
to the sampler leader at specified intervals. A sampler leader collects capsules from 
its sampler agents to represent its localInfo. In this computation, it uses the previous 
value of localInfo; it then sends its localInfo to its zone leader. A zone leader collects 
the localInfo of all the sub-leaders of its zone and forms a localInfo of its entire zone. 
It, in turn, sends it to its leader and so on. The top zone leader, whose zone consists of 
the entire area, forms a localInfo of all the objects in the entire area. In the next sec-
tion we present the algorithms for these agent processes. 
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Figure 2: DDM hierarchy information flow diagram 

3   Algorithm Description 

The formation of a global information map integrates the following processes:  
1. Each sampling agent gathers raw sensed data and generates cap-

sules.  
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2. Every dT seconds each sampler group leader obtains capsules from 
all its sampling agents and integrates them into its localInfo. 

3. Every dT seconds each zone group leader obtains from all its sub-
ordinate group leaders their localInfo and integrates them into its 
own localInfo. 

As a result, the top-level group leader localInfo will contain a global information 
map. 

We have developed several algorithms to implement each process. We will use a 
dot notation to describe a field in a structure, e.g., if  then c.sa 
is the sampling agent field of the capsule c.   
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Sampler capsule generation algorithm.  We use one sampling agent to deduce a 
set of possible object states at a given time in the form of a capsule. A sampling agent 
takes k consecutive measurements and creates a new capsule, c, such that the time of 
the capsule is the time of the last measurement. The state of the sampling agent while 
taking the measurements is assigned to c.sa. The object states resulting from the ap-
plication of the domain function PosS to the k consecutive measurements is assigned 
to c.states. The agent stores the capsules until it is time to send them to its sampler 
group leader asks for them. After delivering the capsules to the group leader the sam-
pler agent deletes them. 

Leader localInfo generation algorithm. Every dT seconds each group leader per-
forms the localInfo generation algorithm. Each group leader maintains its own lo-
calInfo. The leader first purges any data older than  seconds before processing new 
data. Updating localInfo involves three steps: (i) obtaining new information from the 
leader’s subordinates; (ii) finding new paths; (iii) and merging the new paths into the 
localInfo. 

In the first phase, every leader obtains information from its subordinates. The 
sampler group leader obtains information from all of its sampling agents for their 
unusedCapsules and adds them to its unusedCapsules set. The zone group leader 
obtains from its subordinates their localInfo. It adds the unusedCapsules to its un-
usedCapsules and merges the infoMap of that localInfo to its own localInfo.  

Merging of functions is performed both in steps (i) and (iii). Merging is needed 
since, as we noted earlier, object state functions inserted by a leader into the informa-
tion map are accepted by the system as correct and will not be removed. However, 
different agents may sense the same object and therefore it may be that different func-
tions coming from different agents will refer to the same object. The agents should 
recognize such cases and keep only one of these functions in the infoMap. We use the 
following lemma to find identical functions and merge them. 
Lemma 1: 
Let ,  be two paths, where  

and , .  

If ResBy( , ) then for any  
 
Leaders use lemma (1) and the ResBy relation to check whether the first state of an 

object state function resulted from the first state of a different object state function. If 



  Hierarchical Information Combination 139 

one of the states is related in such a way, the leader changes the minimum and the 
maximum triplets of the object state function. The minimum triplet is the starting 
triple that has the lowest time. The maximum triple is the ending triple that has the 
higher time. Intuitively, the two state functions are merged and the resulted function 
is associated with the combination of their ranges.  If a leader cannot find an object 
state function to meet the subordinate’s function, the leader will add it as a new func-
tion to its infoMap.  

The second step is performed by every leader and corresponds to finding paths and 
extending current paths given a set of capsules. In order to form paths from capsules, 
the agent should choose only one object state out of each capsule. This constraint is 
based on the flowing lemma.  
Lemma 2: 
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ResBy ( , ) and ResBy ( , ) then 
(i) if  then   (ii) if  then   (iii) if  then  
(iv) if  then  
 
According to this lemma one state of one capsule cannot be in a ResBy relation 

with two different states in another capsule with respect to the capsule’s time. Such a 
case of two different states violates the ResBy constraints.  
    Every leader stores the correct object state functions as part of its infoMap struc-
ture. In the top-level leader we would also like to have represented object state func-
tions with an intermediate probability to represent objects. The top leader knows that 
some of the paths that he would like to use to form state functions are correct but it 
cannot decide which are correct. Paths with only one viewpoint are paths that may be 
correct. For instance, in the ANTS domain, paths with one viewpoint will have a 50% 
probability to be correct, due to the characteristics of the sensors. In other domains, 
the characteristics of the sensors may lead to different probabilities. The top-level 
leader will use these paths of intermediate probability to form a set of functions that 
have a partial probability of being correct. 

3.1 Complexity 

The main issue, which we would like to resolve, is whether a single level hierarchy or 
a multiple level one is best.  If there is one level in the hierarchy then all the capsules 
are processed by the sampling leader agent. If there are, say, two levels, then there are 
several sampling agents that process the capsules simultaneously; this will save time. 
However, all of the capsules that the sampling leaders will not be able to use in build-
ing state functions will find their way into the unusedCapsules set and will then be 
transferred to the zone leader. The zone leader will collect all of the unusedCapsules 
and will process them one more time. Thus, the second level may waste the time 
saved by the distribution in the first level. Therefore, the time benefit of the hierarchy 
depends on the ratio of the capsules that the lower level is able to use. 
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In order to determine the ratio of capsules that have not been used at a given level 
for which it is still beneficial to have an additional level in the hierarchy we first state 
the complexity of the two main algorithms. First, we consider the algorithm for form-
ing paths and then the algorithm that merges functions. 
Lemma 3: 
Let C be a set of capsules and m is the maximum number of states in a capsule. 
The time complexity of finding the paths by the algorithm of step 2 is in the worse 

case:  . ( )
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Lemma 4: 

The time complexity of merging two sets of object state functions and  is in 

the worse case:  . 

The most time consuming process is the formation of new paths in step 2. It de-
pends on the number of capsules generated by the agents. Thus in the next lemma we 
state this number. 
Lemma 5:  

Let  be the group of objects located in the area in a given time period and A the 

set of agents located in the area. Let be the size of the sub-area sensed by a single 
sampling agent. Suppose that in a give time periods the sampling agent is activating 

its sensor for time periods. Let be a set of capsules generated by agents in area 

 in the period . Then: 

 

Intuitively, lemma 5 says that the number of capsules is bound by the number of 
objects that the agents may observe in a given time period. Using the above lemmas 
we derive a bounds on the percentage of unusedCapsule that should be processed at a 
given level to make it beneficial to add additional level. 
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Theorem 1: 
Let area  be divided into subsections,  such that  and 

be the capsule percentage that could not be used in the state function construction 

by the agents at a given level. Then, if it is beneficial, with respect to 

performance time, to increase the hierarchy by one level, given that there are at least 
two agents in each area.  
 
As can be seen, even when is very close to 1 it is still beneficial to consider adding 
an additional level. 
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4 Simulation, Experiments and Results 

We wanted to explore several issues via simulations. First we wanted to ascertain the 
ability of the DDM model to identify state functions. Second, we wanted to check 
whether the hierarchy model improved the performance of the system. Third, we 
wanted to check how much the model was sensitive to noise. Finally, we wanted to 
examine whether increasing the number of agents and using better equipped sampling 
agents improved performance.   

4.1 Simulation Environment 

We developed a simulation of the ANTS domain to test the model. The simulation 
consists of an area of a fixed size in which Dopplers attempt to identify the object 
state functions of moving targets. Each target had an initial random location and an 
initial random velocity of up to 50 km. per hour. Targets leave the area when reach-
ing the boundaries of the zone. Each target that leaves the area causes a new target to 
appear at the same location with the same velocity in a direction that leads it inwards.  
Therefore, each target may remain in the area for a random time period. Each Dop-
pler has initial random location and a velocity that is less than 50 km. per hour. When 
a Doppler gets to the border of the controlled area it bounces back with the same 
velocity. This ensures an even distribution of Dopplers.  

Evaluation Methods. We collected the state functions produced by agents during 
a simulation. We used two evaluation criteria in our simulations: (1) target tracking 
percentage and (2) average tracking time. We counted a target as tracked if the path 
identified by the agent satisfied the following: (a) the maximum distance between the 
calculated location and the real location of the target did not exceed 1 meter, and (b) 
the maximum difference between the calculated v(t) vector and the real v(t) vector 
was less than 0.1 meter per second and 0.1 radians in angle.  

In addition, the identified object state functions could be divided into two catego-
ries: (1) Only a single function was associated with a particular target and was chosen 
to be part of the infoMap. Those functions were assigned a probability of 100% cor-
responding to the actual object state function. (2) Two possible object state functions 
based on one viewpoint were associated with a target. Each was assigned a 50% 
probability of corresponding to the actual function. We will say that one set of agents 
did better than another if they reached higher tracking percentage and lower tracking 
time with respect to the 100% functions and the total tracking percentage was at least 
the same.  

The averages reported in the graphs below were computed for one hour of simu-
lated time. The target tracking percentage time was calculated by dividing the num-
ber of targets that the agents succeeded in tracking, according to the above defini-
tions, by the actual number of targets during the simulated hour. In total, 670 targets 
passed through the controlled area within an hour in the basic settings experiments 
described below. The tracking time was defined as the time that the agents needed to 
find the object state function of the target from the time the target entered the simula-
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tion. Tracking average time was calculated by dividing the sum of tracking time of 
the tracked targets by the number of tracked targets. Note that 29% of the targets in 
our experiments remained in the area less than 60 seconds in our basic settings. 
     Basic Settings. The basic setting for the environment corresponded to an area 
1200 by 900 meters. In each experiment, we varied one of the parameters of the envi-
ronment, keeping the other values of the environment parameters as in the basic set-
tings. The Dopplers were mobile and moved randomly as described above. Each 
Doppler stopped every 10 seconds, varied its active sensor randomly, and took 10 
measurements. The maximum detection range of a Doppler in the basic setting was 
200 meters; the number of Dopplers was 20 and the number of targets at a given time 
point was 30. The DDM hierarchy consisted of only one level. That is, there was one 
sampler-leader that was responsible for the entire area.  

We first compared several settings to test the hierarchy model and the sampling 
agents characterizations. Each setting was characterized by (i) whether we used a 
hierarchy model (H) or a flat model (F); (ii) whether the sampler-agents were mobile 
(M) or static (S); and (iii) whether Dopplers varied their active sectors from time to 
time (V) or used a constant one all the time (C). In the flat model the sampler agents 
used their local capsules to produce object state functions locally.  

Mobile and dynamic vs. static Dopplers.  In preliminary simulations (not pre-
sented here for space reasons) we experimented with all combinations of the parame-
ters (i)-(iii) above. In each setting, keeping the other two variables fixed and varying 
only the mobility variable, the mobile agents did better than the static ones (with 
respect to the evaluation definition above).  

Hierarchy vs. flat models. We examined the characteristics of 4 different settings: 
(A) FSC that involves static Dopplers with a constant active sector using a nonhierar-
chical model;  (B) HSC as in (A) but using the hierarchical model; (C) FMV with 
mobile Dopplers that vary their active sectors from time to time, but with no hierar-
chy; (D) HMV as in (C) but using the hierarchical model. We tested FSC on two 
experimental arrangements: randomly located Dopplers and Dopplers arranged in a 
grid formation to achieve better coverage. There was no significant difference be-
tween these two FSC formations. Our hypothesis was that the agents in HMV would 
do better than the agents in all of the other settings.   

 
 
 
 
 
 

Figure 3: Target tracking percentage and average time by the settings 

The first finding is presented in the left part of Figure 3. This indicates that the set-
ting does not affect the overall tracking percentage (i.e., the tracking percentage of 
the 50% and 100% functions). The difference between the settings is with respect to 
the division of the detected target between accurate tracking and mediocre tracking. 
HMV performed significantly better than the other settings. It found significantly 
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more 100% functions and did it faster than the others. This supports the hypothesis 
that a hierarchical organization leads to better performance.  Further support for a 
hierarchical organization comes from HSC being significantly better than FMV even 
though, according to our preliminary results, HSC uses Dopplers that are more primi-
tive than the Dopplers FMV. 

Another aspect of the performance of the models is the average tracking time as 
shown in the right part of Figure 3.  Once again, one can see that hierarchically based 
organizations lead to better results. We found that by considering only targets that 
stayed in the controlled zone at least 60 seconds, HMV reached 87% tracking per-
centage where 83% were accurately detected  

We also considered a hierarchy with two levels: one zone leader leading four sam-
pling leaders. The area was divided equally between the four sampling leaders, and 
each obtained information from the many mobile sampling agents located in its area. 
In this configuration Dopplers were able to move from one zone to another; Dopplers 
changed their sampling leader every time they moved from one zone to another. 
Comparing the results of the two-level hierarchy simulations (not presented here 
because of space reasons), with the one level hierarchy simulations we found that 
there was no significant difference in the performance (with respect to the evaluation 
definition) of the system when there were two levels of the hierarchy when there was 
only one level in the hierarchy. However, consistent with theorem 1, the computation 
time of the system was much lower. 

Communication and noise.  While the performance of the hierarchy-based mod-
els are significantly better than the non-hierarchy ones, the agents in the hierarchy 
model must communicate with one another, while no communication is needed for 
the flat models.  Thus, if no communication is possible, then FMV should be used. 
When communication is possible, however, messages may be lost or corrupted. The 
data structure exchanged in messages is the capsule. In our simulations using a hier-
archy model, each sampling agent transmitted 168 bytes per minute. We examined 
the influence of randomly corrupted capsules on the HMV’s behavior. Figure 4 
shows that as the percentage of the lost capsules increased the number of tracked 
targets decreased; however, up to a level of 10% noise, the detection percentages 
decreased only from 74% to 65% and the accurate tracking time increased from 69 
seconds to only 80 seconds. Noise of 5% resulted in a smaller decrease to a tracking 
accuracy of 70% while the tracking time increased slightly to 71.  DDM could even 
mange with noise of 30% and track 39% of targets with average tracking time of 115 
seconds. 

In the rest of the experiments we used the HMV settings without noise.  
Varying the number of Dopplers and targets. We examined the effect of the 

number of Dopplers on performance. We found that, when the number of targets was 
fixed, then as the number of Dopplers increased the percentage of accurate tracking 
increased as well. The significance of this result is that it confirms that the system can 
make good use of additional resources. We also found out that as the number of Dop-
pler sensors increased, the 50% probability paths decreased. This may be explained 
by the fact that 100% paths result from taking into consideration more than one sam-
ple viewpoint. We also found that increasing the number of targets, while keeping the 
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number of Dopplers fixed, does not influence the system’s performance. We specu-
late that this is because an active sector could distinguish more than one target in that 
sector.  

 

 

Figure 4: Target detection percentage and 
average time as function of the communication 
noise 

Figure 5: Tracking percentage and average 
time as a function of the number of Dopplers 

Maximum detection range comparison. We also tested the influence of the de-
tecting sector area on performance. The basic setting uses Dopplers with detection 
range of 200 meters. We compared the basic setting to similar ones with detection 
ranges of 50,100 and 150 meters. We found that as the maximum range increased the 
tracking percentage increased up to the range covering the entire global area. As the 
maximum radius of detection increased the tracking average time decreased.  This is 
a beneficial property, since it indicates that better equipment will lead to better per-
formance. 

5 Conclusions and Related Work 

We have introduced a hierarchical approach for combining local and partial informa-
tion of large-scale object and team environments where agents must identify the 
changing states of objects. To apply the DDM model to a different environment, it is 
only necessary to represent three domain-specific functions:  PosS, that maps meas-
urements to possible states; ResBy, that determines whether one given object state 
associated with a time point can be the consequence of another given object state 
associated with an earlier time point; and pathToFunc, that, given a path, returns a 
function to represent it. Given these functions, all the DDM algorithms implemented 
for the ANTS domain are applicable, as long as the complexity of these functions can 
be kept low.  Thus, we believe that the results obtained for the ANTS simulations will 
carry over to any such domain.  

The results reported in this paper support the following conclusions: (i) the hierar-
chy model outperforms a flat one; (ii) the flat mobile dynamic sector setting can be 
used in situations where communication is not possible; (iii) increasing resources 
increases performance; (iv) under the identified constraints, it is beneficial to add 
more levels to the hierarchy; and (v) the DDM can handle situations of noisy com-
munications.  

In terms of related work, the benefits of hierarchical organizations have been ar-
gued by many. So and Durfee draw on contingency theory to examine the benefits of 
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a variety of hierarchical organizations; they discuss a hierarchically organized net-
work monitoring system for object decomposition and also consider organizational 
self-design [6,7]. DDM differs in its use of organizational structure to dynamically 
balance computational load. 

The idea of combining partial local solutions into a more complete global solution 
goes back to early work on the distributed vehicle monitoring testbed (DVMT) [5].  
DVMT also operated in a domain of distributed sensors that tracked objects.  How-
ever, the algorithms for support of mobile sensors and for the actual specifics of the 
Doppler sensors themselves is novel to the DDM system.  Within the DVMT, Corkill 
and Lesser [2] investigated various team organizations in terms of interest areas 
which partitioned problem solving nodes according to roles and communication, but 
were not initially hierarchically organized [8]. Wagner and Lesser examined the role 
that knowledge of organizational structure can play in decisions [9].   

All the alternative approaches to the ANTS problem (e.g., [4]) have been based on 
local assessment methods that require coordinated measurements from at least three 
Doppler sensors and intersecting the resulting arcs of each. Such coordination re-
quires good synchronization of the clocks of the sensors and therefore communica-
tion among the Doppler agents to achieve that synchronization. In addition, commu-
nication is required for scheduling agent measurements. We have presented alterna-
tive methods, which can combine partial and uncertain local information. 
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